具有双检验块的mems传感器的制作方法

文档序号:5941330阅读:195来源:国知局
专利名称:具有双检验块的mems传感器的制作方法
技术领域
本发明一般涉及一种微机电系统(MEMS)传感器。更具体地,本发明涉及一种具有双检验块的MEMS传感器,其被配置为减少传感器尺寸并且减少对温度引起的误差的敏感性。
背景技术
微机电系统(MEMS)传感器广泛使用在例如汽车、惯性制导系统、家用电器、各种设备的保护系统以及许多其它工业、科学和工程系统中。这种MEMS传感器用于感测例如加速度、压力或温度等物理状态,并且提供表示所感测物理状态的电信号。由于尺寸小并且适合于低成本大批量生产,容性传感MEMS的设计对于在高加速度环境中和在小型设备中的操作是相当期望的。容性加速计感测相对于加速度的电容变化,从而改变带电电路的输出。加速计的一种普通形式是具有“跷跷板”或“秋千”结构的两层容性传感器。这种通常利用的传感器类型使用基板上方在z轴加速度下旋转的可动部件或板。加速计结构能够测量两个不同的电容值,从而确定差分的或相对的电容值。

发明内容
根据上述以及其他方面,本发明的一方面提供了一种微机电系统MEMS传感器,包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置;以及第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,所述第一和第二可动部件具有基本相同的形状,并且所述第二可动部件基本上被取向为相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称。根据本发明的另一方面,提供了一种包括微机电系统MEMS传感器的设备,所述 MEMS传感器包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置,并且适于绕位于所述第一可动部件的第一和第二端部之间的第一旋转轴旋转运动;以及第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,并且适于绕位于所述第二可动部件的第三和第四端部之间的第二旋转轴旋转运动,所述第一和第二可动部件具有基本相同的形状,并且所述第二可动部件基本上被取向为在相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称,所述第二可动部件位于相对于所述第一可动部件绕所述定位点旋转大约180度的取向上。根据本发明的另一方面,提供了一种微机电系统MEMS传感器,包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置;第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,所述第一和第二可动部件具有基本相同的形状, 并且所述第二可动部件基本上被取向为相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称,所述第二可动部件位于相对于所述第一可动部件绕所述定位点旋转大约180度的取向上,所述第一和第二可动部件中的每一个适于绕公共旋转轴运动;
6第一感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上;以及第二感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上,所述第一和第二感测部件中的每一个离开所述公共旋转轴并且位于所述公共旋转轴的相对侧基本相等的距离,并且所述第一和第二感测部件适于检测所述第一和第二可动部件沿垂直于所述基底的所述平坦表面的轴绕所述公共旋转轴的运动。


当结合附图考虑时,参考具体实施方式
和权利要求可以得到本发明的更完全的理解,其中整个附图部分中同样的参考标记代表类似的部件,并且图I示出了根据实施例的包括在设备中的MEMS传感器的顶视图;图2示出了图I的MEMS传感器的程式化侧视图;图3示出了由图I中的MEMS传感器产生的差分电容值的等式图表;以及图4示出了根据可选实施例的MEMS传感器的顶视图。
具体实施例方式这里描述的实施例包括具有在下面的基板之上悬置的双可动部件(即检验块)的微机电系统(MEMS)传感器。双可动部件用于最小化由于热引起的应力而产生的测量误差。 在另一方面,双可动部件可以改变形状从而通过允许双可动部件以嵌套结构安装到一起而优化基底区域。这种具有双可动部件的MEMS传感器能够使用现有的MEMS制造工序制造。 从而,这种MEMS传感器实现了精确、尺寸紧凑以及成本高效的设计目标。图I示出了根据实施例的设备22中包括的MEMS传感器20的顶视图。加速计形式的MEMS传感器20适用于感测箭头24 (参见图2)表示的z轴加速度,并且构造为“跷跷板”形式的传感器。设备22能够包括任意多个其中可能需要加速度测量的设备。这些设备包括,例如汽车系统、惯性制导系统、家用电器、各种设备的保护系统、手提计算和电信设备。MEMS传感器20包括具有基本平坦表面28的基底26。第一感测部件30和第二感测部件32 (由虚线代表)形成在基底26的平坦表面28上。另外,第一悬置锚34和第二悬置锚36形成在基底26的平坦表面28上。在这里称为第一检验块38的第一可动部件和在这里称为第二检验块40的第二可动部件在基底26的平坦表面28上方以间隔的关系布置。MEMS传感器20包括第一顺从性构件42和第二顺从性构件44,其使第一检验块38 与第一悬置锚34相互连接,从而第一检验块38悬置于基底26之上。类似地,MEMS传感器 20包括第三顺从性构件46和第四顺从性构件48,其使第二检验块40与第二悬置锚36相互连接,从而第二检验块40悬置于基底26之上。MEMS传感器30的组件可以使用现有的和将有的MEMS制造设计规则和工序形成,包括例如沉积、图案化以及蚀刻。这里使用的术语“第一”、“第二”、“第三”和“第四”并不是用于对元件的可数序列中的元件进行排序或优先化。相反,术语“第一”、“第二”、“第三”和“第四”是为了讨论的清楚用来区别具体部件的。如图所示,开口 50延伸穿过第一检验块38并且由第一检验块38的内边缘部分52 界定。第一悬置锚34沿第一检验块38的位于第一检验块38的第一端部58和第二端部60之间的第一旋转轴56被置于开口 50的大约中心位置54处。同样地,开口 62延伸穿过第二检验块40,并且由第二检验块40的内边缘部分64界定。第二悬置锚36沿第二检验块 40的位于第二检验块40的第三端部70和第四端部72之间的第二旋转轴68被置于开口 62的大约中心位置66处。为了操作为跷跷板型加速计,位于第一旋转轴56 —侧的第一检验块38的第一部分76被形成为具有比位于第一旋转轴56另一侧的第一检验块38的第二部分78相对更大的质量。在示例性实施例中,第一部分76较大的质量可以通过偏移第一旋转轴56而产生, 从而,在第一旋转轴56和第一端部58之间的第一部分76的第一长度80大于在第一旋转轴56和第二端部60之间的第二部分78的第二长度82。类似地,位于第二旋转轴68 —侧的第二检验块40的第三部分84形成为具有比位于第二旋转轴68另一侧的第二检验块40 的第四部分86相对更小的质量。第三部分84较小的质量可以通过偏移第二旋转轴68而产生,从而,在第二旋转轴68和第三端部70之间的第三部分84的第三长度88小于在第二旋转轴68和第四端部72之间的第四部分86的第四长度90。第一和第二检验块38和40 中的每一个适用于响应于加速度24(图2)绕第一和第二旋转轴56和68中其对应的一个而旋转,从而相对于下面的感应部件30和32改变其位置。第一和第二检验块38和40分别具有基本相等的(即,相同的)形状和尺寸。在图I所示的实施例中,形状大致为方形。另外,第一部分76的第一长度80基本等于第四部分86的第四长度90,并且第二部分78的第二长度82基本等于第三部分84的第三长度88。 也应该注意到,第一和第二旋转轴56和68分别沿公共旋转轴93相互对齐。MEMS传感器应用需要较低的温度系数偏移(TCO)规格。TCO是热应力影响半导体设备(例如MEMS传感器)的性能多少的度量。高的TCO表明相应高的热诱发应力,或表明 MEMS设备对这种应力非常敏感。MEMS传感器应用的封装经常使用具有不同热膨胀系数的材料。从而,可能在制造或操作过程中发展出不期望的高TC0。另外,应力可能是由于在终端应用中焊接封装的半导体设备到印刷电路板上而引起的。MEMS设备的应力和材料特性组合可能会导致基底26的应变,即变形。第一和第二悬置锚30和32也可能会通过下面的基底26经历这种应变或变形。悬置锚30和32的应变可能会导致第一和第二检验块38和40 绕它们各自的第一和第二旋转轴56和68的一些旋转,导致测量的不精确,从而不利地影响了输出容性MENS传感器20。根据现有技术,MENS传感器中的部件典型地根据反射对称原理配置,其中相对于对称轴配置部件。对称轴是在几何图形中的线,该线将图形分割成两部分,从而当沿对称轴折叠时一部分与另一部分重合。不幸地,在反射对称中的一对检验块的假设配置由于TCO 的影响可能会导致不期望的高应变和测量不准确。因此,第一和第二检验块38和40并不根据反射对称配置。相反,第二检验块40 基本上被取向为相对于第一检验块38绕基底26的平坦表面28上的位置点94的旋转对称,从而抵消导致测量不精确的第一和第二悬置锚34和36处的应变问题。这里使用的术语“旋转对称”是指第二检验块40相对于第一检验块38绕位置点94旋转的配置,但是和第一检验块38 “看起来仍然是一样的”。也就是说,在第一检验块38上的每个点具有在第二检验块40上距位置点94的距离相同的匹配点,但是处于相反的方向。这种旋转对称在图I 中由箭头96表示。在实施例中,第二检验块40位于基底26上绕位置点94相对于第一检验块38大约旋转180度的取向。这种旋转对称配置有时被成为“二度旋转对称”(second degree rotational symmetry)。相应的,第一和第二检验块38和40的旋转对称配置分别导致第一和第二旋转轴 56和68分别沿共同的旋转轴92相互对齐。因此,导致第一检验块38旋转的第一悬置锚 34经历的任何应力被导致第二检验块40旋转的第二悬置锚36经历的基本相等和相反的应力平衡了。另外,第一和第二检验块38和40的旋转对称配置使得感测部件30和32可以相互接近配置。这种接近性导致了感应部件30和32具有由应力导致的类似变形。参考图2-3,图2示出了 MEMS传感器20的程式化侧视图,图3示出了由MEMS传感器20产生的差分电容值的等式100的图表98。在图2和3中,名称“Ml”代表第一检验块 38,“M2”代表第二检验块40,“SI”代表第一感测部件30,“S2”代表第二感测部件32。图2描述了第一和第二检验块38和40分别绕公共旋转轴92的旋转。响应于z 轴加速度24,第一检验块38在箭头102代表的第一方向上旋转,第二检验块40在箭头104 代表的第二方向上旋转。然而,由于第一和第二检验块38和40是旋转对称的,第二旋转方向104与第一旋转方向102相反。随着第一和第二检验块38和40旋转,它们的位置相对于下面的感测部件30和32 改变。这种位置的改变导致了一系列的电容,这些电容的差,即差分电容值,指示了加速度 24。如图2中所示,第一电容Cl形成在第一检验块38的第一部分76和第一感测部件30 之间。第二电容C2形成在第一检验块38的第二部分78和第二感测部件32之间。另外, 第三电容C3形成在第二检验块40的第三部分84和第一感测部件30之间。并且,第四电容C4形成在第二检验块40的第四部分86和第二感测部件32之间。图3描述了指示加速度24的差分电容。具体的,加速度等式100示出了加速度输出ACCEL(OUT)与第一和第四电容(Cl和C4)的和与第二和第三电容(C2和C3)的和之间的差值成比例。图表98还示出了第一电容Cl形成在第一检验块38M1和第一感测部件30S1 之间的结构。第四电容C4形成在第二检验块40M2和第二感测部件32S2之间。第二电容 C2形成在第一检验块38M1和第二感测部件32S2之间。并且第三电容C3形成在第二检验块40M2和第一感测部件30S1之间。因此,MEMS传感器20的双检验块结构在良好适于低成本大量生产的小封装中取得了相对高的加速度输出。此外,由于也被称为TCO的热诱发应力,第一和第二检验块38 和40的旋转对称结构导致至少部分测量误差的抵消。图4示出了根据可选实施例的MEMS传感器106的顶视图。对MEMS传感器20(图 I)的简单回顾揭示了由于第一和第二检验块38和40的旋转对称结构,在基底26上面有显著面积的未使用空间。具体的,没有使用基底26上面接近第一检验块38的第二端部60的区域和在基底26上面接近第二检验块40的第三端部70的另一区域。MEMS传感器106的结构通过L型可动块的嵌套配置利用该未使用的空间,从而实现对z轴加速度24 (图2)更高的灵敏度。MEMS传感器106的多个组件基本上等价于MEMS传感器20 (图I)的组件。为了简便起见,这里使用同样的参考标记表示等价的组件。同样地,MEMS传感器106包括基底26, 以及形成在基底26的平坦表面28上的第一感测部件30、第二感测部件32、第一悬置锚34 和第二悬置锚36。
MEMS传感器106还包括在基底26的平坦表面28之上以间隔关系布置的第一可动部件,这里称为第一检验块108,和第二可动部件,这里称为第二检验块110。第一和第二顺从性构件42和44分别使第一检验块108与第一悬置锚34相互连接,从而第一检验块108 悬置在基底26之上。同样地,第三和第四顺从性构件46和48分别使第二检验块110与第二悬置锚36相互连接,从而第二检验块110悬置在基底26之上。对比于第一和第二检验块38和40 (图I)的基本方形的形状,MEMS传感器106的第一和第二检验块108和110是L形部件。也就是说,第一检验块108包括从第一检验块 108的第一侧面114延伸并且位于接近第二检验块110的端部116位置的第一侧向延伸部分112。同样地,第二检验块110包括从第二检验块110的第二侧面120延伸并且位于接近第一检验块108的端部122位置的第二侧向延伸部分118。第二 L形检验块110大致被取向为相对于第一 L形检验块108绕基底26的平坦表面28上的定位点94而旋转对称96,从而实现第一和第二检验块108和110安装到一起而不会相互接触的嵌套结构。前面的位于基底26上面的未使用区域现在用于进一步增加第一和第二检验块108和110的相对部分的质量。该增加的质量能够使用与MEMS传感器 20 (图I)相同的面积提供对Z轴加速度24 (图I)更高的灵敏度。另外,由于热诱发应力, 第一和第二检验块108和110的旋转对称结构导致至少部分的测量误差被抵消。这里描述的实施例包括具有悬置在下面基底之上的双可动部件(即检验块)的微机电系统(MEMS)传感器。由于热诱发应力,双检验块被取向为相对于彼此旋转对称,从而最小化测量误差。在另外的方面,相对于彼此旋转对称取向的双检验块可以是L形的,从而通过允许双检验块以嵌套结构安装到一起而优化基底面积。L形双检验块能够使用与具有大体方形的双检验块MEMS传感器一样的面积能提供对Z轴加速度更高的灵敏度。具有双检验块的MEMS传感器能够使用现有的MEMS制造工序来制造。从而,这种MEMS传感器实现了闻灵敏度、精确度、尺寸紧凑和成本闻效的设计目标。虽然已经描述了本发明的优选实施例,在不脱离本发明精神和如下权利要求的范围下做出各种变形对本领域技术人员是很明显。例如,双检验块可以具有与上面描述的那些不同的形状,只要它们相对于彼此旋转对称配置。
权利要求
1.一种微机电系统MEMS传感器,包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置;以及第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,所述第一和第二可动部件具有基本相同的形状,并且所述第二可动部件基本上被取向为相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称。
2.如权利要求I所述的MEMS传感器,其中所述第二可动部件位于相对于所述第一可动部件绕所述定位点旋转大约180度的取向上。
3.如权利要求I所述的MEMS传感器,其中所述第一可动部件适于响应于沿垂直于所述基底的所述平坦表面的轴的加速度而以第一方向旋转运动,所述旋转运动绕位于所述第一可动部件的第一和第二端部之间的第一旋转轴发生;并且所述第二可动部件适于响应于所述加速度以第二方向旋转运动,所述旋转运动绕位于所述第二可动部件的第三和第四端部之间的第二旋转轴发生,所述第二方向与所述第一方向相反。
4.如权利要求3所述的MEMS传感器,其中所述第一和第二旋转轴沿公共旋转轴相互对齐。
5.如权利要求4所述的MEMS传感器,进一步包括第一悬置锚,形成在所述基底的所述平坦表面上,并且基本以所述公共旋转轴为中心;第一顺从性构件对,连接所述第一可动部件与所述第一悬置锚,所述第一顺从性构件对使得所述第一可动部件能够绕所述第一旋转轴进行所述旋转运动;第二悬置锚,形成在所述基底的所述表面上,并且基本以所述公共旋转轴为中心;以及第二顺从性构件对,连接所述第二可动部件与所述第二悬置锚,所述第二顺从性构件对使得所述第二可动部件能够绕所述第二旋转轴进行所述旋转运动。
6.如权利要求3所述的MEMS传感器,其中所述第一可动部件包括位于所述第一旋转轴和所述第一端部之间的第一部分和在所述第一旋转轴和所述第二端部之间的第二部分,所述第一旋转轴在所述第一和第二端部之间偏移,使得所述第一旋转轴和所述第一端部之间的所述第一部分的第一长度大于所述第一旋转轴和所述第二端部之间的所述第二部分的第二长度;并且所述第二可动部件包括位于所述第二旋转轴和所述第三端部之间的第三部分和位于所述第二旋转轴和所述第四端部之间的第四部分,所述第二旋转轴在所述第三和第四端部之间偏移,使得在所述第二旋转轴和所述第三端部之间的所述第三部分的第三长度小于在所述第二旋转轴和所述第四端部之间的所述第四部分的第四长度。
7.如权利要求6所述的MEMS传感器,其中所述第一长度基本上等于所述第四长度;并且所述第二长度基本上等于所述第三长度。
8.如权利要求6所述的MEMS传感器,其中所述第一可动部件包括从所述第一部分的第一侧面延伸的第一侧向延伸部分,所述第一侧向延伸部分基本位于所述第二可动部件的所述第三端部;并且所述第二可动部件包括从所述第四部分的第二侧面延伸的第二侧向延伸部分,所述第二侧向延伸部分位于邻近所述第一可动部件的所述第二端部。
9.如权利要求8所述的MEMS传感器,其中包括所述第一侧向延伸部分的所述第一可动部件形成第一 L形可动部件;并且包括所述第二侧向延伸部分的所述第二可动部件形成第二 L形可动部件,在所述第一和第二 L形可动部件之间没有接触的情况下,以嵌套结构布置所述第一和第二 L形可动部件。
10.如权利要求I所述的MEMS传感器,其中所述第一和第二可动部件中的每一个适于绕公共旋转轴运动;并且所述MEMS传感器进一步包括第一感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上;以及第二感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上,所述第一和第二感测部件中的每一个离开所述公共旋转轴并且位于所述公共旋转轴的相对侧基本相等的距离,并且所述第一和第二感测部件适于检测所述第一和第二可动部件沿垂直于所述基底的所述平坦表面的轴绕所述公共旋转轴的运动。
11.一种包括微机电系统MEMS传感器的设备,所述MEMS传感器包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置,并且适于绕位于所述第一可动部件的第一和第二端部之间的第一旋转轴旋转运动;以及第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,并且适于绕位于所述第二可动部件的第三和第四端部之间的第二旋转轴旋转运动,所述第一和第二可动部件具有基本相同的形状,并且所述第二可动部件基本上被取向为在相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称,所述第二可动部件位于相对于所述第一可动部件绕所述定位点旋转大约180度的取向上。
12.如权利要求11所述的设备,其中所述第一可动部件适于响应于沿垂直于所述基底的所述平坦表面的轴的加速度而以第一方向绕所述第一旋转轴旋转运动;并且所述第二可动部件适于响应于所述加速度而以第二方向绕所述第二旋转轴旋转运动, 所述第二方向与所述第一方向相反。
13.如权利要求11所述的设备,其中所述第一和第二旋转轴沿公共旋转轴相互对齐。
14.如权利要求11所述的设备,其中所述第一可动部件包括位于所述第一旋转轴和所述第一端部之间的第一部分和位于所述第一旋转轴和所述第二端部之间的第二部分,所述第一旋转轴在所述第一和第二端部之间偏移,使得所述第一旋转轴和所述第一端部之间的所述第一部分的第一长度大于所述第一旋转轴和所述第二端部之间的所述第二部分的第二长度;以及所述第二可动部件包括位于所述第二旋转轴和所述第三端部之间的第三部分和位于所述第二旋转轴和所述第四端部之间的第四部分,所述第二旋转轴在所述第三和第四端部之间偏移,使得在所述第二旋转轴和所述第三端部之间的所述第三部分的第三长度小于在所述第二旋转轴和所述第四端部之间的所述第四部分的第四长度。
15.如权利要求14所述的设备,其中所述第一可动部件包括从所述第一部分的第一侧面延伸的第一侧向延伸部分,所述第一侧向延伸部分位于邻近所述第二可动部件的所述第三端部;并且所述第二可动部件包括从所述第四部分的第二侧面延伸的第二侧向延伸部分,所述第二侧向延伸部分位于邻近所述第一可动部件的所述第二端部。
16.如权利要求11所述的设备,其中所述第一和第二可动部件中的每一个适于绕公共旋转轴运动;并且所述MEMS传感器进一步包括第一感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上;以及第二感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上,所述第一和第二感测部件中的每一个离开所述公共旋转轴并且位于所述公共旋转轴的相对侧基本相等的距离,并且所述第一和第二感测部件适于检测所述第一和第二可动部件沿垂直于所述基底的所述平坦表面的轴绕所述公共旋转轴的运动。
17.—种微机电系统MEMS传感器,包括基底;第一可动部件,在所述基底的基本平坦的表面之上以间隔开的关系布置;第二可动部件,在所述基底的所述表面之上以间隔开的关系布置,所述第一和第二可动部件具有基本相同的形状,并且所述第二可动部件基本上被取向为相对于所述第一可动部件绕所述基底的所述平坦表面上的定位点旋转对称,所述第二可动部件位于相对于所述第一可动部件绕所述定位点旋转大约180度的取向上,所述第一和第二可动部件中的每一个适于绕公共旋转轴运动;第一感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上;以及第二感测部件,配置在所述第一和第二可动部件中每一个下方位于所述基底上,所述第一和第二感测部件中的每一个离开所述公共旋转轴并且位于所述公共旋转轴的相对侧基本相等的距离,并且所述第一和第二感测部件适于检测所述第一和第二可动部件沿垂直于所述基底的所述平坦表面的轴绕所述公共旋转轴的运动。
18.如权利要求17所述的MEMS传感器,进一步包括第一悬置锚,形成在所述基底的所述平坦表面上,并且基本上以所述公共旋转轴为中心;第一顺从性构件对,连接所述第一可动部件与所述第一悬置锚,所述第一顺从性构件对使得所述第一可动部件能够进行所述旋转运动;第二悬置锚,形成在所述基底的所述平坦表面上,并且基本上以所述公共旋转轴为中心;以及第二顺从性构件对,连接所述第二可动部件与所述第二悬置锚,所述第二顺从性构件对使得所述第二可动部件能够进行所述旋转运动。
19.如权利要求17所述的MEMS传感器,其中所述第一可动部件包括第一和第二端部,位于所述公共旋转轴和所述第一端部之间的第一部分,以及位于所述公共旋转轴和所述第二端部之间的第二部分,其中所述公共旋转轴和所述第一端部之间的所述第一部分的第一长度大于所述公共旋转轴和所述第二端部之间的所述第二部分的第二长度;并且所述第二可动部件包括第三和第四端部,位于所述公共旋转轴和所述第三端部之间的第三部分,以及位于所述公共旋转轴和所述第四端部之间的第四部分,其中所述公共旋转轴和所述第三端部之间的所述第三部分的第三长度小于所述公共旋转轴和所述第四端部之间的所述第四部分的第四长度。
20.如权利要求19所述的MEMS传感器,其中所述第一可动部件包括从所述第一部分的第一侧面延伸的第一侧向延伸部分,所述第一侧向延伸部分位于邻近所述第二可动部件的所述第三端部;并且所述第二可动部件包括从所述第四部分的第二侧面延伸的第二侧向延伸部分,所述第二侧向延伸部分位于邻近所述第一可动部件的所述第二端部,使得在所述第一和第二可动部件之间没有接触的情况下以嵌套结构布置所述第一和第二可动部件。
全文摘要
本发明公开了具有双检验块的MEMS传感器。一种微机电系统(MEMS)传感器(20),包括基底(26)和形成在基底(26)的平坦表面(28)上的悬置锚(34,36)。MEMS传感器还包括悬置在基底(26)之上的第一可动部件(38)和第二可动部件(40)。顺从性构件(42,44)相互连接第一可动部件(38)和悬置锚(34),顺从性构件(46,48)相互连接第二可动部件(40)和悬置锚(36)。可动部件(38,40)具有相同的形状。可动部件可以是基本方形可动部件(38,40)或嵌套结构的L形可动部件(108,110)。可动部件(38、40)相对于彼此绕基底(26)上的定位点(94)在旋转对称方向上。
文档编号G01P15/125GK102608354SQ20121001752
公开日2012年7月25日 申请日期2012年1月19日 优先权日2011年1月24日
发明者A·C·迈克奈尔 申请人:飞思卡尔半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1