基于扩频编码技术的地面电磁勘探方法及其探测系统的制作方法

文档序号:5896928阅读:150来源:国知局
专利名称:基于扩频编码技术的地面电磁勘探方法及其探测系统的制作方法
技术领域
本发明涉及一种地球物理勘探新方法,特别涉及一种扩频编码技术的地面电磁勘探方法及探测系统。
背景技术
频率域电磁法勘探为地球物理勘探的重要手段。频率域电磁法的原理是根据电磁信号在地下的穿透深度与地下介质的导电性质以及所用电磁波的频率有密切的关系。当地下介质的电导率不变时,低频的电磁波穿透的更深,了解到地下信息更多,高频则相反。频率域电法在寻找地下金属矿藏、地质灾害探测、水资源分布、煤炭、油气等资源勘查方面都有着十分广泛的应用。目前比较常用的频率域电法主要有变频法、奇次谐波法、双频电流法、可控源音频大地电磁法(CSAMT)、a11序列伪随机法等。传统的变频激电法需要逐次改变频率,一个一个频率的供电和测量,所供电流的波形很难保持完全不变,接收时所受的干扰程度也不同,精度和效率低;奇次谐波法比起变频法有所进步,能够一次供电进行多个频率谐波的测量,然而奇次谐波法谐波强度随谐波次数成反比衰减,且谐波频率分布不均匀;双频激电法将两种频率的电流合成,同时供入地下,一次性同时接收两种频率的信号,其成功克服了变频激电的不足,与奇次谐波法相比,它的两个频率成分强度完全相等。但对于需要提取多个频率地电信息的频谱激电和电磁法来说,仍然难以一次获得较为完整的激电频谱;可控源音频大地电磁法克服了大地电磁(MT)法场源随机性的缺点,但其沿用MT法卡尼亚公式要求在“远区”进行测量,达不到远区公式不成立。a11序列伪随机法实现了工作效率高、观测精度高、仪器轻便、观测参数丰富等优点。a11序列伪随机信号电法是根据伪随机信号编码的数学原理,用_1,0和I三个码元分别表示电流1=_1,0,I,将n个不同频率的电流,组合为含有n个主要频率成分的合成电流,同时供入地下。一次观测可以从地下提取n个不同频率的响应。这种方法由于探测信号含有多个频率成分,可同时测量,一定程度上提高了工作效率。以2n伪随机信号为例,其场源电流中含有的主频率按2n步进,主频率的个数为3、5、7-157…等。根据频率测深的原理,探测信号频率的不连续性会造成地质探测深度的不连续,分辨率较低,进而影响地质探测的效果;另外,当外界信号与探测信号中某一频率重合或接近时,极易影响整个波形的探测结果。为此,在采用这种方法进行探测时,人们不得不加大探测发送机功率,以提高接收信号的信噪比。但功率的加大造成其体积和重量的成倍的增长,不利于野外和山区的勘测。对于频率域电法而言,我们关注的是大地对供电波形的响应,理想频率域场源信号应该具有频率范围宽、丰富的频谱信息、频谱精细化程度高、主频能量分布均匀、信噪比闻等特点。就发送而言,目前的人工场源电磁探测方法发展的主要瓶颈为发送序列和发送功率两方面,主要表现在发送序列的单一化和能量分布不均。已有的电磁探测法存在着发送序列复杂度和频谱细化程度较低,信号功率谱密度低于噪声功率谱密度、频谱密度与主频能量矛盾等问题,制约着电磁探测法的发展,使得单次观测探测效率低,信噪比的提高依赖于系统能量的提高;就信号检测方法而言,目前的电磁测探方法为了提高信噪比,均采用了多次叠加的观测方法,抗干扰能力低,需要多次重复测量来获得可靠信号。随着对勘探深度和纵向分辨率要求的提高,以及现代社会人文干扰日益加剧,对电磁勘探检测方法也提出了更高的要求。英国爱丁堡大学Hobbs等人提出了用伪随机编码代替阶跃电流,国内学者也有关于m序列及逆重复m序列伪随机电磁法的研究。但此处提到的m序列及逆重复m序列电磁法所使用的序列复杂度不够,频谱均是在频带内等间距分布,其伪随机谱线的疏密对辨识准确度影响很大,所使用的伪码序列的限制使得信号功率谱密度低于噪声功率谱密度;且对于m序列和逆m序列,半周期数T的选取对相关辨识算法精度影响很大,T和信号幅度I越大,误差越小,T越大,谱线越密,但T太大,信号频带变宽,主频能量变小,各种突变干扰对辨识脉冲响应的不良影响也越大,欲提高系统的信噪比,就需要加大系统功率。即所提出的方法,由于受到扩展信号频谱的限制,仍然在走增加信号功率,减少噪声,提高信噪比的路。就信号检测方法而言,目前的电磁测探方法为了提高信噪比,均采用了多次叠加的观测方法,抗干扰能力低,需要很多次重复测量来获得可靠信号。

发明内容
为了克服上述现有方法的不足,本发明提出一种扩频编码技术的地面电磁勘探方法及其探测系统。本发明采用的编码序列频率范围宽、频谱信息丰富、频谱精细化程度高、主频能量分布均匀,可克服发送序列的单一化和能量分布不均,单次观测探测效率低,信噪比的提高依赖于系统能量的提高等问题。本发明同步记录发送的电流信号和接收机所在位置的地电响应信息,采用相关辨识计算,无用信号的干扰码序列不起作用。这样总能避开噪声干扰,提闻探测的分辨率、抗多频干扰能力,提闻探测效率。本发明通过发送电极向地下供入以扩频编码序列跳变的电流信号作为人工激励源,接收机接收电磁场响应信息,同时配合GPS同步技术记录发送的电流信号和接收机所在位置的地电响应信息,经过相关辨识方法,得到大地的频谱响应,计算出视电阻率、视极化率、视复电阻率等地球物理信息。本发明为地面电磁探测的精细化、高分辨率测深提供新的思路,同时拓宽了扩频技术的应用领域。随着新方法的不断进步和完善,预测本发明将在资源探测领域发挥重要作用。本发明方法的步骤如下(I)发送机通过发送电极向地下供入以扩频编码序列跳变的电流信号作为人工激励源,同时记录发送电流信号的频率、幅度、相位等相关信息参数;(2)在距离人工激励场源数米到数十公里范围内接收电极处和场源附近的电磁场响应信息;(3)发送信号的采集与接收信号的采集严格同步,同步方式采用GPS同步来实现;(4)利用相关算法,将接收端接收到的信号与发送序列做相关运算,去除不相关噪声,可提取大地系统冲激响应;(5)大地系统冲激响应为地电阻率、收发距及频率或时间的函数,可求得相关地球物理信息。应用本发明方法的勘探系统主要包括发送机与接收机。所述的发送机用于发送扩频编码信号。所述的发送机包括供电电源、快熔、升压电路、整流滤波、主控单元FPGA,即现场可编程门阵列、隔离驱动单元、保护单元、逆变单元、电压电流检测模块、A/D转换模块、输入控制模块、显示存储模块、GPS同步模块以及隔离电源组;所述的主控单元FPGA包括编码序列频率-波形合成单元、数据采集单元、USB接口程序;发送机的连接方式为供电电源的输出端连接快熔后输入给升压电路,升压电路输出作为整流滤波单元的输入,整流滤波单元的输出电压输入给逆变单元;主控单元FPGA的编码序列频率一波形合成单元输出跳频编码序列,输入给隔离驱动电路,隔离驱动电路的输出为逆变单元开关管的输入驱动信号,主控单元FPGA与控制保护单元相连,保护单元与逆变单元相连接,用于对逆变单元进行保护;逆变单元与电压电流检测单元相连接,电压电流检测的输出作为A/D转换的输入,而后输出给主控单元FPGA的信号同步采集;信号同步采 集单元采集到的信号通过USB接口程序实现数据的显示和存储,主控单元FPGA与显示存储单元相连接;输入控制端的输出信号输入给主控单元FPGA,主控单元FPGA通过解读控制信号来进行系统同步时间和输出波形的设定;GPS同步单元与主控单元双向连接,用于进行同步时间信息的提取和处理。本发明中采用的信号为发送频率为O. OOlHz 65535Hz之间按编码图案变化,发送波形为单极性或双极性的正弦波或方波。发送频率范围和波形形式可预先设定。所述的接收机包括阻抗匹配电路、陷波电路、高低通滤波电路、信号放大电路,A/D转换、高速信号采集、大容量数据存储电路、GPS同步单元及人机界面;接收机通过接收电极接收包含地电信息的响应信号,电极送来的信号通过阻抗匹配电路进行阻抗变化,然后通过陷波电路,陷波电路的输入端与阻抗匹配电路的输出端相连,陷波电路的输出端与高低通滤波电路的输入端相连,高低通滤波电路的输出端与信号放大电路的输入端相连,信号放大电路的输出端再将信号传递给A/D转换后进行高速数据采集,数据采集的输出通过基于FPGA的USB接口程序输送给存储单元;接收到信号的传递顺序为由阻抗匹配电路至陷波电路至高低通滤波电路、信号放大电路至A/D转换采集电路至存储电路。本发明采用的发送信号为跳频编码序列波形电流,跳频编码序列波形电流的跳频编码载波频率按照某种跳频图案伪随机序列在O. OOlHf65535Hz范围内跳变。跳频图案由伪随机码控制,使载频的跳变具有均匀分布的性质。这样发送电流既有随机波形电流的特征,又能重复产生。跳频编码发送信号功率谱密度高于噪声功率谱密度;频率跳变量使得各子频率相互不重叠,保持了较高的频带利用率;同时跳频编码的发送方式决定其具有能量比较集中的优点。均符合一个最优电磁探测发送序列的要求。本发明所述的发送序列由编码序列发生器和直接数字频率合成技术,即DDS配合实现。跳频编码序列波形产生过程为由线性反馈移位寄存器产生控制字,输出的控制字经过控制字调整模块转化为DDS的频率控制字,经过相位累加器相位累加后作为一个查表地址输送给地址调整模块,地址调整模块根据输出波形选择信号,调整地址值对应于波形存储器(ROM)中不同波形的存储区域,最后根据查表的地址值输出所需数字波形。由编码序列发生器和直接数字频率合成技术配合实现本发明所述的gold序列和其他跳频序列。发送序列的产生由线性反馈移位寄存器来实现,线性反馈移位寄存器是目前FPGA常用的一种实现伪随机序列的方法,这种方法结构简单、易于实现、而且所产生的伪随机序列具有周期长、随机性好的特点。线性反馈移位寄存器的输出序列具有周期性。定义所述的η级线性反馈移位寄存器模块的生成多项式为
权利要求
1.一种基于扩频编码技术的地面电磁勘探方法,其特征在于,所述的方法是通过发送电极向地下供入跳频编码序列波形电流信号作为人工激励源,同时同步记录发送的电流信号和接收机所在位置的地电响应信息,经过相关辨识方法,得到大地的频谱响应,计算地球物理信息。
2.根据权利要求I所述的基于扩频编码技术的地面电磁勘探方法,其特征在于,所述跳频编码序列波形电流信号为随跳频图案跳变的编码信号,为单极性或双极性的正弦波或方波信号;所述信号频谱分布无限接近白噪声频谱特性;所述电流波形信号的编码序列频率覆盖整个频率段。
3.根据权利要求I或2所述的基于扩频编码技术的地面电磁勘探方法,其特征在于,所发送的电流波形编码序列信号包括由m序列通过串联或并联合成的2n+l个Gold序列,其中m序列为由n级线性反馈移位寄存器产生的最长序列;线性反馈移位寄存器的输出序列具有周期性;定义所述的n级线性反馈移位寄存器模块的生成多项式为n/HO = Zy1 = Snx" +Sn-Ix^i + Sn-2X^2 +--- + ElX2 + +gfl 式中,P (X)为关于变量X的多项式;gi (i=0, I,…,n)取二进制的0或I,而gi=l表示在产生的序列中被连接参与反馈,gi=0表示被断开不参与反馈讲为线性反馈移位寄存器的级数;线性反馈移位寄存器的输出序列长度N和线性反馈移位寄存器的级数n的关系为N=2n-l,n为大于0的整数。
4.根据权利要求I所述的基于扩频编码技术的地面电磁勘探方法,其特征在于所述编码序列单极性、双极性的正弦波和方波电流的最低频率为0. 001Hz,最高频率为65535Hz,发送频率为0. OOlHz飞5535Hz之间按编码图案变化,且发送频率范围可预先设定。
5.根据权利要求I所述的基于扩频编码技术的地面电磁勘探方法,其特征在于在所述的勘探过程中,实时同步记录发送的电流信号和接收机所在位置的地电响应信息,实时同步记录的发送电流信号用于相关辨识算法,以求解大地电阻率信息。
6.根据权利要求I所述的基于扩频编码技术的地面电磁勘探方法,其特征在于所述勘探系统发送机产生的跳频编码序列电流信号通过发送电极供入地下,接收机在接收端接收经大地响应后携带地电信息的信号,同时对发送的电流信号和接收机所在位置记录的地电响应信息进行GPS同步采集和存储,经过相关辨识方法,对接收信号和发送信号进行相关性运算,收发距为r处记录的地电磁系统响应u(r, t) u(r, t) =y (r, t)+n(r, t)=gr(t)*ge(r, t) *f (t) +n (r, t) 式中,gjt)是接收系统的传递函数,ge(t)是未知的大地系统冲激响应,n(r, t)是不相关噪声,f(t)是场源扩频编码调制后的编码序列;若得到大地系统的冲激响应,首先要已知接收系统冲激响应gjt);接收系统冲激响应通过直接记录发送电流,与同步记录的场源附近电磁场响应卷积得到;假设所有电磁场接收单元有相同的系统特性,求输入与输出信号的互相关,由于噪声信号与发送信号不相关,因而其互相关等于零,随后进行傅立叶变换,求得大地频率响应特性Ge (j )为f Suf(Ja))'] GAM) =/Gr(M)其中suf(j )和Sf(j )分别是u(r,t)与f(t)的互相关Ruf(T)和f(t)的自相关Rf ( T )的傅立叶变换,进行幅度和相位分析估计出地电阻率随频率的变化;通过大地频率响应特性进行运算,分离大地冲激响应和观测系统冲激响应,大地冲激响应是地电阻率、收发距及频率或时间的函数;根据大地频率响应特性得到不同探测深度条件下的地球物理参数信息。
7.一种应用权利要求I所述方法的勘测系统,包括发送机与接收机,其特征在于所述发送机用于发送单极性或双极性的正弦波或方波跳频编码信号,通过电极供入地下;所述的发送机包括供电电源、快熔、升压电路、整流滤波、主控单元FPGA,即为现场可编程门阵列、隔离驱动电路、保护单元、逆变单元、电压电流检测模块、A/D转换模块、输入控制端、显示存储模块、GPS同步模块以及隔离电源组;所述的现场可编程门阵列FPGA主控单元包括编码序列频率一波形合成单元、数据采集单元、USB接口程序;编码序列频率一波形合成单元用于合成跳频编码序列图案,输出单极性或双极性的正弦波或方波跳频编码信号,同时输出单一频率方波或正弦波信号;由编码序列频率一波形合成单元合成的编码序列信号通过隔离驱动电路驱动逆变器单元对波形进行功率放大后,通过发送电极供入大地;A/D转换及数据采集单元对发送的电流信号进行同步采集和存储;发送及采集同步单元采用全球定位系统GPS,通过输入控制端设置系统启动时间,依靠GPS的世界时和秒脉冲对系统进行收发同步和采样同步;保护单元对发送机进行过压、欠压、过流保护; 所述的接收机通过接收电极来接收反应地电信息的响应信号;所述的接收机主要包括阻抗匹配电路、陷波电路、高低通滤波电路、信号放大电路,A/D转换、高速信号采集、大容量数据存储电路,GPS同步单元及人机界面。
8.根据权利要求7所述的勘测系统,其特征在于,所述的发送机包括供电电源、快熔、升压电路、整流滤波、主控单元FPGA,即现场可编程门阵列、隔离驱动电路、保护单元、逆变单元、电压电流检测模块、A/D转换模块、输入控制端、显示存储模块、GPS同步模块以及隔离电源组;所述的主控单元FPGA包括编码序列频率一波形合成单元、数据采集单元、USB接口程序;发送机的连接方式为供电电源的输出端连接快熔后输入给升压电路,升压电路输出作为整流滤波单元的输入,整流滤波单元的输出电压输入给逆变单元;主控单元FPGA的编码序列频率一波形合成单元输出跳频编码序列,输入给隔离驱动电路,隔离驱动电路的输出为逆变单元开关管的输入驱动信号,主控单元FPGA与控制保护单元相连,保护单元与逆变单元相连接,用于对逆变单元进行保护;逆变单元与电压电流检测单元相连接,电压电流检测的输出作为A/D转换的输入,而后输出给主控单元FPGA的信号同步采集;信号同步采集单元采集到的信号通过USB接口程序实现数据的显示和存储,主控单元FPGA与显示存储单元相连接;输入控制端的输出信号输入给主控单元FPGA,主控单元FPGA通过解读控制信号来进行系统同步时间和输出波形的设定;GPS同步单元与主控单元双向连接,用于进行同步时间信息的提取和处理。
9.根据权利要求7所述的勘测系统,其特征在于,所述的接收机包括阻抗匹配电路、陷波电路、高低通滤波电路、信号放大电路,A/D转换、高速信号采集、大容量数据存储电路、GPS同步单元及人机界面;接收机通过接收电极接收包含地电信息的响应信号,电极送来的信号通过阻抗匹配电路进行阻抗变化,然后通过陷波电路,陷波电路的输入端与阻抗匹配电路的输出端相连,陷波电路的输出端与高低通滤波电路的输入端相连,高低通滤波电路的输出端与信号放大电路的输入端相连,信号放大电路的输出端再将信号传递给A/D转换后进行高速数据采集,数据采集的输出通过基于FPGA的USB接口程序输送给存储单元; 接收到信号的传递顺序为由阻抗匹配电路至陷波电路至高低通滤波电路、信号放大电路至A/D转换采集电路至存储电路。
全文摘要
一种基于扩频编码技术的地面电磁勘探方法及其探测系统,通过发送电极向地下供入以一定的编码序列跳变的电流信号作为人工激励源,接收机接收电磁场响应信息,同时同步记录发送的电流信号和接收机所在位置的地电响应信息,经过相关辨识方法,得到包含有地电阻率的大地系统响应,最终得出地电阻率分布特征。应用本发明勘探方法的勘探系统,由发送机发送整个预设频段范围的单极性或双极性的正弦波或方波信号,发送序列按预先设定好的频率图案跳变,由相关辨识检测方法去除不相关噪声。
文档编号G01V3/12GK102721982SQ20121021451
公开日2012年10月10日 申请日期2012年6月26日 优先权日2012年6月26日
发明者刘国强, 戴世坤, 李士强, 李艳红 申请人:中国科学院电工研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1