应变传感器的制造方法

文档序号:6226510阅读:78来源:国知局
应变传感器的制造方法
【专利摘要】本发明提供一种应变传感器,其具备:基板,其具有柔软性;CNT膜,其设置于所述基板的表面,且具有沿一个方向取向的多条CNT纤维;一对电极,其设置于所述CNT膜的所述CNT纤维的取向方向的两端,所述CNT膜具有由多条所述CNT纤维构成的多个CNT纤维束、以及包覆所述多个CNT纤维束的周面且与所述基板的所述表面接合的树脂层。
【专利说明】应变传感器

【技术领域】
[0001] 本发明涉及应变传感器。
[0002] 本申请基于2013年5月10日在日本提出申请的特愿2013 - 100751号及2014 年1月8日在日本提出申请的特愿2014 - 2044号主张优先权,将其内容引用于此。

【背景技术】
[0003] 检测应变的应变传感器以根据电阻体相对于应变(伸缩)的电阻变化来检测应变 的方式构成。作为该电阻体,通常使用金属或半导体。但是,金属或半导体由于能够可逆伸 缩的变形量小,因此在用于应变传感器的用途等上时受到限制。
[0004] 因此,作为上述电阻体,提出了使用碳纳米管(CNT)的器件(参照特开2003 - 227808号公报)。该器件中,使用由沿规定方向取向的多个CNT构成的CNT膜等。
[0005] 但是,上述现有器件中,由于设置CNT膜时其处于与外界气体相接触的状态,因 此,在异物混入CNT膜、或者湿气或浮游气体等附着与CNT膜会导致电阻变化发生异常、CNT 膜发生脱落等,这些在传感器功能的持续性(寿命)这一点上存在不合适之处。
[0006] 另外,在上述现有器件的情况下,虽然可以提高电阻变化的线性,但是,除了上述 异物混入CNT膜的技术问题以外,还可能因 CNT沿着与伸缩方向垂直的方向发生偏离而导 致CNT彼此接触,从而引起无法预期的电阻变化或响应的延迟。


【发明内容】

[0007] 本发明是基于上述情况而完成的,其目的在于,提供一种应变传感器,其能够提高 电阻变化的线性(linearity)及响应性,并且能够抑制发生异物混入CNT膜等,且能够提高 传感器功能的持续性。
[0008] 为解决上述技术问题,本发明的应变传感器具备:
[0009] 基板,其具有柔软性;
[0010] CNT膜,其设置于所述基板的表面,且具有沿一个方向取向的多条CNT纤维;
[0011] 一对电极,其设置于所述CNT膜的所述CNT纤维的取向方向的两端,
[0012] 所述CNT膜具有由多条所述CNT纤维构成的多个CNT纤维束、以及包覆所述多个 CNT纤维束的周面且与所述基板的所述表面接合的树脂层。
[0013] 该应变传感器通过沿着使一对电极背离或接近的方向(电极设置方向)进行伸展 或收缩,CNT膜的电阻发生变化,由此感知应变。在该应变传感器中,CNT膜所具有的CNT纤 维束的取向方向和电极设置方向为大致同一方向,由多个该CNT纤维构成的CNT纤维束的 周面由树脂层包覆,因此,CNT膜的电阻变化的线性高。
[0014] 为了对CNT膜的电阻变化进行更具体说明,作为与本发明的应变传感器的比较, 以将CNT纤维沿着与电极设置方向垂直的方向设置的应变传感器(以下有时称作"垂直设 置应变传感器")为例进行说明。该垂直设置应变传感器在沿着电极设置方向伸展时,伸展 方向上CNT纤维间的距离急剧增大,同时会在应变传感器的厚度方向施加压缩而导致CNT 纤维间的距离减小,因此,难以得到电阻变化的线性。
[0015] 与之相对,就本发明的应变传感器而言,因应变传感器的伸展而使得CNT纤维束 中的CNT纤维在随机部位被切断、分开等,由此产生电阻变化,且厚度方向的压缩也小,因 此电阻变化的线性增高。另外,该应变传感器中,CNT纤维束的周围被树脂层包覆。而且, 在CNT纤维的周围局部地含浸树脂层,从而形成含浸部。该树脂层以及含浸部起到导向作 用,能够防止CNT纤维束中未含浸树脂层的非含浸部因向伸缩方向以外的方向的游动而与 其它CNT纤维束相接触,因此,能够抑制无法预测的电阻变化,且能够进一步提高电阻变化 的线性。
[0016] 另外,如上所述,本发明的应变传感器由于CNT纤维束的周围被树脂层和含浸部 包覆,因此在CNT纤维束内部CNT纤维被切断时,在该CNT纤维的切断端部之间形成与外部 隔离的空间。认为该空间内的压力比大气压低(为负压),在应变传感器收缩时(应变释放 时),因该空间的收缩力而促使该应变传感器的收缩。另外,在该空间内,由于CNT纤维之间 或CNT纤维与周围的树脂之间的摩擦降低,因此不易因树脂的残留应力等限制CNT纤维的 动作。其结果,在应变传感器收缩时,CNT纤维的切断端部间迅速地再接触,因此该应变传 感器可以得到高的响应性。
[0017] 另外,本发明的应变传感器中,CNT膜具有包覆所述CNT纤维束的周围的树脂层以 及含浸部,由此,可以防止异物混入CNT膜,另外,通过含浸部将CNT纤维束与树脂层接合, 可以防止CNT纤维发生脱落等,可以提高传感器功能的持续性。
[0018] 如以上说明,根据本发明的应变传感器,能够提高电阻变化的线性及响应性,并且 能够抑制发生异物混入CNT膜等,能够提高传感器功能的持续性。因此,本发明的应变传感 器可以广泛地用于压力传感器、负载传感器、扭矩传感器、位置传感器等。

【专利附图】

【附图说明】
[0019] 图1中,图UA)、1⑶及1(c)是本发明第一实施方式的应变传感器的剖面图、平 面图、及图1A的B - B线的剖面图;
[0020] 图2是表不图1的应变传感器的CNT |旲的不意图;
[0021] 图3是表示图1的应变传感器的应变量和电阻变化率的关系的图表;
[0022] 图4中,图4(A)?图4(E)是表示图1的应变传感器的制造方法的剖面图;
[0023] 图5是表示形成CNT纤维束的部位的SEM照片;
[0024] 图6是表示形成CNT膜的部位的示意图;
[0025] 图7是表示本发明第二实施方式的应变传感器的剖面图;
[0026] 图8是表示本发明第三实施方式的应变传感器的剖面图;
[0027] 图9是表示本发明第四实施方式的应变传感器的平面图;
[0028] 图10中,图10㈧及10⑶是表示实施例1的应变传感器的应变量和电阻值的关 系的图表;
[0029] 图11中,图11㈧及11⑶是表示实施例2的应变传感器的应变量和电阻值的关 系的图表。

【具体实施方式】
[0030] 下面,参照附图详细说明本发明的应变传感器的实施方式。
[0031] <第一实施方式>
[0032] 参照图1㈧?1 (C),应变传感器1具备:基板2、设于该基板2的表面侧且具有沿 一个方向取向的多条CNT纤维的CNT膜4、设置于该CNT膜4中上述CNT纤维的取向方向A 的两端的一对电极3。
[0033] (基板)
[0034] 基板2为具有柔软性的板状体。作为基板2的尺寸没有特别限定,例如可以将厚 度设为10 μ m以上5mm以下、宽度设为1mm以上5cm以下、长度设为lcm以上20cm以下。
[0035] 作为基板2的材质,具有柔软性即可,没有特别限定,例如可以举出:合成树脂、橡 胶、无纺布、可变形的形状或材质的金属或金属化合物等。基板2只要为绝缘体或电阻值高 的材质即可,但在使用金属等电阻值低的材料时,只要在其表面涂布绝缘层或电阻值高的 材料即可。其中,优选合成树脂及橡胶,更优选橡胶。通过使用橡胶,可以进一步提高基板 2的柔软性。
[0036] 作为上述合成树脂,例如可以举出:酚醛树脂(PF)、环氧树脂(EP)、三聚氰胺树脂 (MF)、尿素树脂(脲醛树脂、UF)、不饱和聚酯(UP)、醇酸树脂、聚氨酯(PUR)、热固性聚酰亚 胺(PI)、聚乙烯(PE)、高密度聚乙烯(HDPE)、中密度聚乙烯(MDPE)、低密度聚乙烯(LDPE)、 聚丙烯(PP)、聚氯乙烯(PVC)、聚偏氯乙烯、聚苯乙烯(PS)、聚醋酸乙烯酯(PVAc)、丙烯腈丁 二烯苯乙烯树脂(ABS)、丙烯腈苯乙烯树脂(AS)、聚甲基丙烯酸甲酯(PMMA)、聚酰胺(PA)、 聚缩醛(Ρ0Μ)、聚碳酸酯(PC)、改性聚苯醚(m-PPE)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯 二甲酸乙二醇酯(PET)、环状聚烯烃(C0P)等。
[0037] 作为上述橡胶,例如可以举出:天然橡胶(NR)、丁基橡胶(IIR)、异戊二烯橡胶 (IR)、乙烯丙烯橡胶(EPDM)、丁二烯橡胶(BR)、聚氨酯橡胶(U)、苯乙烯丁二烯橡胶(SBR)、 硅橡胶(Q)、氯丁二烯橡胶(CR)、氯磺化聚乙烯橡胶(CSM)、丙烯腈丁二烯橡胶(NBR)、氯化 聚乙烯(CM)、丙烯酸橡胶(ACM)、表氯醇橡胶(CO、ECO)、氟橡胶(FKM)、PDMS等。这些橡胶 中,从强度等观点出发,优选天然橡胶。
[0038](电极及导电层)
[0039] -对电极3设置于基板2表面的长度方向A(CNT纤维的取向方向)的两端部分。 具体而言,各电极3分别设置于一对导电层5的表面,所述一对导电层5分开设置于在基板 2表面的长度方向A的两端部分。
[0040] 各导电层5提高电极3和CNT膜4的电连接性。作为形成导电层5的材料,只要 具有导电性即可,没有特别限定,例如可使用导电性橡胶类粘接剂等。通过这样使用粘接剂 作为导电层5,可以提高基板2、电极3及CNT膜4的两端的固着性,可以提高应变传感器1 的持续性。
[0041] 电极3具有带状形状。一对电极3在基板2的宽度方向上彼此平行地设置。作为 形成电极3的材料,例如可使用铜、银、铝等金属等。
[0042] 作为电极3的形状,例如可采用膜状、板状、网眼状等,优选网眼状。通过这样使用 网眼状的电极3,可以提高与导电层5的密合性及固着性。作为这种网眼状的电极3,可以 使用金属网、或在无纺布上蒸镀或溅射金属而形成的材料。作为电极3,也可以通过涂布导 电性粘接剂等而形成。
[0043] (CNT 膜)
[0044] CNT膜4具有由沿一个方向取向的多条CNT纤维构成的多个CNT纤维束6、包覆该 多个CNT纤维束6的周面的树脂层7以及含浸部。即,CNT纤维束6由多个CNT纤维构成, 该CNT纤维束6的周围包覆树脂层7。另外,从周面对CNT纤维束6局部地含浸树脂层7, 形成含浸部。并且,在CNT纤维束内具有环绕于该含浸部内侧且不含浸树脂层的非含浸部。 另外,CNT膜4具有俯视为矩形的形状,CNT膜4的长度方向A的两端部分分别隔着导电层 5与电极3连接。
[0045] CNT膜4具有沿个一方向(一对电极3的对向方向A)取向的多个CNT纤维束6。 CNT纤维束6这样取向时,在沿着一对电极3相互远离的方向(上述方向A)施加应变的情 况下,可通过构成CNT纤维束6的非含浸部的CNT纤维的切断及分开、以及CNT纤维束6的 切断空间(间隙)的伸缩等得到应变传感器1的电阻变化。
[0046] 更具体而言,CNT纤维束6采用由CNT纤维构成的捆束结构。在CNT纤维束6 (CNT 膜4)的非含浸部的任意横截面上,存在未切断的CNT纤维和CNT纤维切断、分开而形成的 间隙这二者。另外,认为该间隙内的压力比大气压低(负压),在应变传感器1收缩时(应 变释放时),通过该间隙的收缩力而促使应变传感器的收缩。进而,在该间隙内,CNT纤维之 间或CNT纤维与周围树脂之间的摩擦降低,因此,不因因树脂的残留应力等而限制CNT纤维 的动作。
[0047] 各CNT纤维束6由多条CNT纤维构成。CNT纤维是指1条长条的CNT。另外,CNT 纤维束6具有CNT纤维的端部彼此连结的连结部。CNT纤维彼此在这些CNT纤维的长度方 向上连结。这样,在CNT膜4中,通过使用CNT纤维彼此在其长度方向上连结而成的CNT纤 维束6,可以形成CNT纤维束6的取向方向长度大的CNT膜4,可以增大应变传感器1的长 度方向长度,提高灵敏度。
[0048] 另外,如图2所示,多个CNT纤维束6的非含浸部可以在长度方向A上具有切断部 位P。该切断部位P例如可以在将CNT膜4叠层于基板2后使其沿长度方向A伸展而形成。 该切断部位P优选形成于各CNT纤维束6的随机部位。通过随机形成切断部位P,防止切 断部位P的长度(间隙)在多个相同的时机发生变化(伸缩),因此,能够防止电阻变化的 急激变动,提高线性。此外,优选在该切断部位P存在CNT纤维片段。另外,也可以在一个 CNT纤维束6的非含浸部上形成多个切断部位P。
[0049] 作为静置时上述切断部位P的长度下限,优选为5 μ m,更优选为10 μ m。在切断部 位P的长度低于上述下限的情况下,可能不能充分得到CNT膜4伸缩时电阻变化的线性。另 一方面,作为静置时上述切断部位P的长度上限,优选为50 μ m,更优选为40 μ m。在切断部 位P的长度超过上述上限的情况下,可能应变传感器1的电阻高出必要以上。
[0050] 多个CNT纤维束6可以通过上述连结部等网眼状地连结或接触。此时,在连结部, 可以是三个以上的CNT纤维的端部相结合,也可以是两个CNT纤维的端部和其它CNT纤维 的中间部结合。通过多个CNT纤维束6形成这样的网眼结构,CNT纤维束6彼此紧密连结, 可以降低CNT膜4的电阻。另外,CNT纤维束6的连结部成为主要的基点,可以与多条不相 邻的部位的CNT纤维束6连结或接触,而不限于相邻的CNT纤维束6间。这样,如果是由复 杂的网眼状的CNT纤维束6构成的CNT膜4,则电阻值更低,可以制成在与CNT纤维束6垂 直的方向上具有强的刚性的应变传感器。需要说明的是,CNT纤维束6彼此的连结是指上 述连结部等和CNT纤维束6进行电连接,但CNT纤维束6连结部以外的部分之间进行电连 接的情况也属于连结。CNT纤维束6彼此的接触是指上述连结部等与CNT纤维束6接触但 未电连接,CNT纤维束6连结部以外的部分彼此接触但未电连接的情况也属于接触。
[0051] 需要说明的是,CNT纤维束6是各CNT纤维实质上在CNT纤维束6的长度方向A取 向且未进行捆扎的状态的纤维束。通过使用这种CNT纤维束6,可以提高CNT膜4的均匀 性,可以提高作为应变传感器的线性。
[0052] 在上述连结部,各CNT纤维彼此通过分子间力结合。因此,即使在多个CNT纤维束 6通过连结部连结成网眼状的情况下,也能够抑制由于存在连结部而引起的电阻上升。
[0053] CNT膜4可以是将CNT纤维束6大致平行地配置成平面状而形成的单层结构,也可 以为多层结构。但是,为了确保一定程度的导电性,优选为多层结构。
[0054] 作为CNT纤维(CNT)可以使用单层的单壁碳纳米管(SWNT)或多层的多壁碳纳米 管(MWNT)的任一种,但从导电性及热容量等这一点出发,优选MWNT,更优选直径为1. 5nm以 上100nm以下的MWNT。
[0055] 上述CNT纤维(CNT)可以通过公知的方法制造,例如可以通过CVD法、电弧法、激 光磨削法、DIPS法、CoMoCAT法等制造。其中,从能够高效地得到所希望的尺寸的CNT (MWNT) 这一点出发,优选以铁为催化剂且通过使用乙烯气的CVD法制造。该情况下,在石英玻璃基 板或带氧化膜的硅基板等基板上形成作为催化剂的铁或镍薄膜,由此可以得到垂直取向成 长的理想长度的CNT结晶。
[0056] 树脂层7为以树脂为主成分且包覆多个CNT纤维束6的周面的层。作为树脂层7 的主成分,可以举出在基板2的材料中列举的合成树脂或橡胶等,其中优选橡胶。通过使用 橡胶,对于大的应变也能够发挥CNT纤维的充分的保护功能。
[0057] 树脂层7优选使用水性乳剂形成。水性乳剂是指分散媒的主成分为水的乳剂。CNT 的疏水性高。因此,通过使用水性乳剂形成上述树脂层7,即通过例如涂布或浸渍以树脂为 分散质的水性乳剂而形成树脂层7,树脂层7可以形成不完全浸渍至CNT纤维束6的内部而 充填至CNT纤维束6的周围的状态。由此,能够抑制形成树脂层7的树脂完全浸入CNT纤 维束6并对CNT膜4的电阻变化带来影响,从而抑制树脂层7引起的CNT膜4的应变灵敏 度的降低。需要说明的是,水性乳剂由于经过干燥工序,因此能够形成更稳定的树脂层7。
[0058] 另外,CNT纤维束6具有由多条CNT纤维构成的捆束结构。具体而言,在CNT纤维 束6中彼此重叠多个CNT纤维,并形成长的CNT纤维束6。该情况下,通过多条CNT纤维连 接,形成具备电流通路的长的CNT纤维束6。这也是即使CNT纤维在长度方向上被切断也不 会损害电流通路的原因。
[0059] 树脂层7只要不完全含浸至形成最低限捆束结构体的多条CNT纤维中即可,可以 局部地含浸至CNT纤维束6中形成含浸部。构成CNT纤维束6且直径小的捆束结构体被认 为是CNT纤维束6中直径小的束。相反,作为绝缘物的树脂层7含浸至CNT纤维束6内部 的CNT纤维表面且树脂层7包覆CNT纤维表面时,由于施加应变而在长度上切断的多条CNT 纤维无法与相邻的CNT纤维接触,损失导电通路,电阻急剧增大。其结果是CNT膜4的线性 降低,因此不优选。
[0060] 沿着一对电极3相互远离的方向(方向A)对构成CNT纤维束6的非含浸部的CNT 纤维施加应变,从而进行切断、分离,形成间隙,但在其横截面,CNT纤维减少,从而变得容易 在上述A方向上部分地进行伸缩。在该部分,上述树脂层7也容易产生伸缩,因此,CNT膜4 可以边在上述A方向上产生刚性的变化边进行伸缩。通过使该刚性的变化程度更细微,可 以进一步提高应变传感器1的线性。
[0061] 上述水性乳剂的分散媒的主成分为水,但也可以含有其它例如乙醇等亲水性分散 媒。作为上述乳剂的分散质,通常为树脂,优选上述的橡胶,特别优选天然橡胶。另外,作为 分散质也可以使用聚氨脂。该优选的乳剂可举出以水为分散剂且以橡胶为分散质的所谓胶 乳,优选天然橡胶胶乳。通过使用天然橡胶胶乳,能够形成薄且有强度的保护膜。
[0062] 树脂层7可以含有偶联剂。树脂层7含有偶联剂时,可以使树脂层7和CNT纤维 束6交联,提高树脂层7和CNT纤维束6的接合力。
[0063] 作为上述偶联剂,例如可以使用:氨基硅烷偶联剂、氨基钛偶联剂、氨基铝偶联剂 等的氨基偶联剂或硅烷偶联剂等。
[0064] 相对于树脂层7的基质树脂100质量份,偶联剂的含量的下限优选0. 1质量份,更 优选〇. 5质量份。另一方面,相对于树脂层7的基质树脂100质量份,偶联剂的含量的上限 优选10质量份,更优选5质量份。在偶联剂的含量低于上述下限的情况下,CNT纤维束6和 树脂层7的交联结构的形成可能不充分。相反,在偶联剂的含量超过上述上限的情况下,有 时不形成交联结构的残留胺等增加,应变传感器1的品质可能降低。
[0065] 树脂层7优选含有对于CNT纤维束6具有吸附性的分散剂。作为这种具有吸附性 的分散剂,可以使用吸附基部分为盐结构的分散剂(例如季铵盐等)、分子中具有能与CNT 纤维束6的疏水性基团(例如烷基链或芳香族环等)相互作用的亲水性基团(例如聚醚 等)的分散剂等。
[0066] 相对于树脂层7的基质树脂100质量份,上述分散剂的含量的下限优选0. 1质量 份,更优选1质量份。另一方面,相对于树脂层7的基质树脂100质量份,分散剂的含量的 上限优选5质量份,更优选3质量份。在分散剂的含量低于上述下限的情况下,CNT纤维束 6和树脂层7的接合力可能不充分。相反,在分散剂的含量超过上述上限的情况下,无助于 与CNT纤维束6的接合的分散剂增加,应变传感器1的品质可能降低。
[0067] 作为CNT膜4的宽度的下限,优选为1mm,更优选为1cm。另一方面,作为CNT膜4 的宽度的上限,优选为l〇cm,更优选为5cm。这样,通过使CNT膜4的宽度较大,如上述能够 降低CNT膜4的电阻值,且该电阻值的偏差也可以降低。
[0068] CNT膜4的平均厚度优选0. 1 μ m?50 μ m。即,作为平均厚度的下限,优选0. 1 μ m, 进一步优选1 μ m,更优选3 μ m。在CNT膜4的平均厚度小于0. 1 μ m的情况下,CNT膜的电 阻值过高,不能作为应变传感器使用。另外,在CNT膜4的平均厚度小于0. 1 μ m的情况下, 可能难以形成薄膜。
[0069] 另一方面,CNT膜4的平均厚度的上限优选50 μ m。CNT膜4的平均厚度的上限更 优选10 μ m,进一步优选5 μ m。树脂层7通过涂布或浸渍以树脂为分散质的水性乳剂而形 成,因此,在CNT膜4的平均厚度超过50 μ m的情况下,可能树脂层7不能到达基板2的表 面。当树脂层7未到达基板2的表面而不能与基板2的表面接合时,会导致CNT膜4与树脂 层7 -同被剥离。即,在CNT膜4为50 μ m以下的情况下,基板2的表面和树脂层7接合, 因此,能够通过树脂层来防止CNT膜从基板剥离。进而,在CNT膜4的平均厚度超过50 μ m 的情况下,对应变的灵敏度可能降低。
[0070] 需要说明的是,要使CNT膜4的膜厚更厚时,可以预先通过涂布等在基板2的表面 形成树脂层,在其上配置CNT膜4,然后进一步在其上通过涂布等形成树脂层。CNT膜4的 膜厚很薄时,由于预先涂布而形成的树脂层,树脂含浸至CNT膜4的内部,因此,仅在基板2 的表面形成树脂层。
[0071] CNT膜4中CNT纤维束6的密度的下限优选1. Og/cm3,更优选0. 8g/cm3。另一方 面,CNT膜4中CNT纤维束6的密度的上限优选1. 8g/cm3,更优选1. 5g/cm3。在CNT膜4中, CNT纤维束6的密度低于上述下限的情况下,CNT膜4的电阻值可能变高。相反,在CNT膜 4中,CNT纤维束6的密度超过上述上限的情况下,可能不能得到充分的电阻变化。
[0072] 应变传感器1中,通过将CNT膜4如上所述地设置,根据基板2的应变,CNT膜4中 构成CNT纤维束6的CNT纤维发生切断、分开、切断部位P的应变(伸缩)等,由此导致CNT 膜4的电阻发生变化,因此,可以作为电阻变化的线性很高的应变探测传感器使用。即,应 变传感器1中,CNT纤维之间的连接状况或距离等变化是局部而阶段性地产生,因此如图3 所示,CNT膜4的电阻发生线性变化。
[0073] 此外,在CNT纤维束6内,在CNT纤维的切断端部间形成与外部隔离的空间,该空 间具有收缩力,并且,CNT纤维在该空间内移动,由此,在应变传感器1收缩时,CNT纤维的切 断端部间迅速地再接触,因此,应变传感器1能够得到高的响应性。
[0074] 另外,应变传感器1可通过在长度方向A上取向的多个CNT纤维束6及包覆CNT 纤维束的树脂层7来提高电阻变化的线性及响应性,并且能够抑制异物混入CNT膜4内等 的发生,能够提高传感器功能的持续性。
[0075] 需要说明的是,基板2的应变不仅包含长度方向A的伸缩,而且还包含基板2的法 线方向的变形、以长度方向为轴的扭转等。根据应变传感器1,这种基板2的应变也能够进 行探测。
[0076](制造方法)
[0077] 作为应变传感器1的制造方法,例如可以通过以下的制造工序来制造。
[0078] (1 - 1)如图4(A)所示,在载玻片等的脱模板上形成基板2。具体而言,将载玻片 X浸渍于胶乳或树脂溶液中,然后使其干燥。由此,可以在载玻片X的表面形成树脂制成且 俯视为矩形的基板2。需要说明的是,作为脱模板,也可以使用载玻片以外的其它板材。
[0079] (1 - 2)如图4(B)所示,在基板2的表面配置多个CNT纤维束6。具体而言,在基 板2的表面配置由沿一个方向取向的多个CNT纤维束6构成的CNT片材(膜)。此时,调 节CNT片材的方向,使得CNT纤维束6沿着后续工序中叠层的一对电极3的对置方向(长 度方向)进行取向。
[0080] 需要说明的是,上述CNT片材可以如下得到,S卩,在成长用基材上形成催化剂层, 通过CVD法使沿着一定方向取向的多个CNT纤维生长,如图5所示不捆扎而直接抽出,卷绕 于其它板材或筒材等之后,取出必要量的片状CNT纤维。这样得到的CNT纤维束6由多个 CNT纤维构成,并且其结构为:具有该CNT纤维彼此在长度方向上连结而成的连结部。
[0081] (1 - 3)如图4 ?所示,在多个CNT纤维束6的周面包覆树脂层7。具体而言,通 过将包含载玻片X在内的整体浸渍于胶乳中、或在多个CNT纤维束6 (CNT片材)的表面涂 布胶乳形成树脂层7,完成CNT膜4。该胶乳如上述,使用具有亲水性的水性乳剂。此时,树 脂层7局部地含浸于CNT纤维束6中。
[0082] (1 - 4)如图4(D)所示,在该基板2的长度方向两端部分涂布导电性橡胶类粘接 齐U,形成导电层5。这时,形成导电层5时,可以使导电层5包覆CNT膜4的一部分。
[0083] (1 - 5)如图4(E)所不,在各导电层5的表面叠层电极3。
[0084] (1 - 6)在叠层了电极3后,从载玻片的表面切出这些叠层体,由此可以得到至少 1对应变传感器1。载玻片上的宽度方向两端部分可以切除。另外,也可以沿长度方向切断, 从而由一个叠层体制造多个应变传感器1。需要说明的是,在从载玻片切出后,使应变传感 器1沿电极3的对置方向伸展,从而可以在CNT纤维束6上形成切断部位P。
[0085] 需要说明的是,作为CNT膜4的叠层顺序的上述(1 一 2)也可以采用以下这样的 顺序。
[0086] (1 一 2')如图6所示,将CNT纤维束6卷绕于载玻片(基板2)上。由此,能够得 到在一个方向(一对电极3的对置方向)上取向的多个CNT纤维束6。此时,由一对支持 件13夹持载玻片(基板2)的两端,以载玻片(基板2)的长度方向为轴进行旋转,由此可 以卷绕CNT纤维束6。需要说明的是,也可以通过遮蔽纸带12等包住载玻片的幅方向两端 部分。在将需要量的CNT纤维束6卷绕于载玻片(基板2)后,除去遮蔽纸带12,成为图4B 所示的状态。
[0087] 如上所述,上述树脂层7优选不含浸至上述CNT纤维束的内部。这样,通过不使包 覆CNT纤维束的树脂层含浸至CNT纤维束的内部,能够保护CNT纤维束,并且防止树脂阻碍 CNT纤维束在取向方向上的变形,因此,能够进一步提高应变传感器的灵敏度及电阻变化的 线性。另外,由于上述CNT纤维束内容易形成空间,因此可以进一步提高响应性。
[0088] 上述树脂层7优选使用水性乳剂形成。使用水性乳剂形成树脂层时,可以通过例 如涂布或浸渍等容易且可靠地形成不含浸至CNT纤维束但包覆CNT纤维束的周围的树脂 层。
[0089] CNT纤维束6可以具有CNT纤维彼此在长度方向上连结而成的连结部。这样,通过 使用CNT纤维彼此在长度方向上连结而成的CNT纤维束,可以形成CNT纤维束的取向方向 长度大的CNT膜,因此,可以将电阻变化的线性优异的应变传感器更好地适用于各种用途。
[0090] 优选多个CNT纤维束6在长度方向上具有切断部位。这样,由于CNT纤维束在长 度方向(取向方向)上具有切断部位,从而在应变传感器进行伸缩时主要通过该切断部位 的间隔(间隙)的变化实现应变传感器的电阻变化,因此,可以进一步提高应变传感器的电 阻变化的线性及响应性,并且电阻变化的再现性也提高。
[0091] CNT纤维束具有含浸部时,CNT膜与基板的结合性以及CNT膜的强度提高。另外, CNT纤维束同时还具有非含浸部时,可以防止树脂阻碍CNT纤维束在取向方向上的变形,能 够进一步提高该应变传感器的灵敏度及电阻变化的线性。另外,由于上述CNT纤维束内容 易形成空间,因此可以进一步提高响应性。此外,根据树脂层7对CNT纤维束6表层的含浸 程度不同,可以引发CNT纤维束6的断裂,在这一点上也可以提高该应变传感器1的响应 性。可以在显微镜下确认到由于这些作用产生的CNT纤维的分布(浓淡)。
[0092] <第二实施方式>
[0093] 图7的应变传感器11主要具备基板2、一对电极3、CNT膜4及叠层于基板2背面 的辅助层8。基板2、电极3及CNT膜4与图1㈧?1 (C)所示的应变传感器1相同,因此 标注同一符号并省略说明。
[0094] 辅助层8是杨氏模量与基板2不同的部件。该辅助层8采用杨氏模量比基板2低 的部件,由此可以提高将应变传感器11直接贴附于皮肤等时的随动性。另外,通过将辅助 层8设为杨氏模量比基板2高的部件,可以控制应变传感器11的伸缩率,防止应变检测的 延迟。
[0095] 作为辅助层8的材质,可以按照杨氏模量的设计条件适宜选择,可以使用在上述 基板2的材料中列举的合成树脂或橡胶等、以及纺布、无纺布、针织物等。特别是在辅助层 8使用针织物的情况下,可以使基板2整体或部分含浸于针织物的纤维层中。由此,针织物 和基板2的接合强度提高,进而针织物还起到抑制应变传感器11被拉断的作用。这样,通 过将针织物配置在背面最外侧,可以得到适于贴合在衣服等上且检测灵敏度良好的应变传 感器。
[0096] 在辅助层8的杨氏模量比基板2低的情况下,辅助层8的杨氏模量与基板2的杨 氏模量之比的上限优选0.9,更优选0.7。在上述杨氏模量的比超过上述上限的情况下,可 能不能充分得到辅助层8带来的应变传感器贴附体对动作追随性提高效果。另一方面,辅 助层8的杨氏模量与基板2的杨氏模量之比的下限优选0. 4,更优选0. 5。在上述杨氏模量 的比低于上述下限的情况下,可能辅助层8和基板2容易因伸缩而剥离。
[0097] 在辅助层8的杨氏模量比基板2高的情况下,辅助层8的杨氏模量与基板2的杨氏 模量之比的上限优选2. 5,更优选2. 0。在上述杨氏模量的比超过上述上限的情况下,应变 传感器11不易变形,传感器灵敏度可能降低。另一方面,辅助层8的杨氏模量与基板2的 杨氏模量之比的下限优选1. 1,更优选1. 5。在上述杨氏模量的比低于上述下限的情况下, 可能不能充分得到辅助层8带来的应变传感器的伸缩率调整效果。
[0098] 作为辅助层8的平均厚度,没有特别限定,例如可以采用ΙΟμπι以上ΙΟΟΟμπι以 下。
[0099] 应变传感器11与上述第一实施方式的应变传感器1相同,能够提高电阻变化的线 性及响应性,并且能够抑制异物混入CNT膜4等的发生,且能够提高传感器功能的持续性。 另外,通过辅助层8能够实现应变传感器贴合体对动作的追随性,并提高检测灵敏度。
[0100] <第三实施方式>
[0101] 图8的应变传感器21主要具备基板2、一对电极3、CNT膜4及叠层于CNT膜4表 面的辅助层9。基板2、电极3及CNT膜4与图1 (A)?1 (C)所示的应变传感器1相同,因 此,标注同一符号并省略说明。另外,辅助层9可以采用与图7的应变传感器11相同的辅 助层。需要说明的是,如图8所示,优选该辅助层9也包覆导电层5。
[0102] 应变传感器21与上述第二实施方式的应变传感器21相同,通过叠层于CNT膜4 表面的辅助层9能够实现应变传感器贴合体对动作的追随性并提高探测灵敏度。另外,能 够更可靠地防止异物混入CNT膜4内。也可以在应变传感器的两面设置辅助层。
[0103] <应变传感器的使用方法>
[0104] 该应变传感器通过佩戴于例如人体的胸部,可以检测佩戴者的呼吸。如上述,该应 变传感器由于具有高的线性和响应性,因此即使佩戴者运动,也能够追随胸部的动作而高 精度地检测呼吸。需要说明的是,在这样以检测呼吸为目的将该应变传感器佩戴于胸部的 情况下,优选将应变传感器佩戴于心口窝附近,并使CNT纤维的取向方向与佩戴者的胸围 方向(左右方向)相一致。
[0105] 另外,该应变传感器可以通过安装于人体的手指上而检测手指的动作。例如通过 将该应变传感器安装于指根部分,并使CNT纤维的取向方向与手指弯曲的方向垂直,可以 感应手指的直径变化,可以检测手指的状态或用力程度等。
[0106] 另外,应变传感器也可以在基板的背面及CNT膜的表面分别设置辅助层。通过这 样在应变传感器的两面侧设置辅助层,可以更均衡地提高对测量对象物贴合性、检测灵敏 度等。
[0107] 此外,在该应变传感器中,CNT膜也可以在沿着与CNT纤维束取向方向垂直的方向 上具有可开裂的部分。这样,通过在CNT膜上沿着与CNT纤维束取向方向垂直的方向形成 可开裂的部分,电阻变化的瞬态响应性提高,对于更大的应变(伸缩)也能够发挥优异的传 感器功能。该情况下,在该可开裂的部分容易形成CNT纤维束的切断部位。
[0108] <第四实施方式>
[0109] 在图9所示的应变传感器31中,将两个CNT膜4沿长度方向(CNT纤维取向方向) 平行并列设置,且用导电层5将这些CNT膜4的一端在与长度方向垂直的方向连接。该应 变传感器31中,在该CNT膜4之间的连接侧不设置电极3,而在该连接侧的相反侧各设置一 个与各CNT膜4连接的电极3。在该应变传感器31中,CNT纤维的取向方向在导电层5中 变化180°,但在CNT纤维取向方向的两端设置有一对电极3。该应变传感器31可以在维 持长度方向的长度的基础上,将CNT膜4所具有的CNT纤维的取向长度设为2倍。需要说 明的是,也可以利用导电层5在与长度方向垂直的方向连接3个以上的CNT膜4。
[0110] 进而,应变传感器的基板不限于由完全长方体构成的板状体,也可以变形使用。例 如通过将基板设为筒状或波状,可以拓宽应变传感器的用途。作为CNT纤维束,也可以使用 纺织CNT而得到的CNT纤维等。另外,在CNT膜中,还可以再设置在与一对电极的对置方向 垂直的方向上对置的另一对电极。通过设置这样垂直的2对电极,可以将该应变传感器作 为二维传感器使用。另外,通过由具有粘接性的树脂包覆应变传感器的表面或背面,也可以 简易地贴附于人体、构造物等的想要检测应变的部位来使用。
[0111] 实施例
[0112] 下面,通过实施例进一步详细说明本发明,但本发明不限于这些实施例。
[0113] (实施例1)
[0114] 对图UA)?1 (C)所示的应变传感器施加 CNT纤维的取向方向A的拉伸力,以3Hz 的周期使应变量(应变传感器在A方向长度的伸长)在25%?80%之间周期性变化,测量 此时的应变传感器的电阻值的变化。图10(A)及10(B)表示其结果。图10(A)是表示描绘 出1秒钟的应变量和电阻值的变化的响应反应性的图表,图10(B)是描绘出图10(A)中的 应变量和电阻值的关系的图表。
[0115] (实施例2)
[0116] 与上述实施例1相同,对图1 (A)?1 (C)所不的应变传感器施加 CNT纤维的取向 方向A的拉伸力,以3Hz的周期使应变量在40%?90%之间周期性变化,测量此时的应变 传感器的电阻值变化。图11(A)及11(B)表示其结果。图11(A)是表示描绘出1秒钟的应 变量和电阻值的变化的响应反应性的图表,图11(B)是描绘出图11(A)的应变量和电阻值 的关系的图表。
[0117] 如图10㈧及图11㈧所示,可知本发明的应变传感器相对于应变量的变化,电阻 值的变化响应的延迟非常小,响应性优异。而且,如图10(B)及图11(B)所示,可知即使重复 伸缩,应变量和电阻值的关系也能够维持大致线形,电阻变化的线性和持续性优异。另外, 如上所述,本发明的应变传感器即使在使作为预应力的预先施加的应变量变化的情况下, 也能够确认到电阻值线性变化,并且响应性优异。
[0118] 如以上所说明,本发明的应变传感器可以提高电阻变化的线性及响应性,并且可 以抑制异物混入CNT膜等的发生且能够提高传感器功能的持续性。因此,可以作为压力传 感器、负载传感器、扭矩传感器、位置传感器等广泛利用。
【权利要求】
1. 一种应变传感器,其具备: 基板,其具有柔软性; CNT膜,其设置于所述基板的表面,且具有沿一个方向取向的多条CNT纤维; 一对电极,其设置于所述CNT膜的所述CNT纤维的取向方向的两端, 所述CNT膜具有由多条所述CNT纤维构成的多个CNT纤维束、以及包覆所述多个CNT 纤维束的周面且与所述基板的所述表面接合的树脂层。
2. 如权利要求1所述的应变传感器,其中, 所述CNT纤维束的内部未含浸所述树脂层。
3. 如权利要求2所述的应变传感器,其中, 所述树脂层由水性乳胶形成。
4. 如权利要求1?3中任一项所述的应变传感器,其中, 所述CNT纤维束具有将所述CNT纤维彼此在长度方向上连结的连结部。
5. 如权利要求1?3中任一项所述的应变传感器,其中, 所述多个CNT纤维束在长度方向上具有切断部位。
6. 如权利要求1?3中任一项所述的应变传感器,其中, 所述CNT膜的膜厚为0. 1 μ m以上50 μ m以下。
7. 如权利要求1所述的应变传感器,其中, 所述CNT纤维束具有:含浸有所述树脂层的含浸部、以及围绕所述含浸部但不含浸所 述树脂层的非含浸部。
8. -种应变传感器的制造方法,其包括: 在具有柔软性的基板的表面设置碳纳米管(CNT)膜的工序,所述碳纳米管(CNT)膜具 有由沿一个方向取向的多条CNT纤维构成的多个CNT纤维束; 在所述CNT膜的所述CNT纤维的取向方向的两端形成一对电极的工序; 在所述CNT膜上形成树脂层,并使之包覆多个所述CNT纤维束的周面且与所述基板的 表面密合的工序。
9. 如权利要求8所述的应变传感器的制造方法,其中, 在所述CNT膜上形成树脂层的工序包括将水性乳胶涂布于所述CNT膜的工序,所述水 性乳胶以形成所述树脂层的树脂为分散质。
10. 如权利要求9所述的应变传感器的制造方法,其中, 所述CNT膜的膜厚为1 μ m以上50 μ m以下。
11. 如权利要求8所述的应变传感器的制造方法,其中, 在所述CNT膜上形成树脂层的工序包括在水性乳胶中浸渍设置于所述基板的表面的 所述CNT膜的工序,所述水性乳胶以形成所述树脂层的树脂为分散质。
12. 如权利要求8?11中任一项所述的应变传感器的制造方法,其中, 在所述基板的表面设置所述CNT膜的工序之后,使所述CNT膜沿所述CNT纤维的取向 方向伸展,在所述CNT纤维束的随机部位形成切断部位。
【文档编号】G01B7/16GK104142118SQ201410192680
【公开日】2014年11月12日 申请日期:2014年5月8日 优先权日:2013年5月10日
【发明者】铃木克典, 榊原慎吾, 谷高幸司, 奥宫保郎, 杉浦正浩, 井上翼 申请人:雅马哈株式会社, 国立大学法人静冈大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1