阻尼材料的损耗因子与能量及温度耦合关系的测试装置及测试方法

文档序号:6230835阅读:1261来源:国知局
阻尼材料的损耗因子与能量及温度耦合关系的测试装置及测试方法
【专利摘要】本发明提供的是阻尼材料的损耗因子与能量及温度耦合关系的测试装置及测试方法。包括粘弹谱仪,测量能量的装置,测量温度的热电偶装置,首先用粘弹谱仪测量阻尼材料在一定频率下,在所需要研究的温度范围内,阻尼材料的损耗因子随温度的变化,然后用测量能量的功率流方法测量输入输出的能量差,同时用埋在阻尼材料中的热电偶测量瞬态温度,得到阻尼材料的能耗,进一步研究其损耗因子与能量、温度之间的关系。本发明通过测试功率流的方法对振动能量计算,实验装置简单,工程易于实现。本发明可以实现阻尼材料损耗因子、温度与振动能量定量的描述。本发明从能量的角度进行测量,不必为数学计算方便进行假设,从而减少了误差。
【专利说明】阻尼材料的损耗因子与能量及温度耦合关系的测试装置及测试方法
【技术领域】
[0001]本发明涉及的是一种研究粘弹阻尼材料的损耗因子与其对于振动能量的关系的实验装置及方法。
【背景技术】
[0002]粘弹阻尼材料广泛应用于阻尼减振结构,是控制结构及仪器设备振动、冲击和噪声的有效手段。因而,阻尼材料消耗能量占振动系统总输入能量的比重,对于阻尼材料减振性能的评价,具有重要的工程意义。粘弹阻尼材料在减振工作过程中的能量主要由三部分组成:自身的动能、可恢复的弹性能和不可恢复的损耗能量,其中不可恢复的耗能就是表征其阻尼性能的标志。然而,由于工程上机械结构的复杂性,其动能和弹性能难以测量。因而,对于传统仅仅进行振动测试的研究方法,难以建立阻尼特性与振动过程中消耗能量的定量描述。
[0003]表征阻尼材料性能的主要特性参数是损耗因子。损耗因子受环境的影响很大,随着温度、频率、应力幅值改变而变化明显,其中对其影响最为主要的参数为温度。通常来说,在应用于的振动的环境条件下,损耗因子越大,阻尼材料的性能越好,其在振动过程中损耗的能量越多。然而,耗能必然导致粘弹材料自身温度升高,温度升高导致损耗因子的变化。但与此同时,损耗因子的变化又影响着耗能的多少。因而在实际中,由于能量消耗、粘弹性材料温度和材料损耗因子几者相互影响,粘弹性阻尼材料的特性随应用状况发生改变,给粘弹阻尼材料的合理使用带来困难。因而,研究阻尼材料的对振动的耗能、损耗因子之间的关系对阻尼材料的合理使用具有重要指导意义。
[0004]这方面的理论研究与实验研究相对较少,特别是定量研究。“约束阻尼型隔振器粘弹材料振动温升研究[J]”(《振动工程学报》,2010,23 (5) =585-590)中,运用渐进积分方法建立的数学模型分析了约束阻尼型隔振器在正弦载荷作用过程中的粘弹材料剪切温升历程,并对设计的剪切型约束阻尼隔振器进行正弦扫频实验。用压电传感器记录其速度变化历程,同时使用红外线测温仪测定隔振器中粘弹材料的温升历程。但其采用的是扫频的方法,假设非线性粘弹材料损耗剪切模量随频率变化相对其随温度变化可忽略不计,原理上会给实验结果带来一定误差。

【发明内容】

[0005]本发明的目的在于提供一种可以实现阻尼材料工作工程中损耗因子与振动耗能相互耦合的定量描述的阻尼材料的损耗因子与能量及温度耦合关系的测试装置。本发明的目的还在于提供一种阻尼材料的损耗因子与能量及温度耦合关系的测试方法。
[0006]本发明的目的是这样实现的:
[0007]本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试装置包括粘弹谱仪、测量能量的装置和测量温度的热电偶装置;[0008]所述粘弹谱仪用于测量阻尼材料在一定频率下、所需要的温度范围内的损耗因子随温度的变化;
[0009]所述测量温度的热电偶装置采集阻尼材料中的温度随时间的变化,用于计算阻尼材料产生的热能即耗能;
[0010]所述测量能量的装置包括数据采集分析仪、功率放大器、电荷放大器、激振器、由上力传感器和上加速度传感器构成的上阻抗头、由下力传感器和下加速度传感器构成的下阻抗头,阻尼材料的上下面上设置上层钢板和下层钢板,上阻抗头安装在激振器的激振杆上,下阻抗头安装在上层钢板上,数据采集分析仪产生与粘弹谱仪同一频率同一幅值的正弦信号,经过功率放大器放大后驱动激振器,上阻抗头获取施加于上层刚板上的力信号和加速度信号、下阻抗头获取下层刚板上的力信号和加速度信号输入电荷放大器,电荷放大器将力信号、加速度信号放大后输出到数据采集分析仪中、进一步传输到计算机中。
[0011]所述热电偶埋在阻尼材料中并且在阻尼材料外设置绝热层。
[0012]本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试方法为:
[0013]首先用粘弹谱仪测量阻尼材料在一定频率下、在所需要的温度范围内的损耗因子随温度的变化;然后用数据采集分析仪产生与粘弹谱仪同一频率同一幅值的正弦信号相同频率的正弦信号驱动激振器激振上层钢板,对上下层钢板的力和振动加速度信号进行采集,由计算机计算输入输出功率流,进而求得输入输出能量差,从而得到阻尼材料的总能量;同时热电偶采集阻尼材料中的温度随时间的变化,计算得到阻尼材料的产生的热能即耗能;得到损耗因子和温度、温度和热能、热能和振动总能的对应关系;最终通过拟合耗能与温度、损耗因子的关系曲线,得到这三个量相互影响的定量关系,同时通过计算热能与振动系统总能的比值来描述材料的阻尼特性。
[0014]所述热电偶采集阻尼材料中的温度随时间的变化是将多个热电偶埋入阻尼材料中,并对整体做绝热处理。
[0015]与现有技术相比,本发明的优点在于:
[0016]1、本发明通过测试功率流的方法对振动能量计算,实验装置简单,工程易于实现。
[0017]2、本发明可以实现阻尼材料损耗因子、温度与振动能量定量的描述。
[0018]3、本发明从能量的角度进行测量,不必为数学计算方便进行假设,从而减少了误差。
【专利附图】

【附图说明】
[0019]图1是本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试装置(不包括粘弹谱仪)的示意图。
【具体实施方式】
[0020]下面结合附图举例对本发明做更详细的描述。
[0021]本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试装置包括粘弹谱仪、测量能量的装置和测量温度的热电偶装置;所述粘弹谱仪用于测量阻尼材料在一定频率下、所需要的温度范围内的损耗因子随温度的变化;所述测量温度的热电偶装置采集阻尼材料中的温度随时间的变化,用于计算阻尼材料产生的热能即耗能;结合图1,所述测量能量的装置包括数据采集分析仪2、功率放大器3、电荷放大器4、激振器5、由上力传感器8和上加速度传感器9构成的上阻抗头、由下力传感器13和下加速度传感器12构成的下阻抗头,阻尼材料6的上下面上设置上层钢板10和下层钢板11,上阻抗头安装在激振器的激振杆上,下阻抗头安装在上层钢板上,数据采集分析仪产生与粘弹谱仪同一频率同一幅值的正弦信号,经过功率放大器放大后驱动激振器,上阻抗头获取施加于上层刚板上的力信号和加速度信号、下阻抗头获取下层刚板上的力信号和加速度信号输入电荷放大器,电荷放大器将力信号、加速度信号放大后输出到数据采集分析仪中、进一步传输到计算机I中。将多个热电偶7埋入阻尼材料中,并对整体做绝热处理得到绝热层14。
[0022]本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试方法为:
[0023]1、用粘弹谱仪测量粘弹阻尼材料在一定频率、应力幅值下,在所需要研究的温度范围内,阻尼材料的损耗因子随温度的变化。
[0024]2、利用图1实验装置中的数据采集分析仪2产生与粘弹谱仪同一频率同一幅值的正弦信号,经过功率放大器3放大后,驱动激振器5。安装在激振杆上力传感器8获取施加于上层刚板10上的力信号,安装在激振位置附近的加速度传感器9采集上层刚板速度信号。力传感器13获取下层刚板11上的力信号,加速度传感器12采集下层刚板速度信号。电荷放大器4将力信号、加速度信号放大后输出到数据采集分析仪中,进一步传输到计算机I中进行分析。
[0025]3、为了测得阻尼材料的温度,将多个热电偶7埋入阻尼材料中,并将阻尼材料6表层做绝热处理,敷上绝热层14。
[0026]4、试验中用激振器持续施加给上层钢板激励,待稳定后记录阻尼材料的温度与时间关系,进而求得能耗,AQ = cmAT。其中AQ是能耗,c是阻尼材料的比热容,m是阻尼材料的质量,Λ T是对应时间下的温度差。
[0027]5、传感器所测得的力与加速度(积分求得速度)求得的功率流,
【权利要求】
1.一种阻尼材料的损耗因子与能量及温度耦合关系的测试装置,包括粘弹谱仪、测量能量的装置和测量温度的热电偶装置,其特征是: 所述粘弹谱仪用于测量阻尼材料在一定频率下、所需要的温度范围内的损耗因子随温度的变化; 所述测量温度的热电偶装置采集阻尼材料中的温度随时间的变化,用于计算阻尼材料产生的热能即耗能; 所述测量能量的装置包括数据采集分析仪、功率放大器、电荷放大器、激振器、由上力传感器和上加速度传感器构成的上阻抗头、由下力传感器和下加速度传感器构成的下阻抗头,阻尼材料的上下面上设置上层钢板和下层钢板,上阻抗头安装在激振器的激振杆上,下阻抗头安装在上层钢板上,数据采集分析仪产生与粘弹谱仪同一频率同一幅值的正弦信号,经过功率放大器放大后驱动激振器,上阻抗头获取施加于上层刚板上的力信号和加速度信号、下阻抗头获取下层刚板上的力信号和加速度信号输入电荷放大器,电荷放大器将力信号、加速度信号放大后输出到数据采集分析仪中、进一步传输到计算机中。
2.根据权利要求1所述的阻尼材料的损耗因子与能量及温度耦合关系的测试装置,其特征是:所述热电偶埋在阻尼材料中并且在阻尼材料外设置绝热层。
3.一种用权利要求1所述的本发明的阻尼材料的损耗因子与能量及温度耦合关系的测试装置的测试方法,其特征是: 首先用粘弹谱仪测量阻尼材料在一定频率下、在所需要的温度范围内的损耗因子随温度的变化;然后用数据采集分析仪产生与粘弹谱仪同一频率同一幅值的正弦信号相同频率的正弦信号驱动激振器激振上层钢板,对上下层钢板的力和振动加速度信号进行采集,由计算机计算输入输出功率流,进而求得输入输出能量差,从而得到阻尼材料的总能量;同时热电偶采集阻尼材料中的温度随时间的变化,计算得到阻尼材料的产生的热能即耗能;得到损耗因子和温度、温度和热能、热能和振动总能的对应关系;最终通过拟合耗能与温度、损耗因子的关系曲线,得到这三个量相互影响的定量关系,同时通过计算热能与振动系统总能的比值来描述材料的阻尼特性。
4.根据权利要求3所述的阻尼材料的损耗因子与能量及温度耦合关系的测试方法,其特征是:所述热电偶采集阻尼材料中的温度随时间的变化是将多个热电偶埋入阻尼材料中,并对整体做绝热处理。
【文档编号】G01N33/00GK104020259SQ201410270135
【公开日】2014年9月3日 申请日期:2014年6月17日 优先权日:2014年6月17日
【发明者】李玩幽, 张洋, 卢成功, 刘思源, 刘子豪 申请人:哈尔滨工程大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1