用于检测hcn气体的石英晶体微天平传感器及其制法和应用的制作方法

文档序号:6231135阅读:259来源:国知局
用于检测hcn气体的石英晶体微天平传感器及其制法和应用的制作方法
【专利摘要】本发明涉及可用于快速检测剧毒HCN气体的石英晶体微天平传感器及其制备方法和应用。本发明的石英晶体微天平传感器,是在石英晶体微天平传感器的石英晶体微天平晶振的电极的两个表面均修饰有直径为3~6μm的微米级花状结构的氢氧化镍球。本发明的石英晶体微天平传感器具有体积小,可方便转移至HCN气体检测装置中的优势。采用微米级花状结构的氢氧化镍球修饰的石英晶体微天平晶振的电极,作为石英晶体微天平传感器的电极,该石英晶体微天平传感器对HCN气体响应灵敏,针对低浓度(20ppm)的HCN气体表现出了很好的响应性。
【专利说明】用于检测HCN气体的石英晶体微天平传感器及其制法和应 用

【技术领域】
[0001] 本发明属于对剧毒气体HCN等的传感检测范畴,特别涉及可用于快速检测剧毒 HCN气体的石英晶体微天平传感器及其制备方法和应用。

【背景技术】
[0002] 氰化氢是一种无色具有苦杏仁味的剧毒气体,化学式为HCN,其相对分子量 为27.03,相对密度为0.69,熔点为-14°C,沸点为26 °C。HCN是一种剧毒气体,曾被 用作化学武器,属于血液性化学战剂,主要作用:限制血液吸收氧气,达到使人缺氧 致死的目的。HCN气体的毒性大约是C0气体的30倍,当人暴露在浓度为300ppm的 HCN 气体下 1 分钟就可致人死亡(Osifiska, M.,Reaction Kinetics, Mechanisms and Catalysis, 2013. 109 (1) :p. 57-65.)。因此,发展对HCN气体的快速检测方法变得尤为重 要。目前国际上检测HCN气体的通用方法是异烟酸-吡唑啉酮法,该方法具有检出限低、灵 敏度高、分析可靠的特点,但是操作很复杂,不适合对HCN气体的快速检测。其它方法如电 化学方法、原子吸收分光光度法也因其自身的限制而不适合HCN气体的快速检测。
[0003] 石英晶体微天平是一种以质量变化为依据的高灵敏度传感器,具有超低检出限和 快速响应的特点。另外由于其造价低、体积小以及性能优越的特性,能满足实际应用的需 要,具有很好的应用前景。石英晶体微天平作为传感器的应用涉及以下过程:①负载样品的 合成与制备。②将所得样品负载于石英晶体微天平晶振的电极表面,得到石英晶体微天平 传感器。③将石英晶体微天平传感器连接于检测设备,进行相关检测。
[0004] 其中样品的负载量是计算传感器灵敏度的重要参数,负载量可由Sauerbrey方 程式(Sauerbrey,G.,ZeitschriftfiirPhysik,1959. 155(2) :ρ· 206-222.)求得:AF =-2. 26X1(T6F2AM/A
[0005] 其中AF:石英晶体微天平晶振的振动频率变化值;F:石英晶体微天平晶振的原 始振动频率(Ηζ) ;ΛΜ:石英晶体微天平晶振的电极表面所负载物质的质量(g) ;A:气体传 感面积(cm2)。
[0006] 石英晶体微天平作为传感器应用于有毒有害气体检测时,前提是气体与负载的 样品之间发生作用,引起石英晶体微天平晶振的电极表面所负载物质的质量发生变化,从 而产生响应信号,同时可由石英晶体微天平晶振的振动频率的变化值推导出被分析物的浓 度。


【发明内容】

[0007] 本发明的目的之一是提供可用于快速检测剧毒HCN气体的石英晶体微天平传感 器。
[0008] 本发明的目的之二是提供一种可用于快速检测剧毒HCN气体的石英晶体微天平 传感器的制备方法。
[0009] 本发明的目的之三是提供可用于快速检测剧毒HCN气体的石英晶体微天平传感 器在检测低浓度的剧毒HCN气体方面的应用。
[0010] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器,主要涉及石英晶 体微天平晶振的电极表面的修饰。通过低温水热反应策略制备纳米级花状结构的氢氧化 镍球粉末,将制得的纳米级花状结构的氢氧化镍球粉末均匀分散于去离子水中形成悬浊液 后,将上述悬浊液,通过滴涂的方法修饰到石英晶体微天平晶振的电极表面,从而制得用于 快速检测剧毒HCN气体的石英晶体微天平传感器;最后将制得的石英晶体微天平传感器置 于剧毒气体HCN的检测室中进行HCN气体的快速检测,该石英晶体微天平传感器对剧毒HCN 气体的检测表现出了高灵敏度、高选择性的特点。
[0011] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器,是在石英晶体微 天平传感器的石英晶体微天平晶振的电极的两个表面均修饰有直径为3?6μπι的微米级 花状结构的氢氧化镍球,且花状结构氢氧化镍球的每一叶片的厚度为20?30nm。
[0012] 所述的石英晶体微天平晶振的电极的两个表面均修饰有直径为3?6 μ m的微米 级花状结构的氢氧化镍球,其两个表面的修饰量都为6?10微克。
[0013] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器的制备方法包括 以下步骤:
[0014] (1)将7?10毫克的直径为3?6μπι的微米级花状结构的氢氧化镍球分散于 5?10毫升的去离子水中,经过超声分散处理,形成均一分散的悬浊液;所述的花状结构的 氢氧化镍球的每一叶片的厚度为20?30nm ;
[0015] (2)取4?8微升(可用微量注射器移取)步骤⑴所得均一分散的悬浊液,缓慢 滴涂于石英晶体微天平晶振的电极的一侧表面;
[0016] (3)将步骤(2)得到的负载有所述的悬浊液的石英晶体微天平晶振的电极置于干 燥箱中,于室温条件下进行干燥后,再取4?8微升(可用微量注射器移取)步骤(1)所得 均一分散的悬浊液,缓慢滴涂于石英晶体微天平晶振的电极的另一侧表面;
[0017] (4)将步骤(3)得到的石英晶体微天平晶振的电极置于干燥箱中,于室温条件下 进行干燥,在石英晶体微天平晶振的电极的两个表面均得到修饰有直径为3?6 μ m的微米 级花状结构的氢氧化镍球,且花状结构的氢氧化镍球的每一叶片的厚度为20?30nm。
[0018] 所述的石英晶体微天平晶振的电极的材料为金或银;所述的石英晶体微天平晶振 的电极的面积是〇. 196cm2。
[0019] 所述的去离子水的电阻率为18. 2ΜΩ · cm。
[0020] 所述的干燥的时间为9?12小时。
[0021] 所述的微米级花状结构的氢氧化镍球是由以下方法制备得到的:
[0022] (1)取1?3克硝酸镍溶于20?120毫升的去离子水中,剧烈搅拌至完全溶解;
[0023] (2)将3?17毫升的氨水加入到步骤⑴的溶液中,经搅拌得到透明溶液;
[0024] (3)取0· 01?0· 8克的十二烷基苯磺酸钠溶于20?120毫升的去离子水中,搅拌 至完全溶解;
[0025] (4)将步骤(3)得到的溶液倒入步骤⑵制得的透明溶液中,剧烈搅拌(较佳的搅 拌的时间是6?12小时),使其混合均匀;
[0026] (5)将步骤(4)得到的溶液转移到以聚四氟乙烯为内衬的不锈钢反应釜中,密封, 于温度为100?170°c的条件下保持6?12小时,用去离子水洗涤得到的反应产物,然后将 洗涤后的产物在温度为60?90°C的条件下进行干燥,最终得到了浅绿色的微米级花状结 构的氢氧化镍球粉末,该微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的 氢氧化镍球的每一叶片的厚度为20?30nm。
[0027] 步骤(5)所述的用去离子水洗涤,较佳的洗涤次数为3?7次。
[0028] 所述的氨水的浓度为25wt%。
[0029] 所述的去离子水的电阻率为18. 2ΜΩ · cm。
[0030] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器可用于检测低浓 度的HCN气体。
[0031] 所述的检测的方法为:
[0032] (1)将本发明的石英晶体微天平传感器置于剧毒HCN气体的检测室中,然后通以 800mL/min流量的空气,通过配有信号采集系统的电脑来记录由检测室中的石英晶体微天 平晶振的电极的振动频率变化产生的频率的响应信号;
[0033] (2)将本发明的石英晶体微天平传感器置于剧毒HCN气体的检测室中,然后通以 流量为800mL/min,浓度为20ppm的HCN气体,通过配有信号采集系统的电脑来记录由检测 室中的石英晶体微天平晶振的电极的振动频率变化产生的频率的响应信号;
[0034] (3)分析比较步骤(1)和步骤⑵的石英晶体微天平晶振的电极的振动频率变化, 步骤(2)的石英晶体微天平晶振的电极的振动频率迅速上升,10秒内对20ppm HCN气体的 频率的响应信号(AF)的增大值可以达到624Hz,确定了 HCN气体的存在。
[0035] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器还可以用于丙酮、 乙醚、水或乙醇等的饱和蒸汽的检测,其检测的方法为:
[0036] (1)将本发明的石英晶体微天平传感器,分别置于剧毒HCN气体的检测室中,然后 分别通以800mL/min流量的丙酮、乙醚、水或乙醇等的饱和蒸汽,以及浓度为20ppm的HCN 气体;通过配有信号采集系统的电脑来记录由检测室中的石英晶体微天平晶振的电极的振 动频率变化产生的频率的响应信号;
[0037] (2)分析步骤(1)的石英晶体微天平晶振的电极的振动频率变化值,可以发现石 英晶体微天平晶振的电极对HCN气体的频率的响应信号与对丙酮、乙醚、水或乙醇等的饱 和蒸汽的频率的响应信号相反,确定了石英晶体微天平晶振的电极对HCN气体的检测具有 很好的选择性,通过分析计算石英晶体微天平晶振的电极的振动频率变化值,实现对HCN 气体的定性或定量检测。
[0038] 本发明所用到的石英晶体微天平传感器检测系统由三部分组成。即配气系统、石 英晶体微天平传感器检测系统和信号采集系统。配气系统主要用于调节HCN等气体的浓 度,具体地,采用饱和蒸汽空气吹扫的方法配制一定浓度的HCN气体。检测系统包括恒温 箱、检测室、进样阀等部分。气体检测室位于恒温箱中,待气流稳定后,通过进样阀将HCN气 体载入检测室,石英晶体微天平传感器的电极表面负载的微米级花状结构的氢氧化镍球与 HCN气体发生相互作用,产生频率的响应信号,该频率的响应信号由信号采集系统记录,通 过计算分析可以得到HCN气体浓度等重要信息。具体的实验结果显示,微米级花状结构的 氢氧化镍球修饰的石英晶体微天平传感器的电极对HCN气体响应迅速,10秒内对20ppm HCN 气体的频率的响应信号(AF)的增大值可以达到624Hz,远远优于其它种类的负载样品;并 且,本发明的石英晶体微天平传感器对HCN气体的频率的响应信号与对其它气体如丙酮、 乙醚、水或乙醇等的饱和蒸汽的频率的响应信号相反,说明本发明的石英晶体微天平晶振 的电极对HCN气体的检测具有很好的选择性。
[0039] 本发明的用于快速检测剧毒HCN气体的石英晶体微天平传感器具有体积小,可方 便转移至HCN气体检测装置中的优势。采用微米级花状结构的氢氧化镍球修饰的石英晶 体微天平晶振的电极,作为石英晶体微天平传感器的电极,该石英晶体微天平传感器对HCN 气体响应灵敏,针对低浓度(20ppm)的HCN气体表现出了很好的响应性。

【专利附图】

【附图说明】
[0040] 图1.本发明实施例1所制备的微米级花状结构的氢氧化镍球样品的X-射线衍射 谱图。
[0041] 图2a.本发明实施例1所制备的微米级花状结构的氢氧化镍球样品的扫描电镜照 片。
[0042] 图2b.本发明实施例1所制备的微米级花状结构的氢氧化镍球样品的透射电镜照 片。
[0043] 图3.本发明实施例5所制备的微米级花状结构的氢氧化镍球样品修饰的石英晶 体微天平传感器的电极对20ppm的HCN气体的单次循环响应曲线。
[0044] 图4.本发明实施例5所制备的微米级花状结构的氢氧化镍球样品修饰的石英晶 体微天平传感器的电极对20ppm的HCN气体的三次循环响应曲线。
[0045] 图5.本发明实施例5所制备的微米级花状结构的氢氧化镍球样品修饰的石英晶 体微天平传感器的电极对丙酮、乙醚、水、乙醇的饱和蒸汽的响应曲线。

【具体实施方式】
[0046] 实施例1.
[0047] 在室温下取1?2克硝酸镍溶于20?60毫升的电阻率为18. 2ΜΩ ·cm的去离子 水中,剧烈搅拌至完全溶解;将3?10毫升的氨水加入到上述溶液中,经搅拌得到透明状溶 液;取0. 01?0. 3克十二烷基苯磺酸钠溶于20?60毫升的电阻率为18. 2ΜΩ ·_的去离 子水中,搅拌至完全溶解得到溶液,将该溶液倒入上述的透明状溶液中,剧烈搅拌6?12小 时混合均匀得到混合溶液;将该混合溶液转移到以聚四氟乙烯为内衬的不锈钢反应釜中, 密封,于温度为100?140°C的条件下保持6?12小时,用电阻率为18. 2ΜΩ ·_的去离子 水洗涤3?6次得到的反应产物,然后将洗涤后的产物在温度为60?90°C的条件下进行干 燥6?12小时,最终得到了浅绿色的氢氧化镍球粉末,该氢氧化镍球呈微米级花状结构,所 得微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的氢氧化镍球的每一叶片 的厚度为20?30nm。取一定量所得微米级花状结构的氢氧化镍球进行X-射线衍射分析, 所得谱图与标准谱图(JCPDS14-0117)基本一致,如图1所示,可以判断得到的是氢氧化镍 产品。将少量干燥后的微米级花状结构的氢氧化镍球分散于乙醇中,对其进行扫描电镜和 透射电镜的分析(图2a和图2b),分析结果显示得到的产物呈花状结构,直径为3?6 μ m, 组成单元纳米片(叶片)的厚度为20?30nm。
[0048] 实施例2.
[0049] 在室温下取1?2克硝酸镍溶于20?60毫升的电阻率为18. 2ΜΩ .cm的去离子 水中,剧烈搅拌至完全溶解;将10?17毫升的氨水加入到上述溶液中,经搅拌得到透明状 溶液;取〇. 01?〇. 3克十二烷基苯磺酸钠溶于20?60毫升的电阻率为18. 2ΜΩ · cm的 去离子水中,搅拌至完全溶解得到溶液,将该溶液倒入上述的透明状溶液中,剧烈搅拌6? 12小时混合均匀得到混合溶液;将该混合溶液转移到以聚四氟乙烯为内衬的不锈钢反应 釜中,密封,于温度为140?170°C的条件下保持6?12小时,用电阻率为18. 2ΜΩ · cm的 去离子水洗涤3?6次得到的反应产物,然后将洗涤后的产物在温度为60?90°C的条件 下进行干燥6?12小时,最终得到了浅绿色的氢氧化镍球粉末,该氢氧化镍球呈微米级花 状结构,所得微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的氢氧化镍球 的每一叶片的厚度为20?30nm。取一定量所得微米级花状结构的氢氧化镍球进行X-射 线衍射分析,所得谱图与标准谱图(JCPDS14-0117)基本一致,可以判断得到的是氢氧化镍 产品。将少量干燥后的微米级花状结构的氢氧化镍球分散于乙醇中,对其进行扫描电镜和 透射电镜的分析,分析结果显示得到的产物呈花状结构,直径为3?6 μ m,组成单元纳米片 (叶片)的厚度为2〇?3〇nm。
[0050] 实施例3.
[0051] 在室温下取2?3克硝酸镍溶于60?80毫升的电阻率为18. 2ΜΩ .cm的去离子 水中,剧烈搅拌至完全溶解;将10?17毫升的氨水加入到上述溶液中,经搅拌得到透明状 溶液;取〇. 3?0. 5克十二烷基苯磺酸钠溶于60?80毫升的电阻率为18. 2ΜΩ ·_的去离 子水中,搅拌至完全溶解得到溶液,将该溶液倒入上述的透明状溶液中,剧烈搅拌6?12小 时混合均匀得到混合溶液;将该混合溶液转移到以聚四氟乙烯为内衬的不锈钢反应釜中, 密封,于温度为100?140°C的条件下保持6?12小时,用电阻率为18. 2ΜΩ ·_的去离子 水洗涤3?6次得到的反应产物,然后将洗涤后的产物在温度为60?90°C的条件下进行干 燥6?12小时,最终得到了浅绿色的氢氧化镍球粉末,该氢氧化镍球呈微米级花状结构,所 得微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的氢氧化镍球的每一叶片 的厚度为20?30nm。取一定量所得微米级花状结构的氢氧化镍球进行X-射线衍射分析, 所得谱图与标准谱图(JCPDS14-0117)基本一致,可以判断得到的是氢氧化镍产品。将少量 干燥后的微米级花状结构的氢氧化镍球分散于乙醇中,对其进行扫描电镜和透射电镜的分 析,分析结果显示得到的产物呈花状结构,直径为3?6μπι,组成单元纳米片(叶片)的厚 度为20?30nm。
[0052] 实施例4.
[0053] 在室温下取2?3克硝酸镍溶于80?120毫升的电阻率为18. 2ΜΩ · cm的去离 子水中,剧烈搅拌至完全溶解;将10?17毫升的氨水加入到上述溶液中,经搅拌得到透明 状溶液;取〇. 5?0. 8克十二烷基苯磺酸钠溶于80?120毫升的电阻率为18. 2ΜΩ ·_的 去离子水中,搅拌至完全溶解得到溶液,将该溶液倒入上述的透明状溶液中,剧烈搅拌6? 12小时混合均匀得到混合溶液;将该混合溶液转移到以聚四氟乙烯为内衬的不锈钢反应 釜中,密封,于温度为140?170°C的条件下保持6?12小时,用电阻率为18. 2ΜΩ · cm的 去离子水洗涤3?6次得到的反应产物,然后将洗涤后的产物在温度为60?90°C的条件 下进行干燥6?12小时,最终得到了浅绿色的氢氧化镍球粉末,该氢氧化镍球呈微米级花 状结构,所得微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的氢氧化镍球 的每一叶片的厚度为20?30nm。取一定量所得微米级花状结构的氢氧化镍球进行X-射 线衍射分析,所得谱图与标准谱图(JCPDS14-0117)基本一致,可以判断得到的是氢氧化镍 产品。将少量干燥后的微米级花状结构的氢氧化镍球分散于乙醇中,对其进行扫描电镜和 透射电镜的分析,分析结果显示得到的产物呈花状结构,直径为3?6 μ m,组成单元纳米片 (叶片)的厚度为2〇?3〇nm。
[0054] 实施例5.
[0055] 将7?10毫克实施例1制备得到的微米级花状结构的氢氧化镍球分散于5?10 毫升的电阻率为18. 2ΜΩ · cm的去离子水中,经过超声分散处理,形成均一分散的悬浊液; 用微量注射器移取4?8微升所得的均一分散的悬浊液,缓慢滴涂于面积是0. 196cm2的石 英晶体微天平晶振的银电极的一侧表面;将得到的负载有所述的悬浊液的石英晶体微天平 晶振的银电极置于干燥箱中,于室温条件下进行干燥9?12小时,干燥好后,再用微量注 射器移取4?8微升所得的均一分散的悬浊液,缓慢滴涂于石英晶体微天平晶振的银电极 的另一侧表面;将得到的负载有所述的悬浊液的石英晶体微天平晶振的银电极置于干燥箱 中,于室温条件下进行干燥9?12小时,从而得到石英晶体微天平传感器,该石英晶体微天 平传感器的石英晶体微天平晶振的银电极的两个表面均修饰有直径为3?6 μ m的微米级 花状结构的氢氧化镍球,且花状结构的氢氧化镍球的每一叶片的厚度为20?30nm,并且在 两个表面的修饰量都为6?10微克。
[0056] 实施例6.
[0057] 将7?10毫克实施例2制备得到的微米级花状结构的氢氧化镍球分散于5?10 毫升的电阻率为18. 2ΜΩ · cm的去离子水中,经过超声分散处理,形成均一分散的悬浊液; 用微量注射器移取4?8微升所得的均一分散的悬浊液,缓慢滴涂于面积是0. 196cm2的石 英晶体微天平晶振的金电极的一侧表面;将得到的负载有所述的悬浊液的石英晶体微天平 晶振的金电极置于干燥箱中,于室温条件下进行干燥9?12小时,干燥好后,再用微量注 射器移取4?8微升所得的均一分散的悬浊液,缓慢滴涂于石英晶体微天平晶振的金电极 的另一侧表面;将得到的负载有所述的悬浊液的石英晶体微天平晶振的金电极置于干燥箱 中,于室温条件下进行干燥9?12小时,从而得到石英晶体微天平传感器,该石英晶体微天 平传感器的石英晶体微天平晶振的金电极的两个表面均得到修饰有直径为3?6 μ m的微 米级花状结构的氢氧化镍球,且花状结构的氢氧化镍球的每一叶片的厚度为20?30nm,并 且在两个表面的修饰量都为6?10微克。实施例7.
[0058] (1)将实施例5的石英晶体微天平传感器置于剧毒气体HCN的检测室中;
[0059] (2)在步骤⑴所述的检测室中通以800mL/min流量的空气,通过配有信号采集系 统的电脑来记录由检测室中的石英晶体微天平晶振的电极的振动频率变化产生的频率的 响应信号;
[0060] (3)在步骤(2)的检测室中通以流量为800mL/min,浓度为20ppm的HCN气体,同 时通过配有信号采集系统的电脑来记录由检测室中的石英晶体微天平晶振的电极的振动 频率变化产生的频率的响应信号;
[0061] (4)比较分析步骤(2)和步骤(3)的石英晶体微天平晶振的电极的振动频率变化, 步骤(3)的石英晶体微天平晶振的电极的振动频率迅速上升,10秒内对20ppm HCN气体的 频率的响应信号(AF)的增大值可以达到624Hz,确定了 HCN气体的存在。
[0062] 所制备的石英晶体微天平传感器对浓度为20ppm的HCN气体表现出了优良的响应 性,检测结果如图3、图4所示。图3显示:当HCN气体通入后,该石英晶体微天平传感器的 石英晶体微天平晶振的电极的振动频率迅速上升,10秒内频率的增大值达624Hz,25秒内 频率的增大值达825Hz。不仅如此,该石英晶体微天平传感器具有良好的恢复性,经过三次 循环检测后,频率的响应信号能很好地恢复,如图4所示。
[0063] 将实施例5的石英晶体微天平传感器,在温度为25°C的条件下分别对已达到饱和 的丙酮、乙醚、水、乙醇等的饱和蒸汽进行传感响应检测,检测结果如图5所示。通过传感响 应曲线可以看出经过氢氧化镍球修饰的石英晶体微天平传感器的石英晶体微天平晶振的 电极对饱和的丙酮、乙醚、水、乙醇等的饱和蒸汽响应迅速,恢复性好,并且所得的相应信号 与HCN的信号相反,这说明经过氢氧化镍球修饰的石英晶体微天平传感器的石英晶体微天 平晶振的电极对HCN具有高选择性的特点。
【权利要求】
1. 一种用于检测HCN气体的石英晶体微天平传感器,其特征是:在石英晶体微天平传 感器的石英晶体微天平晶振的电极的两个表面均修饰有直径为3?6 μ m的微米级花状结 构的氢氧化镍球,且花状结构氢氧化镍球的每一叶片的厚度为20?30nm。
2. 根据权利要求1所述的用于检测HCN气体的石英晶体微天平传感器,其特征是:所 述的石英晶体微天平晶振的电极的两个表面均修饰有直径为3?6 μ m的微米级花状结构 的氢氧化镍球,其两个表面的修饰量都为6?10微克。
3. 根据权利要求1或2所述的用于检测HCN气体的石英晶体微天平传感器,其特征是: 所述的石英晶体微天平晶振的电极的材料为金或银;所述的石英晶体微天平晶振的电极的 面积是〇· 196cm2。
4. 一种权利要求1?3任意一项所述的用于检测HCN气体的石英晶体微天平传感器的 制备方法,其特征是,所述的制备方法包括以下步骤: (1) 将7?10毫克的直径为3?6 μ m的微米级花状结构的氢氧化镍球分散于5?10 毫升的去离子水中,超声分散形成均一分散的悬浊液;所述的花状结构的氢氧化镍球的每 一叶片的厚度为20?30nm; (2) 取4?8微升步骤(1)所得均一分散的悬浊液,滴涂于石英晶体微天平晶振的电极 的一侧表面; (3) 将步骤(2)得到的负载有所述的悬浊液的石英晶体微天平晶振的电极置于干燥箱 中,于室温条件下进行干燥后,再取4?8微升步骤(1)所得均一分散的悬浊液,缓慢滴涂 于石英晶体微天平晶振的电极的另一侧表面; (4) 将步骤(3)得到的石英晶体微天平晶振的电极置于干燥箱中,于室温条件下进行 干燥,在石英晶体微天平晶振的电极的两个表面均得到修饰有直径为3?6 μ m的微米级花 状结构的氢氧化镍球,且花状结构的氢氧化镍球的每一叶片的厚度为20?30nm。
5. 根据权利要求4所述的制备方法,其特征是:所述的微米级花状结构的氢氧化镍球 是由以下方法制备得到的: (1) 取1?3克硝酸镍溶于20?120毫升的去离子水中,搅拌至完全溶解; (2) 将3?17毫升的氨水加入到步骤⑴的溶液中,经搅拌得到透明溶液; (3) 取0. 01?0. 8克的十二烷基苯磺酸钠溶于20?120毫升的去离子水中,搅拌至完 全溶解; (4) 将步骤⑶得到的溶液倒入步骤⑵制得的透明溶液中,搅拌,使其混合均匀; (5) 将步骤⑷得到的溶液转移到以聚四氟乙烯为内衬的不锈钢反应釜中,密封,于温 度为100?170°C的条件下保持6?12小时,用去离子水洗涤得到的反应产物,然后将洗涤 后的产物在温度为60?90°C的条件下进行干燥,得到微米级花状结构的氢氧化镍球粉末, 该微米级花状结构的氢氧化镍球的直径为3?6 μ m,且花状结构的氢氧化镍球的每一叶片 的厚度为20?30nm。
6. 根据权利要求5所述的制备方法,其特征是:所述的氨水的浓度为25wt%。
7. 根据权利要求4或5所述的制备方法,其特征是:所述的去离子水的电阻率为 18. 2ΜΩ · cm〇
8. -种权利要求1?3任意一项所述的用于检测HCN气体的石英晶体微天平传感器的 应用,其特征是:所述的用于检测HCN气体的石英晶体微天平传感器用于检测低浓度的HCN 气体。
9. 根据权利要求8所述的应用,其特征是,所述的低浓度的HCN气体是浓度为20ppm的 HCN气体。
10. 根据权利要求8或9所述的应用,其特征是,所述的检测的方法为: (1) 将所述的石英晶体微天平传感器置于剧毒HCN气体的检测室中,然后通以800mL/ min流量的空气,通过配有信号采集系统的电脑来记录由检测室中的石英晶体微天平晶振 的电极的振动频率变化产生的频率的响应信号; (2) 将所述的石英晶体微天平传感器置于剧毒HCN气体的检测室中,然后通以流量为 800mL/min,浓度为20ppm的HCN气体,通过配有信号采集系统的电脑来记录由检测室中的 石英晶体微天平晶振的电极的振动频率变化产生的频率的响应信号; (3) 分析比较步骤(1)和步骤(2)的石英晶体微天平晶振的电极的振动频率变化,步 骤(2)的石英晶体微天平晶振的电极的振动频率迅速上升,10秒内对20ppm HCN气体的频 率的响应信号的增大值达到624Hz,确定了 HCN气体的存在。
【文档编号】G01N5/02GK104048893SQ201410276034
【公开日】2014年9月17日 申请日期:2014年6月19日 优先权日:2014年6月19日
【发明者】贺军辉, 胡明镇 申请人:中国科学院理化技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1