一种核电厂液态流出物中锶‑89和锶‑90活度浓度的测试方法与流程

文档序号:11132347阅读:1925来源:国知局
一种核电厂液态流出物中锶‑89和锶‑90活度浓度的测试方法与制造工艺

本发明属于放射性核素的检测领域,具体涉及一种核电厂液态流出物中锶-89和锶-90活度浓度的测试方法。



背景技术:

锶-90(即90Sr)和锶-89(即89Sr)均是U-235和Pu-239的裂变产物,主要来源于核武器爆炸和核反应堆。在核电厂反应堆中可能由于燃料包壳缺陷或破损进入反应堆一回路,并随着液态放射性流出物向环境排放。锶-90是一种纯β放射性核素,半衰期是28.8年,属于高毒性核素;锶-89是一种纯β放射性核素,半衰期是50.5天,属于中毒性核素;在放射性锶的同位素中锶-89和锶-90危害最大,通过食入进入人体后会持久地沉积在造血的骨骼系统中,替代钙从而引起辐射病(例如白血病)。

锶-89和锶-90是核设施液态流出物监测中最为关注的放射性核素,国家强制性标准《核设施流出物监测的一般规定》(GB 11217-1989)规定:核电站和其他动力堆流出物中必须连续地或定期地分析和测量锶-89和锶-90的活度浓度。通过监测液态放射性流出物中锶-89和锶-90的比活度,以确认核设施运行中是否有异常排放,并且可以用于评估核动力厂放射性物质排放对公众可能造成的辐射影响。

锶-90的分析一般采用发烟硝酸法(GB 6764-86)或萃取色层法(GB 6766-86),通过正比计数器进行测量。这两种分析方法都具有分析步骤繁琐、分析时间长等特点。美国材料协会测量锶-90的标准(ASTM D5811-08)不能将锶-89和锶-90分离,无法直接应用于核电厂液态流出物中锶-89和锶-90的测量;国内也尚无核电厂液态流出物中锶-89测量的相关标准。为了降低样品分析的成本,提高核设施液态流出物中放射性核素监测的效率,研发一种快速、简便的分析核设施液态流出物中锶-89和锶-90的方法已是形势所需。



技术实现要素:

本发明目的是为了克服现有技术的不足而提供一种核电厂液态流出物中锶-89和锶-90活度浓度的测试方法。

为达到上述目的,本发明所采用的技术方案为:一种核电厂液态流出物中锶-89和锶-90活度浓度的测试方法,它包括以下步骤:

(a)向液态流出物中加入锶载体,混合后使其通过阳离子树脂柱,用第一硝酸溶液进行洗脱,收集得第一洗脱液;

(b)将所述第一洗脱液蒸发至干,用所述第一硝酸溶液溶解后将其通过锶特效树脂柱,用所述第一硝酸溶液淋洗所述锶特效树脂柱,随后用第二硝酸溶液进行洗脱,收集得第二洗脱液;

(c)将所述第二洗脱液置于恒重的液闪计数瓶中,烘干后称重,计算得锶的回收率Y;

(d)向所述液闪计数瓶中加入去离子水和闪烁液,置于液闪谱仪中测得样品总计数率N,随后根据公式(1)计算得锶-89和锶-90总放射性活度浓度A,

式中,Nb为本底计数率,E为仪器对锶-89标准源的探测效率,V为液态流出物取样体积;

(e)根据液态流出物排放源中锶-89和锶-90的比例,结合核设施中裂变产生并释放锶-89和锶-90至测试的时间,利用公式(2)计算液态流出物中锶-89和锶-90的比例,分别计算得液态流出物中锶-89和锶-90的活度浓度

式中,为考虑核设施中裂变产生并释放锶-89和锶-90至测试的时间的锶-89和锶-90比例;A理论比为通过核设施裂变规律得到的锶锶-89和锶-90比例;为锶-89的衰变常数,1.37×10-2d-1;为锶-90的衰变常数,6.59×10-5d-1;t2为样品测试时间;t1为核设施中裂变产生并释放锶-89和锶-90的时间。

优化地,所述第一硝酸溶液的浓度为5~10mol/L,所述第二硝酸溶液的浓度为0.01~0.08mol/L。

优化地,步骤(e)中,所述液态流出物排放源中锶-89和锶-90的比例由PROFIP5.1软件计算得到。

优化地,步骤(c)中,锶的回收率Y由液闪计数瓶烘干后的质量与其初始质量的差值乘以Sr(NO3)2中Sr元素的质量分数得到。

由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明核电厂液态流出物中锶-89和锶-90活度浓度的测试方法,一方面在酸性条件下将核电厂液态流出物经锶特效树脂进行分离纯化,另一方面依据反应堆各核素的裂变产额和从取样到测量的实验周期得到液态流出物中89Sr和90Sr比例,可以快速、简便的得到核电厂液态流出物中锶-89和锶-90活度浓度;在一个工作日内能够同时得到89Sr和90Sr的活度浓度,大大提高了工作效率,减少了液态流出物对工作人员的辐射影响。

附图说明

附图1为本发明核电厂液态流出物中锶-89和锶-90活度浓度的测试方法的流程图。

具体实施方式

下面将结合附图对本发明优选实施方案进行详细说明:

本发明核电厂液态流出物中锶-89和锶-90活度浓度的测试方法,它包括以下步骤:(a)取核电厂液态流出物为样品,向其中加入锶载体,混合后使其通过阳离子树脂柱,用第一硝酸溶液进行洗脱,收集得第一洗脱液;(b)将所述第一洗脱液蒸发至干,用所述第一硝酸溶液溶解后将其通过锶特效树脂柱,用所述第一硝酸溶液淋洗所述锶特效树脂柱,随后用第二硝酸溶液进行洗脱,收集得第二洗脱液;步骤(a)和步骤(b)即为取核电厂液态流出物作为样品采用美国材料协会标准(ASTM D5811-08)进行处理。所述第一硝酸溶液的浓度为5~10mol/L,所述第二硝酸溶液的浓度为0.01~0.08mol/L。

(c)将所述第二洗脱液置于恒重的液闪计数瓶中,烘干后称重,计算得锶的回收率Y;如恒重的液闪计数瓶质量为m0,烘干后称重得m1,由于Sr的分子量为MSr,Sr(NO3)2的分子量为MSr(NO3)2,锶的回收率Y=(m1-m0)×MSr/MSr(NO3)2

(d)向所述液闪计数瓶中加入去离子水和闪烁液,置于液闪谱仪中测得样品总计数率N,随后根据公式(1)计算得锶-89和锶-90总放射性活度浓度A,

式中,Nb为本底计数率,E为仪器对锶-89标准源的探测效率,V为液态流出物取样体积;

(e)根据液态流出物排放源中锶-89和锶-90的比例(该比例由PROFIP5.1软件计算得到,PROFIP5.1软件建立在法国PWR燃料组件实验和电站功率运行经验的反馈基础上,由法国原子能总署CEA开发并验证),结合核设施中裂变产生并释放锶-89和锶-90至测试的时间,利用公式(2)计算液态流出物中锶-89和锶-90的比例,分别计算得液态流出物中锶-89和锶-90的活度浓度

式中,为考虑核设施中裂变产生并释放锶-89和锶-90至测试的时间的锶-89和锶-90比例;A理论比为通过核设施裂变规律得到的锶锶-89和锶-90比例;为锶-89的衰变常数,1.37×10-2d-1;为锶-90的衰变常数,6.59×10-5d-1;t2为样品测试时间;t1为核设施中裂变产生并释放锶-89和锶-90的时间。

下面将结合附图对本发明优选实施方案进行详细说明。

实施例1

本实施例提供一种核电厂液态流出物中锶-89和锶-90活度浓度的测试方法,具体为:

(a)取2.0L液态流出物样品,加入5mg锶载体,混合均匀后将溶液加入至通过阳离子树脂柱,加入50mL 8mol/L HNO3洗脱锶,收集第一洗脱液;

(b)将收集的第一洗脱液蒸发至干,加入5mL 8mol/L的硝酸溶液将其溶解,随后通过锶特性树脂柱,用10mL 8mol/L的硝酸溶液淋洗锶特性树脂柱(Sr-spec色层柱),分两次用5mL 0.05mol/L的硝酸溶液洗脱锶,收集得第二洗脱液;

(c)用已恒重(12.0178g)的液闪计数瓶收集第二洗脱液,烘干后称重(12.0277g),计算得锶的回收率Y=(m1-m0)/m锶载×MSr/MSr(NO3)2(81.98%);

(d)向计数瓶中加入10mL去离子水和10mL闪烁液(GoldStar LT2),置于液闪谱仪中在C-14的高能模式下进行测量得到样品总计数率N,随后根据公式(1)计算得锶-89和锶-90总放射性活度浓度A,

式中:A为样品中89Sr和90Sr总的放射性活度浓度,Bq/L;N为样品总计数率,cpm;Nb为本底计数率(液闪谱仪的固有性质,样品衰变过程释放的光子由探头接收得到),cpm;E为仪器对锶-89标准源的探测效率(液闪谱仪的固有性质,通过将标准物质置于液闪谱仪中测量得到;由于液态流出物中的89Sr浓度远大于90Sr的浓度,89Sr和90Sr的总浓度所采用的液闪探测效率为89Sr的液闪探测效率),%;Y为锶的化学回收率(%);V为液态流出物取样体积,L;

(e)根据液态流出物排放源中锶-89和锶-90的比例(由PROFIP5.1计算得到核电厂排放源项中89Sr与90Sr的比例为64:1),结合核设施中裂变产生并释放锶-89和锶-90至测试的实验周期为15天,利用公式(2)计算液态流出物中锶-89和锶-90的比例(89Sr与90Sr的比例为52:1);

式中,为考虑核设施中裂变产生并释放锶-89和锶-90至测试的时间的锶-89和锶-90比例;A理论比为通过核设施裂变规律得到的锶锶-89和锶-90比例;为锶-89的衰变常数,1.37×10-2d-1;为锶-90的衰变常数,6.59×10-5d-1;t2为样品测试时间;t1为核设施中裂变产生并释放锶-89和锶-90的时间。

再分别计算得液态流出物中锶-89和锶-90的活度浓度;

由总锶浓度和89Sr与90Sr的比例可以得到核电厂液态流出物中89Sr和90Sr的浓度,即通过公式(3)分别计算核电厂液态流出物中89Sr和90Sr的活度浓度,计算公式为:

式中:为样品中89Sr的放射性活度浓度,Bq/L;为样品中90Sr的放射性活度浓度,Bq/L;为由裂变产额和从取样到测量的实验周期得到的89Sr在总锶中所占份额;由裂变产额和从取样到测量的实验周期得到的90Sr在总锶中所占份额。

本实验例采用2L液态流出物通过理论计算得到的90Sr活度浓度与采用GB6766-86分析40L液态流出物所得结果列于表1,从表1可以看到,两种方法的相对偏差小于20%,因此,该理论计算方法所得结果误差较小,适用于核电厂液态流出物中89Sr与90Sr的分析。

表1本发明所得90Sr活度浓度与40L样品测量结果的相对偏差

实施例2

本实施例是对本发明核电厂液态流出物中锶-89和锶-90活度浓度的测试方法探测下限的确定,探测下限按下式计算:

式中:MDC为探测下限,Bq/L;Nb为本底计数率,cpm;t为计数时间,min;E为仪器对Sr-89标准源的探测效率,cpm/dpm;Y为锶的化学回收率,%;V为样品量,L;

根据探测下限计算公式,采用液闪谱仪对核电厂液态流出物中锶-89和锶-90活度浓度进行分析,结果列于表2。从表2可以看出,采用2L液态流出物样品,测量1000分钟,锶-90可以获得0.27Bq/L的探测下限,锶-89可以获得10.97Bq/L的探测下限。

表2本发明锶-89和锶-90的探测下限

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1