一种高t/D比无缝钢管自动超声波探伤装置及其探伤方法与流程

文档序号:14073085阅读:541来源:国知局
本发明涉及无缝钢管自动超声波探伤
技术领域
,具体涉及一种高t/d比无缝钢管自动超声波探伤装置及其探伤方法。
背景技术
:为确保无缝钢管产品质量,api5ct、5l等钢管产品标准一般要求对钢管内外表面质量进行无损探伤,其中超声波探伤是最为常用的探伤方法。本发明中定义钢管管壁t与外径d比大于0.146的钢管规格为高t/d比钢管。在无缝钢管轧制中,高t/d比钢管一般容易产生内表划伤、裂纹等类缺陷,此类缺陷的存在,会直接造成批量产品报废,严重时将造成后续使用过程中的应力集中,从而引发失效事故,给企业带来不必要的经济损失,因此钢管内表检测显得尤为重要。申请人前期在生产132×22规格接箍时,均产生过内表缺陷,且此类缺陷产生的报废率高达20%以上。现有技术中,国内外钢管制造企业在钢管生产线上配置的超声波探伤设备多为钢管直线前进、探头螺旋旋转,其主要功能包括:纵横向内外伤检测、分层检测、壁厚及外径测量等。为获得最佳的端角反射效果,设备配备的纵向探头尺寸一般为12.5×12.5mm,检测频率为5mhz,入射角度α一般固定为19°,对应的折射角β为45°,如图1所示。图1中,α为探头入射角、βs为探头折射角,r为钢管内径,r为钢管外径,l为纵波,s为横波,t为钢管壁厚。从图中可以看出,sinβ=r/r=1-2t/d在α=19°、βs=45°的情况下,sin45°=r/r=1-2t/d=0.707,故t/d=(1-0.707)/2=0.146即在现有设备条件下,设备最大可探的t/d范围为0.146。当t/d>0.146时,折射后的横波声束s由于无法扫查到钢管内壁,造成高t/d规格钢管内表无法进行检测,也就无法满足产品标准关于内外表面进行检测的要求。技术实现要素:本发明所要解决的技术问题在于提供一种高t/d比无缝钢管自动超声波探伤装置,该探伤装置可以解决高t/d比无缝钢管内表质量检测问题。其所要解决的技术问题可以通过以下技术方案来实施。一种高t/d比无缝钢管自动超声波探伤装置,包括超声波探头和水耦合系统,所述超声波探头安装于一旋转体上,所述超声波探头的探头与所检测钢管的壁厚t和外径d存在如下关系:a、所述超声波探头的探头晶片的宽度为:[12.5+2×(t/d-0.146)×d]mm;b、所述超声波探头的探头水层距离t=(230-d)mm/2。作为本发明的优选实施例之一,所述超声波探头的探头焦距为37mm。作为本技术方案的进一步改进,沿所述旋转体180度分布,各设置有一个所述超声波探头。本发明所要解决的另一技术问题在于提供一种采用上述探伤装置的探伤方法,其特点为,包括如下步骤:1)、将采用所述探头晶片的超声波探头安装于所述旋转体的腔体内;2)、按被检钢管外径d调整探头与被检钢管表面间的距离,直至水层距离值与对照值基本相符;3)、将旋转体开至自动检测位置,调整所述旋转体高度位置,使被检钢管刚好从旋转体中心通过;开启所述水耦合系统,并启动所述旋转体转动;4)、通过输送辊道将被检钢管对应的样管送至旋转体位置,对样管人工缺陷进行定位,并分别进行内外伤调试,直至所有通道调试完毕。采用上述技术方案的高t/d比无缝钢管自动超声波探伤装置及其探伤方法,简化了高t/d比钢管自动超声波探伤的步骤,提高了高t/d比钢管自动超声波探伤效果和工作效率,该技术方案在探头旋转、钢管直线前进的超声波探作机组上实施,有较好应用推广前景。附图说明图1为钢管自动超声波探伤原理图;图2为晶片宽度推导原理图;图3探头焦距测试示意图;图4为焦点位置与灵敏度的关系图;图5为本发明高t/d比无缝钢管自动超声波探伤装置示意图;图中:1——宽晶片组合式超声波探头2——水耦合系统3——钢管工件4——旋转体5——改进后探头边缘声束6——改进后探头声束扫查轨迹11——探头12——水13——球靶具体实施方式下面结合附图对本发明的具体实施例作进一步详细描述。依据现有技术结构中的不足,本发明提供了一种高t/d比无缝钢管自动超声波探伤方法及装置,这种探伤方法及装置可以解决高t/d比无缝钢管内表质量检测问题。为实现上述目的,本技术方案如下:1、优化探头晶片结构,提高声束周向扫查宽度1)、探头晶片宽度由12.5mm,优化到[12.5+2×(t/d-0.146)×d]mm。2)、理论推导参考图2所示,l1、s1代表原有探头扫查线路,l2、s2代表宽晶片探头扫查线路,⊿l1代表晶片宽度单侧增加值,t为钢管壁厚。⊿l2为s1和s2之间的距离。由于探头晶片宽度单侧增加值较小,故图2中,α1≈α2,即l1近似与l2平行,由图2可以看出,⊿l1=⊿l2。在t/d>0.146的情况下,⊿l2=(t/d-0.146)×d,即⊿l1=⊿l2=(t/d-0.146)×d,所以探头宽度增加值为2×⊿l1=2×(t/d-0.146)×d。2、探头水层距离控制,确保探头入射角度固定其中,水层距离控制公式:t=(230-d)mm/2,示中t为探头水层距离,d为钢管外径。各主要管径无缝钢管的对应数据参见下表1罗列。序号外径(mm)水层距离(mm)序号外径(mm)水层距离(mm)160.385812751.5273.0278.59132.0849377.876.110139.745.2488.970.611141.344.4593.1768.412153.6738.26107.956113177.826.17114.357.9表1外径水层距离对照表3、优化探头焦距,提高内表探伤灵敏度1)、探头焦距由原来的34mm,优化至37mm。2)、探头焦距测定方法:给定焦距测定方法,验证探头焦距加工尺寸符合性。可参考图3中探头焦距测试的示意图,图中11为探头,12为水,13为ф4球靶。3)、焦点位置与灵敏度的关系:提供改进方法,改善内表探伤灵敏度及信噪比。可参考图4中焦点位置与灵敏度的关系图。4)、优化效果对比a)、探头焦距为34mm的情况下,进焦量约为4mm;探头焦距为37mm的情况下,进焦量约为7mm。b)、从图4中可以看出,进焦量为4mm时,其对应内壁伤波幅约为5db;进焦量为7mm时,其对应内壁伤波幅约为8db,内壁伤波幅提高约3db,大大提高了内壁伤的回波幅度及探伤信噪比。4、设备动平衡控制,提高设备稳定性改进后超声波探头沿旋转体180度分布,各安排一个,确保设备检测时的稳定性。本发明提供的“一种高t/d比钢管无缝自动超声波探伤方法及装置”主要存在以下优点:1、t/d比检测适用范围广。常规的检测方法一般适用于t/d<0.146的钢管检测;而宽晶片组合式超声波探头的应用,可以实现t/d最大可达0.20的钢管探伤,质量保证能力大大增强。2、探头入射角度保持固定。借助于水层距离调整控制模型,在探头至钢管表面距离保持不变的情况下,探头入射角度稳定在19度。3、内表探伤灵敏度显著提高。通过探头焦距的优化,进一步提高内表检测灵敏度,确保探伤准确性。4、设备动平衡状态得到维持。探头优化安装后,通过对称安装控制方式,确保了原有的设备动平衡得到有效维持。本发明提供的高t/d比无缝钢管自动超声波探伤方法及装置主要包括:一个宽晶片组合式超声波探头、一个旋转体、一组水耦合系统、钢管工件等部件。该装置在实施高t/d比钢管自动超声波探伤时,操作人员首先将宽晶片组合式超声波探头安装在旋转体腔体中;接着根据被检管外径调整对应的水层距离值,直至与对照值基本相符;随后操作人员将旋转主机开至检测位置,调整旋转体主机高度,开启耦合水,并启动旋转体转动;然后,通过输送辊道将样管送至主机位置,对样管人工缺陷进行定位,并分别进行内外伤调试,直到所有通道调试完毕为止。具体参见图5所示的高t/d比无缝钢管自动超声波探伤方法及装置,利用该装置对钢管进行超声波探伤时,操作步骤简述如下:操作人员首先将宽晶片组合式超声波探头1安装在旋转体4上;接着根据钢管工件3外径调整宽晶片组合式超声波探头1与钢管工件3表面之间的距离,直至与对照值基本相符;随后操作人员将旋转体4开至钢管工件3自动检测位置,调整旋转体4高度位置,使钢管工件3刚好从旋转体4中心通过;然后操作人员开启水耦合系统2;最后,将与钢管工件3对应的样管送至旋转体4位置,对与钢管工件3对应的样管人工缺陷进行定位,并分别进行内外伤调试,直到所有通道调试完毕为止。图中5为改进后探头边缘声束,6为改进后探头声束扫查轨迹。针对现有高t/d比钢管自动超声波探伤中碰到的实际问题,本发明提供了一种高效、方便的高t/d比无缝钢管自动超声波探伤方法及装置;该方法及装置的最大特点是,在进行高t/d比钢管自动超声波探伤时,不再通过各种措施减少探头入射角度,只需按正常操作要求进行设备调试,即可达到钢管内外壁同时扫查的目的,既方便现场操作,又确保钢管产品检验质量。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1