太赫兹超导相变边缘探测器热弱连接制备方法与流程

文档序号:12112883阅读:711来源:国知局
太赫兹超导相变边缘探测器热弱连接制备方法与流程

本发明属于超导相变边缘探测领域,具体涉及一种太赫兹超导相变边缘探测器热弱连接的制备方法。



背景技术:

太赫兹(THz)频段是现代天文学最后一个有待全面研究的电磁波频段,是继红外和毫米波频段之后21世纪人类探测宇宙最新发展的、其它频段不可替代的观测窗口。在天文学领域,太赫兹频段占有微波背景辐射(CMB)以后宇宙近一半的光子能量,特别适合观测研究第一代恒星的形成、星系形成和演化、恒星和行星系统的形成和早期演化、地外行星系统大气的物理化学特性、以及宇宙生命起源等现代天文学中最重要的前沿科学问题。太赫兹频段天文观测在天体物理与宇宙学研究中具有不可替代的作用,对于理解宇宙状态和演化有非常重要的意义。

太赫兹频段天文观测所需设备可分为相干探测器和非相干探测器两类,太赫兹相干探测器主要针对天体目标开展高分辨率频谱观测,太赫兹非相干探测器主要应用于宽带连续谱探测和中低频谱分辨率探测。对于非相干探测器,基于低温超导器件的太赫兹频段高灵敏度非相干探测器主要有超导隧道结探测器(STJ)、超导动态电感探测器(MKIDs)和超导相变边缘探测器(TES)。其中,超导隧道结探测器受隧道结漏电流和读出技术的限制,发展较为缓慢。超导动态电感探测器由于采用了较简单读出复用技术得到了快速发展,但其灵敏度不仅与工作环境温度相关,还受准粒子产生与复合噪声限制,目前所测最低灵敏度约为1x10-18 W/Hz0.5。相反,超导相变边缘探测器灵敏度仅取决于工作环境温度,可实现背景极限探测灵敏度。在100 mK或更低温区,超导相变边缘探测器灵敏度可达1x10-19 W/Hz0.5,已成为太赫兹望远镜研制超高灵敏度宽带连续谱阵列探测器首选。

超导相变边缘探测技术属于热探测技术。超导相变边缘探测器一般由辐射吸收体(absorber)、测温体(thermometer)、热弱连接体(weak thermal link)和热沉(heat sink)四部分构成,其中辐射吸收体与热沉之间通过热弱连接体相连。超导相变边缘探测器工作原理是辐射吸收体吸收电磁波辐射信号,辐射吸收体温度发生改变,然后由测温体读出温度变化并判断吸收电磁波信号强度,辐射吸收体与热沉之间的热弱连接可以有效的提高探测器的灵敏度。

研制高灵敏度超导相变边缘探测器关键在于:1)辐射吸收体高效耦合电磁波信号;2)辐射吸收体和测温体与热沉之间实现热弱连接。针对上述两点,欧美等发达国家各研究小组正积极开展太赫兹超导相变边缘探测技术研究,现主要研制的太赫兹超导相变边缘探测技术可分为以下三类:1)基于氮化硅薄膜的喇叭天线耦合太赫兹超导相变边缘探测技术。氮化硅薄膜热传导系数小,机械强度高可微加工成狭长腿形状,是热弱连接体最佳选择之一。目前,荷兰SRON研究小组利用狭长腿形状氮化硅薄膜作为热弱连接体,为下一代空间太赫兹卫星计划-SPICA研制了超高灵敏度太赫兹超导相变边缘探测器。2)基于氮化硅薄膜的平面天线耦合太赫兹超导相变边缘探测技术。近年来,美国UC Berkeley研究小组研制了基于平面天线耦合的太赫兹超导相变边缘探测器,其利用硅透镜、平面天线以及微带线实现了太赫兹电磁波信号高效耦合。但是,该太赫兹超导相变边缘探测器中辐射吸收体与测温体相分离,不仅要求在狭长腿形状氮化硅薄膜上集成直流偏置线连接测温体,还要求在狭长腿形状氮化硅薄膜上集成微带线连接辐射吸收体,对太赫兹超导相变边缘探测器器件制备工艺提出了很高要求。3)基于电声弱耦合(electron-phonon decoupling)的平面天线耦合太赫兹超导相变边缘探测技术。超导薄膜中电子与声子相互热作用会随着温度降低而急剧减小,成为极低温区最佳热弱连接体之一。利用电子与声子之间热弱耦合,美国JPL实验室研制了基于钛薄膜的平面天线耦合太赫兹超导相变边缘探测器,在300 mK温区实测探测器灵敏度约为3x10-18 W/Hz0.5。基于电声弱耦合的平面天线耦合太赫兹超导相变边缘探测技术也存在一定不足,由于超导薄膜低温热容较小,导致探测器响应时间非常短(300 mK温区响应时间仅为几微秒),难以利用现有超导量子干涉放大器(SQUID)时域读出复用技术实现大规模阵列读出。

综上所述,欧美等发达国家各研究小组已采用各种不同方法实现了高灵敏度太赫兹超导相变边缘探测技术,但这些太赫兹超导相变边缘探测技术均存在一些不足或应用限制。因此,亟需开发一种结构简洁紧凑、灵敏度高且易于实际应用的太赫兹超导相变边缘探测技术。



技术实现要素:

本发明的针对现有技术中的不足,提供一种太赫兹超导相变边缘探测器热弱连接的制备方法

为实现上述目的,本发明采用以下技术方案:

一种太赫兹超导相变边缘探测器热弱连接制备方法,其特征在于,包括以下步骤:

采用三层结构的圆形SOI介质基片作为探测器的制备基板,所述三层结构分别为氮化硅/硅/氮化硅,在基板正面制备完成太赫兹超导相变边缘探测器后,将基板背面中对应于探测器辐射吸收体和测温体的区域进行离子刻蚀,去除氮化硅层,露出硅材料,形成一个正方形区域;

在基板正面涂覆防止碱性溶液腐蚀的保护胶,将基板背面朝上放置在安装模具内,并采用O型密封圈对基板的正面和侧面进行密封;

把安装模具浸入碱性溶液中,碱性溶液与正方形区域中的硅发生反应,直至氮化硅层。

为优化上述技术方案,采取的具体措施还包括:

所述三层结构的厚度分别为2μm/200μm/0.5μm。

所述正方形区域为1.5㎜*1.5㎜。

所述保护胶的涂覆厚度为2-4μm。

所述安装模具包括将基板夹设在中间的上部和下部,上部和下部紧密连接,上部具有将正方形区域暴露出来的孔洞。

所述O型密封圈包括上O型圈、下O型圈和侧O型圈,均安装在上部和下部之间;上O型圈和下O型圈大小结构相同,直径略小于基板直径,紧贴基板边缘设置,将基板夹设在中间;侧O型圈直径略大于基板直径,围绕基板的圆周侧设置。

所述碱性溶液为氢氧化钾,浓度为30%-40%。

本发明的有益效果是:通过湿法刻蚀技术实现辐射吸收体和测温体与热沉之间的热弱连接,简化了制备工艺,易于实现大规模阵列探测器;利用氢氧化钾溶液与硅的化学反应方法,实现太赫兹超导相变边缘探测器的热弱连接,提高了探测器的探测灵敏度,经实际试验测试发现,热弱连接的太赫兹超导相变边缘探测器的探测灵敏度相比于无热弱连接的太赫兹超导相变边缘探测器,灵敏度提高一个数量级(10倍)。

附图说明

图1是本发明基板正面的示意图。

图2是本发明基板安装在模具中的部分示意图。

图3是本发明基板安装在模具中的整体示意图。

图4是本发明基板安装在模具中的截面图。

附图标记如下:基板1、探测器2、安装模具3、上部31、下部32、上O型圈4、下O型圈5、侧O型圈6。

具体实施方式

现在结合附图对本发明作进一步详细的说明。

如图1所示,采用三层结构的圆形SOI介质基片作为探测器的制备基板1,三层结构分别为氮化硅/硅/氮化硅,三层的厚度分别为2μm/200μm/0.5μm。超导相变边缘探测器2被制备在基板1正面的氮化硅表面,制备完成后将基板1背面中对应于探测器2辐射吸收体和测温体的区域通过离子刻蚀法刻蚀掉,露出硅材料,形成一个1.5㎜×1.5㎜的正方形区域。在基板1正面涂覆耐碱性溶液的保护胶,以免氢氧化钾对正面探测器2的腐蚀,保护胶的涂覆采用甩胶机进行均匀涂覆,涂覆厚度为2-4μm。

进一步参照图2-4,将基板1背面朝上安装在特别设计的湿法刻蚀的安装模具3中,安装模具3包括将基板1夹设在中间的上部31和下部32,上部31和下部32可通过诸如螺丝等方式紧密连接,上部31具有将正方形区域暴露出来的孔洞,其中,安装模具3通过0型密封圈对基板1的正面和侧面进行密封。如图3所示,O型密封圈总共有三个,分别是上O型圈4、下O型圈5和侧O型圈6。上O型圈4和下O型圈5大小结构相同,直径略小于基板1直径,上部31中设有与上O型圈4适配的环形槽,下部32中设有与下O型圈5适配的环形槽,上O型圈4和下O型圈5紧贴基板1边缘设置,将基板1夹设在中间,对基板1的正面进行密封,使碱性液体无法接触基板1的正面。基板1的圆周侧面还设有侧O型圈6,侧O型圈6直径略大于基板1直径,图3中下部32中还设有与侧O型圈6适配的环形槽,侧O型圈6将基板1包围起来,通过上部31和下部32之间的紧密连接,将基板1侧面密封起来,使碱性液体也无法接触基板1的侧面。

最后,把安装模具3浸入碱性溶液中,碱性溶液可选取浓度为30%-40%的氢氧化钾溶液,由于氮化硅和氢氧化钾溶液基本不发生化学反应,因此氮化硅可以天然地作为背面的保护膜。氢氧化钾溶液与基板1背面正方形区域中的硅发生反应,产生氢气气泡,直至氮化硅层。湿法刻蚀完成的太赫兹超导相变边缘探测器基板1,正方形区域显示透明,表明该区域的硅已经完全与氢氧化钾溶液发生反应,被湿法刻蚀去掉。在显微镜下观察,被刻蚀区域干净,没有硅材料,则表明刻蚀成功。

本发明阐述的太赫兹超导相变边缘探测热弱连接的制备具有如下技术进步性:

1、采用湿法刻蚀技术降低了制备工艺的难度,操作简单,易于实现大规模阵列的应用;

2、采用耐氢氧化钾的保护胶保护基板正面,有效的避免氢氧化钾溶液对基片正面的腐蚀;

3、采用特别设计的基板安装装置,将基板正面密封同时可以保护基板的侧面不受腐蚀;

4、采用 SOI(绝缘衬底上的硅)三层基板,利用氮化硅材料不与氢氧化钾溶液发生化学反应的特点,首先将氮化硅刻蚀需要的图形,再利用氮化硅作为天然的背面保护膜进行湿法刻蚀。

以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1