动态地球坐标系下三部多普勒雷达三维风场反演方法与流程

文档序号:14007546阅读:2232来源:国知局
动态地球坐标系下三部多普勒雷达三维风场反演方法与流程

本发明属于大气遥感监测分析技术领域,具体涉及一种动态地球坐标系下三部多普勒雷达三维风场反演方法。



背景技术:

多普勒雷达应用多普勒频移原理,通过测量降水粒子反射回来的电磁波与发射电磁波间频率的变化,来测定降水粒子相对于雷达移近或移远的速度。这种速度称为径向速度。由于无法测量降水粒子的真实矢量速度,因此单雷达在观测风场方面受到很大的限制。为了突破单雷达的限制,国内外科研人员发展出双多普勒雷达风场反演技术,即将处于一定距离的两部多普勒雷达所观测的径向速度进行合成,并借助相关假定和方程反演出降水系统内部的三维风场。

目前,国内外普遍采用的是笛卡尔坐标系下的双多普勒雷达风场反演方法。该方法采用笛卡尔坐标系,坐标原点o设置在双雷达中的某一雷达处,或者两部雷达连线的中点上,x轴指向正东方,y轴指向正北方,z轴指向天顶,反演网格采用的是等x、y和z坐标点。这种方法主要存在以下缺点:1)由于地球是近似球体,地面近似为球面,因此在现有反演技术采用的笛卡尔坐标系下,x-o-y平面与地球表面不平行,目标点距离原点o越远,x-o-y平面距离地面就越高。采用该方法反演出的网格点与气象业务科研常用的等经纬度、等海拔高度的网格点不一致,虽然这对小范围天气系统三维风场结构分析影响不大,但风场反演产品难以与数值预报等其他气象信息进行综合分析,直接影响业务应用效果。2)随着我国多普勒天气雷达网的进一步完善,雷达风场拼图分析显得越来越迫切。对于不同的双雷达组合,利用笛卡尔坐标系下的反演技术就需要设置不同的坐标系,导致不同双雷达反演的三维风场产品无法组合到统一坐标系里进行组网分析应用,这在一定程度上影响了雷达观测网建设效益的发挥。

为克服笛卡尔坐标系下双多普勒雷达风场反演方法存在的缺点,有人提出了动态地球坐标系下双多普勒雷达风场反演方法,该方法采用动态地球坐标系,以及等经纬度和等海拔高度的网格。这种方法既便于将反演风场与其他产品进行综合分析,又便于将不同双雷达反演的风场进行组网分析,从而能够有效地克服笛卡尔坐标系下反演方法存在的缺点。然而,这种方法仍存在以下缺点:1)双多普勒雷达反演的区域较小,且由于双多普勒雷达连线上的区域误差很大,因此无法对双多普勒雷达连线上的区域进行反演。2)双多普勒雷达反演时采用的连续方程近似,垂直速度等存在误差。另外,目前笛卡尔坐标系下的双多普勒雷达和三多普勒雷达风场反演方法由于反演的水平面和地面是不平行的,因此反演出的结果影响业务应用效果。



技术实现要素:

为了解决现有技术存在的上述问题,本发明提供了一种动态地球坐标系下三部多普勒雷达三维风场反演方法。

本发明所采用的技术方案为:动态地球坐标系下三部多普勒雷达三维风场反演方法包括以下步骤:

确定动态地球坐标系;

采用与动态地球坐标系相应的等经纬度、等海拔高度网格作为反演网格;

读取三部多普勒雷达的基数据,将三部多普勒雷达的径向速度和回波强度分别插值到等经纬度、等海拔高度的网格反演网格点上;

利用插值后的三部多普勒雷达探测到的目标点的三个方向的径向速度和回波强度计算得到目标点处的三维风速分量,获得降水回波区域的三维风场。

进一步地,所述动态地球坐标系的坐标原点o设置在地球球心,z轴随反演目标点的变化而变化。

更进一步地,所述动态地球坐标系中,z轴由原点o通过目标点p指向雷达站天顶方向,x轴指向目标点p的正东方向,y轴指向目标点p的正北方向。

进一步地,所述反演网格的经度采用0.01°,纬度采用0.01°,海拔高度采用500m。

进一步地,所述将三部多普勒雷达的径向速度和回波强度分别插值到等经纬度、等海拔高度的网格反演网格点上的步骤中,水平方向采用cressman距离权重插值方法进行插值,垂直方向采用线性插值方法进行插值。

进一步地,所述步骤获得降水回波区域的三维风场的具体过程为:

在动态地球坐标系下,建立目标点处三维风场的方程组;

利用插值后的回波强度计算得到降水粒子在静止大气中的下落末速度;

利用三部多普勒雷达探测到的目标点的三个方向的径向速度、三部多普勒雷达到目标点的各自距离以及降水粒子在静止大气中的下落末速度,求解目标点处三维风场的方程组,得到目标点处的三维风速分量,获得降水回波区域的三维风场。

进一步地,所述动态地球坐标系下目标点处三维风场的方程组为:

设目标点p(0,0,z)的三维风速分量分别为u、v和w,则三维风场的方程组为:

其中,vr1、vr2和vr3分别表示三部多普勒雷达探测到的目标点p的三个方向的径向速度;(x01,y01,z01)、(x02,y02,z02)和(x03,y03,z03)分别表示三部多普勒雷达的坐标位置;r1、r2和r3分别表示三部多普勒雷达到目标点p的距离,

更进一步地,所述降水粒子在静止大气中的下落末速度wt为:wt=3.8i0.072,其中,i表示插值后得到的回波强度。

由于采用以上技术方案,本发明的有益效果为:本发明动态地球坐标系下多普勒雷达三维风场反演方法采用三部多普勒雷达在地球坐标系下进行三维风场的联合反演,将常用的笛卡尔坐标系变换为动态地球坐标系,将风场反演网格点由等xyz网格改进为等经纬度和等海拔高度网格。三部多普勒雷达反演能够解决双多普勒雷达连线区域观测自由度不足的问题,可以使得双多普勒雷达连线上的区域得以反演,也可以使得其他部分区域尝试进行三部多普勒雷达反演。三部多普勒雷达反演时不需要连续方程近似,所以反演的垂直速度会比双多普勒雷达更为可靠。本发明能够扩大反演区域,提高反演精度。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明一实施例提供的一种动态地球坐标系下三部多普勒雷达三维风场反演方法的流程图;

图2是本发明一实施例提供的动态地球坐标系下三部多普勒雷达三维风场反演示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。

本发明动态地球坐标系下三部多普勒雷达三维风场反演方法采用三部多普勒雷达进行联合反演,将常用的笛卡尔坐标系变换为动态地球坐标系,将风场反演网格点由等xyz网格改进为等经纬度和等海拔高度网格。三部多普勒雷达反演能够解决双多普勒雷达连线区域观测自由度不足的问题,可以使得双多普勒雷达连线上的区域得以反演,也可以使得其他部分区域尝试进行三部多普勒雷达反演。三部多普勒雷达反演时不需要连续方程近似,所以反演的垂直速度会比双多普勒雷达更为可靠。

如图1所示,本发明提供了一种动态地球坐标系下三部多普勒雷达三维风场反演方法,其包括以下步骤:

s1、确定动态地球坐标系。

动态地球坐标系的坐标原点o设置在地球球心,z轴随反演目标点的变化而变化。具体地,z轴由原点o通过目标点p指向雷达站天顶方向,x轴指向目标点p的正东方向,y轴指向目标点p的正北方向。

s2、采用与动态地球坐标系相应的等经纬度、等海拔高度网格作为反演网格。具体地,反演网格的经度采用0.01°,纬度采用0.01°,海拔高度采用500m。

s3、读取三部多普勒雷达的基数据,将三部多普勒雷达的径向速度和回波强度分别插值到等经纬度、等海拔高度的网格反演网格点上。其中,水平方向采用cressman距离权重插值方法进行插值,垂直方向采用线性插值方法进行插值。

s4、利用插值后的三部多普勒雷达探测到的目标点的三个方向的径向速度和回波强度计算得到目标点处的三维风速分量,获得降水回波区域的三维风场,其具体过程为:

s41、在动态地球坐标系下,建立目标点处三维风场的方程组;

如图2所示,在步骤s1确定的动态地球坐标系中,设目标点p(0,0,z)的三维风速分量分别为u、v和w,则三维风场的方程组为:

其中,vr1、vr2和vr3分别表示三部多普勒雷达探测到的目标点p的三个方向的径向速度;(x01,y01,z01)、(x02,y02,z02)和(x03,y03,z03)分别表示三部多普勒雷达的坐标位置;r1、r2和r3分别表示三部多普勒雷达到目标点p的距离,其分别为:

s42、利用插值后的回波强度计算得到降水粒子在静止大气中的下落末速度;

降水粒子在静止大气中的下落末速度wt为:wt=3.8i0.072

式中,i表示插值后得到的回波强度。

s43、利用三部多普勒雷达探测到的目标点的三个方向的径向速度、三部多普勒雷达到目标点的各自距离以及降水粒子在静止大气中的下落末速度,求解目标点处三维风场的方程组,得到目标点处的三维风速分量,获得降水回波区域的三维风场。

将三部多普勒雷达探测到的目标点p的三个方向的径向速度vr1、vr2和vr3,三部多普勒雷达到目标点p的距离r1、r2和r3,以及降水粒子在静止大气中的下落末速度wt带入三维风场的方程组中,求解得到目标点p(0,0,z)的三维风速分量u、v和w,获得降水回波区域的三维风场。

本发明动态地球坐标系下三部多普勒雷达三维风场反演方法采用三部多普勒雷达在地球坐标系下进行三维风场的反演,能够扩大反演区域,提高反演精度,特别是增加水平散度的精确性。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1