诊断方法和执行诊断方法的设备与流程

文档序号:16362671发布日期:2018-12-22 08:15阅读:236来源:国知局
诊断方法和执行诊断方法的设备与流程

本发明涉及诊断方法和执行所述诊断方法的设备,更具体地,涉及对样品进行涂抹和染色并诊断染色的样品的诊断方法和执行该诊断方法的诊断设备。

背景技术

血液涂片检查是一种测试方法,其中,对血液进行涂抹并染色,并且使用显微镜观察血细胞的形态。血液涂片检查主要用于检测诸如疟疾等寄生虫病的感染、血癌(包括白血病)或先天性血细胞形态异常。

快速诊断测试(rdt:rapiddiagnostictest)和血液涂片检查主要用于检测疟疾等寄生虫病。在rdt的情况下,虽然具有使用相对低成本的诊断试剂盒进行方便、迅速的测试的优点,但是存在测试结果非常不准确的问题。因此,目前,建议使用血液涂片检查进行更准确的检测。

血液涂片检查是一种通过将患者的血液滴在载玻片上,对血液进行涂抹并染色,并且使用显微镜观察染色的血液来测试疾病的方法。由于在常规血液涂片检查中,对血液进行涂抹或染色并用显微镜观察它的过程必须由操作者手动进行,因此存在以下问题:当操作者不熟练时,由于在染色过程中的反应条件的错误,涂抹的血液的状态可能不均匀或可能对血液进行错误地染色,因此难以顺利地进行检测。因此,实际上难以将血液涂片检查应用于不发达国家(例如非洲的一些缺乏医疗人员的国家)的疾病检测。



技术实现要素:

技术问题

本发明的一方面提供了一种诊断方法和执行该诊断方法的诊断设备,其中,测试试剂盒由用于方便和更准确地诊断样品的设备控制。

本发明的各方面不限于上述那些,并且本发明所属领域的普通技术人员从本说明书和附图中将清楚地理解未提及的方面。

技术方案

根据本发明的一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有对样品进行涂抹的样品区域;以及贴片板,其被配置成存储接触型贴片,所述接触型贴片与样品接触以对样品进行染色。所述诊断设备包括:主体,其具有放置测试试剂盒的装载区域;移动部,其被配置成使测试试剂盒的贴片板和样品板相对于彼此移动,从而使放置在测试试剂盒中的样品被涂抹在样品区域中;以及接触部,其被配置成移动测试试剂盒的结构,使得接触型贴片与被涂抹样品接触,从而对被涂抹样品进行染色。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有对样品进行涂抹的样品区域;以及贴片板,其被配置成存储接触型染色贴片,所述接触型染色贴片与样品接触以对样品进行染色。所述诊断设备包括移动部,所述移动部被配置成移动测试试剂盒的结构,其中,移动部通过动力传输构件向样品板和贴片板中的一个或多个传递动力,并且使样品板和贴片板相对于彼此移动,使得贴片板的涂抹部沿着测试试剂盒的纵向在一个方向上移动,从而使样品被涂抹在样品区域中。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有对样品进行涂抹的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型贴片,诊断设备包括:移动部,所述移动部被配置成使样品板和贴片板相对于彼此移动,从而将样品涂抹在样品区域中;以及接触部,所述接触部被配置成对被涂抹样品进行染色,其中,接触部通过动力传输构件向测试试剂盒的结构传递电力,并移动样品板和贴片板中的一个或多个,使得接触型贴片与涂抹有样品的样品区域接触。

根据本发明的又一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有对样品进行涂抹的样品区域;以及贴片板,其被配置成存储接触型贴片,所述接触型贴片与样品接触以对样品进行染色,所述诊断设备包括:主体,其具有放置测试试剂盒的装载区域;移动部,其被配置成将动力传输到其上安装有测试试剂盒的贴片板的第一安装部或者其上安装有样品板的第二安装部,使得贴片板和样品板相对于彼此移动,从而将放置在测试试剂盒中的样品涂抹在样品区域中;以及接触部,其被配置成移动测试试剂盒的结构,使得接触型贴片与被涂抹样品接触,从而对被涂抹样品进行染色。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断方法,所述测试试剂盒包括:样品板,其具有对样品进行涂抹的样品区域;以及贴片板,其被配置成存储接触型染色贴片,所述接触型染色贴片与样品接触以对样品进行染色,所述诊断方法包括:装载其中放置有样品的测试试剂盒;将动力传输到测试试剂盒的结构,使得贴片板和样品板相对于彼此移动,从而对放置在装载的测试试剂盒中的样品进行涂抹;以及将动力传输至测试试剂盒的贴片板的上表面,以使接触型贴片移动并与被涂抹样品接触,从而对被涂抹样品进行染色。

本发明的解决方案不限于上述那些,并且本发明所属领域的普通技术人员应当能够从本说明书和附图中清楚地理解未提及的解决方案。

有益效果

根据本发明,测试试剂盒由设备控制,使得用于诊断样品(样本)的诊断方法能够变得方便和更准确。

本发明的有益效果不限于上述那些,并且本发明所属领域的普通技术人员应当能够从本说明书和附图中清楚地理解未提及的有益效果。

附图说明

图1是根据本发明的实施例的接触型染色贴片的截面图。

图2是常规血液涂片检查过程的图。

图3是与制备染色溶液的过程和常规血液涂片检查过程中的染色过程有关的图。

图4是根据本发明的实施例的接触型染色贴片的立体图。

图5是示出根据本发明的实施例的接触型染色贴片和样品载玻片之间的接触状态的图。

图6是与使用根据本发明的实施例的接触型染色贴片的染色过程相关的图。

图7是使用标准giemsa染色过程(即,根据常规流体喷雾方法的giemsa染色技术)的染色结果的图像。

图8示出了对于每种ph浓度,使用根据标准giemsa染色过程的giemsa染色技术进行染色的结果的图像。

图9是根据本发明的实施例的使用应用接触型染色贴片的giemsa染色技术进行染色的结果的图像。

图10是根据本发明的实施例的使用应用接触型染色贴片的giemsa染色技术进行染色的另一结果的图像。

图11是示出与wright染色技术相关的标准染色技术和应用了接触型染色贴片的染色技术的结果的图。

图12是示出与4,6-二脒基-2-苯基吲哚(dapi)染色技术相关的根据应用接触型染色贴片的染色技术的结果的图。

图13是示出在亚甲蓝贴片和曙红贴片与血液接触后,在缓冲贴片与血液接触之前观察到的染色结果的图。

图14是示出在亚甲蓝贴片和曙红贴片与血液接触后,在缓冲贴片与血液接触之后观察到的染色结果的图。

图15是根据本发明的实施例的旋转型测试试剂盒的示例的分解立体图。

图16是根据本发明的实施例的旋转型测试试剂盒的示例的立体图。

图17是根据本发明的实施例的旋转型测试试剂盒的贴片板的示例的立体图。

图18是根据本发明的实施例的旋转型测试试剂盒的槽形存储器的示例的截面图。

图19和20是根据本发明的实施例的旋转型测试试剂盒的具有各种接触引导装置的槽形存储器的截面图。

图21是根据本发明的实施例的旋转型测试试剂盒的样品板的示例的立体图。

图22是根据本发明的实施例的在样品区域与非样品区域之间具有台阶的旋转型样品板的示例的立体图。

图23是示出根据常规血液涂片检查过程的血液涂抹装置的图。

图24是根据本发明的实施例的旋转型测试试剂盒的涂抹部的截面图。

图25是示出使用根据本发明的实施例的旋转型测试试剂盒的涂抹部的血液涂抹处理的图。

图26是示出根据本发明的实施例的旋转型测试试剂盒的装载部的图。

图27是使用根据本发明的实施例的旋转型测试试剂盒的装载部装载样品的图。

图28是根据本发明的实施例的旋转型测试试剂盒的具有提升引导件的贴片板的立体图。

图29是具有根据本发明的实施例的旋转型测试试剂盒的提升引导件的样品板的立体图。

图30是根据本发明的实施例的滑动型测试试剂盒的示例的侧视图。

图31是与根据图30的滑动型测试试剂盒的贴片板的示例有关的图。

图32是与根据图30的滑动型测试试剂盒的样品板的示例有关的图。

图33是使用根据图30的滑动型测试试剂盒插入样品的操作图。

图34是使用根据图30的滑动型测试试剂盒涂抹样品的操作图。

图35是使用根据图30的滑动型测试试剂盒进行染色的操作图。

图36是根据本发明的实施例的滑动型测试试剂盒的另一示例的侧视图。

图37是与根据图36的滑动型测试试剂盒的样品板的示例有关的图。

图38是根据本发明的实施例的滑动型测试试剂盒的变形例的立体图。

图39是根据本发明的实施例的滑动型测试试剂盒的变形例的平面图。

图40是根据本发明的实施例的滑动型测试试剂盒的变形例的侧视图。

图41是根据本发明的实施例的样品涂抹装置的示例。

图42是根据本发明的实施例的样品涂抹装置的另一示例。

图43是示出根据本发明的实施例的诊断系统的构成例的图。

图44是构成根据本发明的实施例的诊断设备的各元件的示例的框图。

图45是根据本发明的实施例的诊断设备的示例的立体图。

图46是示出根据本发明的实施例的接触部(4313)的示例的框图。

图47是示出根据本发明的实施例的诊断设备(4310)的其他元件的框图。

图48是示出根据本发明的实施例的与响应于移动部的相对运动操作的测试试剂盒的移动相关的示例的概念图。

图49是示出根据本发明的实施例的与响应于移动部的相对运动操作的测试试剂盒的移动相关的示例的概念图。

图50是示出根据本发明的实施例的控制器(4315)控制移动部(4311)的相对运动操作的速度的示例的概念图。

图51是示出根据本发明的实施例的通过接触部的接触操作来移动测试试剂盒的结构的示例的概念图。

图52的(a)和(b)是示出根据本发明的实施例的通过接触部的接触操作来移动测试试剂盒的结构的示例的概念图。

图53是示出根据本发明的实施例的进行本发明的染色操作的示例的概念图。

图54是示出根据本发明的实施例的在染色操作中控制器控制诊断系统的元件操作的示例的图。

图55是示出根据本发明的实施例的移动测试试剂盒的结构以获取图像的过程的图。

图56是示出根据本发明的实施例的将测试试剂盒移到另一空间从而获取图像的过程的图。

图57是示出根据本发明的实施例的获取图像的示例的图。

图58是示出根据本发明的实施例的由本发明实现的诊断设备的侧视图的图。

图59示出了根据本发明的实施例的由本发明实现的诊断设备的装载区域。

图60是示出根据本发明的实施例的由本发明实现的移动部的图。

图61是示出根据本发明的实施例的由本发明实现的移动部执行的移动操作的图。

图62是示出根据本发明的实施例的由本发明实现的接触部的图。

图63是示出根据本发明的实施例的诊断设备的接触部执行的接触操作的图。

图64是示出根据本发明的实施例的诊断方法的流程图。

具体实施方式

由于本文所述的实施例是为了向本发明所属领域的普通技术人员清楚地说明本发明的精神,所以本发明不限于本文所述的实施例,并且本发明的范围应被解释为包括不背离本发明精神的改进例或变形例。

考虑到本发明中的功能,本文使用的术语选择当前正在尽可能广泛使用的通用术语,但是这些术语可以根据本发明所属领域的普通技术人员的意图和实践或者根据新技术的出现等而改变。但是相反,当将特定术语定义为某个含义并使用时,该术语的含义将被单独地说明。因此,本文使用的术语应当基于术语的实质含义和整个说明书中的内容来解释,而不是简单地基于术语的名称。

本文的附图是为了易于对本发明进行说明。由于可能为了有助于理解本发明而在必要时对附图中所示的形状进行了夸大的描绘,因此本发明并不受限于附图。

在本说明书中,当对与本发明相关的已知配置或功能的详细说明被认为会使本发明的主旨不清楚时,将根据需要省略与其相关的详细说明。

根据本发明的一个方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有涂抹有样品的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型贴片。诊断设备包括:主体,其具有放置测试试剂盒的装载区域;移动部,其被配置成使测试试剂盒的贴片板和样品板相对于彼此移动,使得放置在测试试剂盒中的样品在样品区域中被涂抹;以及接触部,其被配置成移动测试试剂盒的结构,使得接触型贴片与被涂抹的样品接触,从而对被涂抹的样品进行染色。

诊断设备可以进一步包括用于获取染色样品的图像的图像获取模块。

诊断设备可以进一步包括诊断模块,该诊断模块被配置成基于获取的染色样品的图像来诊断样品(样本)的状态。

诊断设备的相对运动可以具有这样的形式:贴片板沿一个方向移动,样品板被固定或移动,并且当样品板沿所述一个方向移动时,贴片板的移动速度可以高于样品板的移动速度。

装载区域可以形成在主体内部,并且诊断设备可以进一步包括用于移动装载区域的装载区域移动部。装载区域移动部移动装载区域,以允许使用者将测试试剂盒放置在装载区域中。

移动部可以进一步包括:动力产生器,其被配置用于产生动力;以及动力传输构件,其被配置成将动力传输到测试试剂盒的结构。

动力产生器和动力传输构件可以彼此耦合,并且移动部可以通过动力传输构件将动力传输到样品板和贴片板。

接触部可以包括:动力产生器,其被配置成产生动力;以及动力传输构件,其被配置成将动力传输到测试试剂盒的结构。

动力产生器和动力传输构件可以彼此耦合,并且接触部可以通过动力传输构件将动力传输到存储在贴片板中的接触型贴片。

当接触型贴片与样品区域接触时,移动部不允许测试试剂盒的相对运动,并且当接触型贴片不与样品区域接触时,移动部允许测试试剂盒的相对运动。

在移动其中放置有染色样品的一个或多个测试试剂盒和测试试剂盒的结构之后,可以生成染色样品的图像。

可以通过组合染色样品的多个帧图像来生成染色样品的图像。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有涂抹有样品的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型染色贴片。诊断设备包括移动部,所述移动部被配置成移动测试试剂盒的结构,其中,移动部通过动力传输构件将动力传输到样品板和贴片板中的一个或多个,并使样品板和贴片板相对于彼此移动,使得贴片板的涂抹部沿着测试试剂盒的纵向在一个方向上移动,从而在样品区域中涂抹样品。

贴片板可以包括涂抹部,并且涂抹部可以与样品接触并散布样品。

为了将样品涂抹在样品区域中,移动部可以使样品板和贴片板相对于彼此移动,使得与样品接触的样品板的涂抹部在扫过样品区域的同时移动。

移动部可以控制样品板和贴片板的相对运动速度。相对运动速度的控制可以包括控制样品板和贴片板中的一个或多个的速度。

移动部可以停止样品板和贴片板的相对运动,使得被涂抹样品被固定,并可以允许用于固定样品的固定剂或固定贴片与被涂抹样品接触或准备与之接触。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有涂抹有样品的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型贴片。诊断设备包括:移动部,其被配置成使样品板和贴片板相对于彼此移动,使得样品被涂抹在样品区域中;以及接触部,其被配置成对被涂抹样品进行染色,其中,接触部通过动力传输构件将动力传输到测试试剂盒的结构,并移动样品板和贴片板中的一个或多个,使得接触型贴片与涂抹有样品的样品区域接触。

移动部可以使样品板和贴片板相对于彼此移动,以便贴片板和样品板对准。移动部可以使贴片板和样品板相对于彼此移动,以便贴片板的接触型贴片被放置在样品板的样品区域中。

当存在多个接触型贴片时,接触部可以将动力传输到测试试剂盒的结构,使得多个接触型贴片分别与样品区域接触。

在测试试剂盒的结构中,接触部可以将动力传输到存储在贴片板中的多个接触型贴片。

接触部可以在预定的时间段内将动力传输到测试试剂盒的结构,使得接触型贴片在所述预定的时间段内与样品区域接触。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断设备,所述测试试剂盒包括:样品板,其具有涂抹有样品的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型贴片。诊断设备包括:主体,其具有放置测试试剂盒的装载区域;移动部,其被配置成将动力传输到其上安装有测试试剂盒的贴片板的第一安装部或其上安装有样品板的第二安装部,使得贴片板和样品板相对于彼此移动,从而将放置在测试试剂盒中的样品涂抹在样品区域中;以及接触部,其被配置成移动测试试剂盒的结构,使得接触型贴片与被涂抹样品接触,从而对被涂抹样品进行染色。

根据本发明的另一方面,提供了一种使用测试试剂盒的诊断方法,所述测试试剂盒包括:样品板,其具有涂抹有样品的样品区域;以及贴片板,其被配置成存储与样品接触以对样品进行染色的接触型染色贴片。诊断方法包括:装载其中放置有样品的测试试剂盒;将动力传输到测试试剂盒的结构,使得贴片板和样品板相对于彼此移动,从而使放置在装载的测试试剂盒中的样品被涂抹;以及将动力传输到测试试剂盒的贴片板的上表面,使得接触型贴片移动并与被涂抹样品接触,从而对被涂抹样品进行染色。

1.接触型染色贴片

1.1凝胶相接触型染色贴片

以下,将说明根据本发明的实施例的接触型染色贴片100。

根据本发明的实施例的接触型染色贴片100可以与样品t接触并对样品t进行染色。

例如,接触型染色贴片100可以以各种方式使用,例如,1)待染色的对象直接与染色剂140反应的技术,这样的技术包括1-1)giemsa染色技术或伴有血液涂片检查(包括用于检查疟疾的外周血液涂片检查)的wright染色技术,以及1-2)简单的染色技术、革兰氏染色技术、或伴有细菌检查的afb[ziehl-neelsen]技术,2)主要用于宫颈癌检查的papanicolaou涂片测试,3)诸如4,6-二脒基-2-苯基吲哚(dapi)等荧光染色技术,4)使用抗原-抗体反应以及使用与同位素、荧光物质、酶等偶联的抗体检测的对象可以通过放射线检测、荧光颜色形成和酶间接地形成颜色的技术,这样的技术包括4-1)作为用于筛查癌症的特殊染色技术的免疫组织化学技术或4-2)用于人类免疫缺陷病毒(hiv:humanimmunodeficiencyvirus)测试的酶联免疫吸附试验(elisa:enzymelinkedimmunosorbentassay)技术,5)为了检查特定的dna序列,将荧光物质偶联到与靶序列互补的dna探针,以检测靶序列的荧光原位杂交(fish:fluorescenceinsituhybridization)技术,以及6)使用抗原-抗体反应的沉淀技术或凝聚技术。

在本发明中,接触型染色贴片100中的“染色”不应解释为限于对从样品t中待检测的对象直接染色,而应该解释为以下术语:全面涵盖了在样品t中可以检测和检查特定目标物质的所有方法,例如待检测的对象能够形成荧光色的方法、能够检测放射线的方法、待检测的对象在通过酶注入特定的基质时能够反应并形成颜色、以及诱导凝聚或沉积以便能够检测待检测的对象的方法。

换句话说,在本发明中,接触型染色贴片100用于使待测物质处于样品t中能够检测的状态,因此,根据其实际技术精神,接触型“检测诱导”贴片将是更清楚的表达。然而,为了便于说明和理解本发明,术语(接触型“染色”贴片)将在必要时以全面的含义使用。

因此,与前面的术语类似,术语“染色”也应该被解释为具有广泛的含义,其涵盖了所有类型的“检测诱导”,包括荧光颜色形成、颜色形成诱导、辐射检测、待检测的物质的沉淀、凝聚、以及诱导待检测的物质处于其他可检测状态,而不是被解释为具有“直接染色待检测的物质”的狭义。

除此之外,样品t指的是作为待测对象的物质,并且样品t应被理解为包含经受医学测试的所有生物样品,例如血液、细胞、组织、染色体、dna、寄生虫、细菌等。

使用接触型染色贴片100对样品t进行染色可以如下进行。

首先,接触型染色贴片100以凝胶相被提供,染色剂140存储在其中的孔隙122中。在这种状态下,当接触型染色贴片100与样品t接触时,接触型染色贴片100内的孔隙122中的染色剂140通过凝胶基质的网状结构,移动到样品t,并对待染色的物质进行染色。

1.1.1.接触型染色贴片的基本组成

图1是根据本发明的实施例的接触型染色贴片100的截面图。

参照图1,接触型染色贴片100可以包括凝胶受体120和染色剂140。

凝胶受体120具有凝胶相物质,该凝胶相物质具有在其中形成孔隙122的多孔网状结构。凝胶受体120的孔隙122可以容纳染色剂140。

凝胶受体120可以具有形成凝胶基质的各种类型的凝胶。例如,凝胶受体120可以是由琼脂糖形成的凝胶。这里,可以使用琼脂代替琼脂糖。当将琼脂和琼脂糖相互比较时,由琼脂糖(在琼脂中精制多聚半乳糖组分而获得的产物)形成的凝胶受体120在控制透明度或硬度方面具有优势,但是,当进行大量生产时,由于使用琼脂可以省略精炼过程等,所以使用琼脂的情况可能在成本方面具有优势。

除了上述之外,可以使用硅凝胶、硅胶、硅橡胶、已知作为树脂的主要组分的聚二甲基硅氧烷(pdms)凝胶、聚甲基丙烯酸甲酯(pmma)凝胶以及使用各种其他材料的凝胶作为凝胶受体120。

可以使用能够承载通常为水溶液形式的染色剂140的水凝胶作为凝胶受体120,但是,与上述不同,如果需要,也可以使用非水溶液的非水凝胶物质。

染色剂140是与样品t反应以对样品t进行染色的物质。这里,染色剂140应被解释为具有涵盖所有物质的全面含义,不仅包括对样品t直接进行染色的染色剂,还包括与染色物质或荧光物质等偶联的抗体或dna探针等,这些物质与待染色的物质反应,使得在使用上述接触型染色贴片100的染色方法的示例中能够检测染色目标。

例如,染色剂140可以包括各种类型的染色溶液,例如,romanowsky染色技术中使用的那些,包括乙酸胭脂红、亚甲蓝、曙红、酸性品红、番红、janusgreenb、苏木精、giemsa溶液、wright溶液、和wright-giemsa溶液、leishman染色溶液、革兰氏染色溶液、卡宝品红和ziehl-neelsen溶液。

作为另一示例,染色剂140还可以包括dapi荧光染料、与荧光物质偶联的dna探针、以及与酶、荧光物质、同位素等偶联的抗体。当然,染色剂140不限于上述示例,并且可以是如上所述与待染色的物质反应以使待染色的物质可被检测到的任何物质。

可以将一种染色剂140或两种或更多种染色剂140混合并储存在孔隙122中。

例如,当使用接触型染色贴片100试图进行简单的染色(将细菌等固定到载玻片s并用一种染色剂140进行染色的方法)时,可以将一种染色剂140储存在孔隙122中。这里,可以使用亚甲蓝、结晶紫、番红等作为染色剂140。与此类似,当试图使用接触型染色贴片100仅检测特定序列时,可以使用一种染色剂140,其中诸如荧光物质等检测诱导物质与对应于特定序列的一种dna探针偶联。

与上面的示例不同,当试图使用接触型染色贴片100进行giemsa染色时,可以使用由异质染色物质(包括:将细胞质染成红色的曙红和将细胞核染成蓝紫色的亚甲蓝)形成的复合试剂(样本)作为染色剂140。即,可以将是曙红的第一染色剂140-1和是亚甲蓝的第二染色剂140-2混合并储存在孔隙122中。

当然,在使用复合试剂作为染色剂140的染色技术中,如上所述,还可以使用各自包含一种染色剂140的多个接触型染色贴片100来代替在孔隙122中混合并储存多种染色剂140。例如,当试图进行giemsa染色时,染色剂140也可以单独包含在以下单独的接触型染色贴片100中,如曙红贴片(含有作为第一染色剂140-1的曙红的第一接触型染色贴片100-1)和亚甲蓝贴片(含有作为第二染色剂140-2的亚甲蓝的第二接触型染色贴片100-2)。

1.1.2接触型染色贴片的缓冲溶液

根据需要,染色剂140可以以溶解在溶剂中的形式而被容纳在凝胶受体120的孔隙122中。这里,可以使用缓冲溶液b作为溶剂,该缓冲溶液b用于在染色剂140与待染色物质之间发生反应时创造反应条件。

缓冲溶液b用于创造如下的反应环境:在该反应环境中,在染色反应期间,待染色的对象与染色剂140之间的反应可以易于发生。例如,在诸如giemsa染色等染色反应中,由于碱性亚甲蓝与具有负电荷的细胞核偶联,并对细胞核进行染色,而酸性曙红对细胞质进行染色,因此ph浓度与染色结果密切相关。因此,创造合适的ph浓度对于正确地进行染色可能是非常重要的。因此,在这种情况下,缓冲溶液b可以是维持相对于使用接触型染色贴片100的染色剂140的反应的最佳ph的ph缓冲溶液。

尽管下面还将在与缓冲贴片相关的说明中对其进行说明,但是可以将ph浓度等于染色反应的最佳ph的溶液用作缓冲溶液b。

可替代地,可以将ph浓度略微不同于染色反应的最佳ph的溶液用作缓冲溶液b。与将大量缓冲溶液b喷洒在样品t(其在缓冲步骤中被染色)上以设定最佳ph的常规染色方法不同,接触型染色贴片100中的缓冲溶液b包含在凝胶受体120中,并且在接触型染色贴片100与样品t互相接触的过程中设定染色反应的最佳ph。这里,当缓冲溶液b包含在凝胶受体120中时,缓冲溶液b可以与染色剂140等反应,并且可以稍微调节缓冲溶液b的ph。举个具体的示例,在使用giemsa染料作为染色剂140的接触型染色贴片100的情况下,与制造接触型染色贴片100之前的缓冲溶液b的ph相比,制造接触型染色贴片100之后的缓冲溶液b的ph略微升高。这是由于缓冲溶液b、染色剂140和凝胶受体100之间的相互作用而引起的因素,以及由于以下事实:当以凝胶接触型而不是常规液体喷洒型进行缓冲作用时,实际作用的ph略有变化。同样,对于用于giemsa染色的接触型染色贴片100,与原料缓冲溶液b的ph相比,包含在接触型染色贴片100中的缓冲溶液b的ph可以增加大约0.1~0.4。当所需的最佳反应ph为6.8时,可以将ph浓度约为6.4~6.7的溶液用作缓冲溶液b。下面将在缓冲贴片部分中更清楚地描述使用缓冲溶液b的ph来设定接触型染色贴片100的最佳ph。

具体地,当使用ph约为6.5的缓冲溶液b制造的用于giemsa染色的接触型染色贴片100与被染色的样品t接触,并观察染色样品t时,观察到的实际染色效果类似于将ph约为6.6~6.9的缓冲溶液b喷洒到样品t上的结果。

换句话说,使用具有特定ph值的缓冲溶液b制造的接触型染色贴片100的有效ph可以变为与缓冲溶液b本身的ph值稍微不同。这里,有效ph是指在样品t与贴片之间的反应过程中起作用的ph,以及例如可以是当将液相缓冲溶液b喷洒在样品上时样品t中产生的ph。

因此,当制造接触型染色贴片100时,可以调节缓冲溶液b的ph,使得接触型染色贴片100的有效ph值基本上等于染色技术的最佳ph值。

即,相对于可以在常规染色技术中定义的有利于染色的最佳ph值,考虑到由于凝胶基质中的凝胶、染色剂和缓冲溶液b之间的相互作用引起的ph值偏差,可以将用于缓冲贴片的缓冲溶液b自身的ph值设为通过ph补偿值补偿后的值。

这里,ph补偿值可以根据相对于缓冲溶液b的凝胶的特征、染色剂的类型、染色剂或凝胶物质的量等来确定。

这里,关于凝胶的特征,可以根据凝胶受体120的凝胶的浓度、硬度、孔隙率、网状结构的密度等来增加或减少ph补偿值的大小(即,绝对值)。例如,随着凝胶受体120的凝胶的浓度增加,ph补偿值的大小可以增加,并且随着凝胶的浓度降低,ph补偿值的大小可以减小。此外,例如,当将琼脂糖凝胶用作凝胶受体120时,随着琼脂糖的浓度增加,ph补偿值的大小可以增加,并且随着琼脂糖的浓度降低,ph补偿值的大小可以减小。此外,随着凝胶受体120变硬,ph补偿值的大小可以增加,并且随着凝胶受体120变软,ph补偿值的大小可以减小。此外,随着凝胶受体120的孔隙率增加,ph补偿值的大小可以减小,并且随着孔隙率减小,ph补偿值的大小可以增加。此外,随着凝胶受体120的网状结构的密度增加,ph补偿值的大小可以增加,并且随着密度降低,ph补偿值的大小可以减小。

此外,关于染色物质的相互作用,随着染色物质的量相对于缓冲溶液b增加,可能发生较大的ph偏移,并且根据染色物质的类型,可以确定是向酸性偏移还是向碱性偏移。在giemsa染色物质的情况下,磷酸盐缓冲盐水(pbs)缓冲液的ph偏移是向着碱性偏移约0.1-0.4。随着染色物质的量相对于缓冲溶液增加,ph偏移可能更大,并且当染色物质的类型改变时,可能发生朝向碱性方向的ph偏移。

在上述根据本发明的实施例的接触型染色贴片100中,凝胶受体120进行存储染色剂140的功能。这里,存储是指:1)凝胶受体120防止其中包含的染色剂140泄漏到外面;和2)防止染色剂140被外界污染。存储功能是基于1)凝胶受体120的凝胶基质的结构特性;和2)凝胶受体120和染色剂140的电化学性质。

当通过凝胶受体120的网状结构容纳在孔隙122中的染色剂140被阻止移动到凝胶受体120的表面时,可以实现基于凝胶受体120的结构特征的存储功能。这将在下面详细描述。

凝胶受体120可以在容纳其内部的染色剂140的网状结构中形成孔隙122。这里,染色剂140必须从孔隙122移动到凝胶受体120的表面,以便孔隙122内的染色剂140向外排出。在这个过程中,由于染色剂140必须穿过网状结构,因此可以防止容纳在孔隙122内的染色剂140泄露到外面。换句话说,凝胶受体120的网状结构抑制了容纳在孔隙122中的染色剂140通过凝胶受体120的表面蒸发或泄露。此外,相反,为了使染色剂140被污染,来自外部的污染物必须通过凝胶受体120的表面并移动到凝胶受体120内的孔隙122。在这个过程中,凝胶受体120的网状结构可以抑制外来物质被引入到凝胶受体120中并且防止凝胶受体120内的染色剂140被污染。

此外,基于凝胶受体120的电化学性质的存储功能可以通过凝胶受体120与染色剂140之间的电化学反应来实现。例如,当存储在凝胶受体120的孔隙122中的染色剂140以水溶液形式存在时,可以制备亲水性凝胶作为凝胶受体120,以抑制染色剂140从凝胶受体120泄漏到外部。此外,根据凝胶受体120的性质,由于具有相反性质的物质不能从外部渗入凝胶受体120中(例如,抑制疏水性污染物渗入亲水凝胶受体120中),因此,能够防止包含在凝胶受体120中的染色剂140被污染。

此外,凝胶受体120的存储功能不限于简单地防止染色剂140的泄漏或污染。在血液涂片检查中,染色中的反应条件对于平稳地对血液进行染色是非常重要的。例如,当未达到合适的ph浓度时,染色剂140可能与血液发生不适当的反应,在显微镜下可能观察到错误染色的血液,因此在检测中可能出现误差。

对于上述内容,在本发明中,染色剂140可以在具有适当的反应条件的同时而被容纳在凝胶受体120的孔隙122中,并且在保持反应条件的同时,凝胶受体120可以存储染色剂140。例如,giemsa染色在ph为7.2下进行。为此,giemsa染色的染色剂140可以以ph为7.2的水溶液的形式包含在凝胶受体120的孔隙122中。因为凝胶受体120的网状结构防止了泄漏到外部或由于染色剂140或水溶液的外部物质引起的污染,因此,giemsa染色的染色剂140可以以水溶液的形式存储,该水溶液的ph在凝胶受体120内保持在7.2。

接触型染色贴片100具有能够在保持所需反应条件的同时长时间保护染色剂140的优点。与使用常规染色技术(每次进行染色时都需要设定染色剂140的反应条件)的情况相比,这是一个很大的优点。

1.1.3接触型染色贴片的附加成分

接触型染色贴片100可以进一步包括各种附加成分。与染色剂140类似,附加成分可以容纳在凝胶受体120的孔隙122中,以被包含在接触型染色贴片100中。

例如,接触型染色贴片100中可以包括蒸发防止剂。蒸发防止剂可以起到防止凝胶受体120内的染色剂140通过蒸发泄漏到外部的作用。尽管如上所述,在一定程度上,通过凝胶基质结构或凝胶受体120的水溶性来抑制以水溶液等形式存储在凝胶受体120的孔隙122中的染色剂140泄漏到外部,但是通过包含在凝胶受体120中的蒸发防止剂,能够在保持接触型染色贴片100的性能的同时,长期保存染色剂140。蒸发防止剂可以具有5%或更低的重量比,并且优选地具有1%或更低的重量比。

在另一示例中,接触型染色贴片100中可以包括抗变性剂。与防腐剂和防止接触型染色贴片100中的细菌增殖的抗生素一样,抗变性剂起到防止接触型染色贴片100内的染色剂140因各种原因而劣化的作用。当凝胶受体120暴露时,细菌或病菌可能在其中增殖,并且由于染色剂140的污染,接触型染色贴片100的性能可能恶化。当将抗变性剂添加到接触型染色贴片100时,可以延长接触型染色贴片100的保质期。

1.2.使用接触型染色贴片的染色过程

图2是示出常规血液涂片检查过程的图,并且图3是关于常规血液涂片检查过程的染色过程的图。

参照图2,常规血液涂片检查如下进行。首先,制备反应物,例如染色溶液。接着,将血液滴在载玻片s上,并涂抹该血液。当血液被涂抹在载玻片s上时,血液被固定并干燥。可以主要使用化学固定手段进行涂抹血液的固定。当涂抹血液被固定到载玻片s时,将染色溶液倒在其上以对血液进行染色。这里,由于将染色溶液倒在血液上并因此大量的染色溶液与血液混合,所以洗涤染色溶液与血液的混合物,然后再次干燥。在该过程之后,可以使用显微镜等观察载玻片s上的染色血液,以进行血液涂片检查。

参照图3,在常规血液涂片检查中,将染色溶液喷洒到涂抹有血液的载玻片s上进行染色,为此,必须使用粉末染色剂140在现场制备染色溶液。因此,需要技术人员的手动操作或用于混合适当比例的单独设备来设定染色剂140与溶剂之间的比率。此外,当预先制备染色溶液时,1)预先制备的染色溶液可能与空气接触并发生反应;2)在染色溶液内,溶液和染色剂140之间可能发生反应;或3)当制备染色溶液并通过混合多种染色剂140使用时,异相染色剂140之间可能发生反应。因此,由于染色溶液可能被污染,或可能无法保持适当的反应条件,所以染色溶液只能在制备后几个小时内使用。

对此,由于根据本发明的实施例的接触型染色贴片100将染色剂140储存在其中的孔隙122中的同时保持所需的反应条件,该孔隙122在其凝胶受体120中形成网状结构,所以能够预先制备接触型染色贴片100,而不是通过将染色剂140与溶剂混合而在检查现场制备染色溶液,并且接触型染色贴片100能够长期用于检查。

图4是根据本发明的实施例的接触型染色贴片100的立体图,并且图5是示出根据本发明的实施例的接触型染色贴片100与样品载玻片s之间的接触状态的图。

参照图4,接触型染色贴片100的形状可以由凝胶受体120的形状来限定,并且接触型染色贴片100可以具有与形成在其至少一个表面上的样品t接触的接触表面102。这里,接触表面102是与样品t直接接触的表面,并且优选地,可以是平坦表面,以便与涂抹在载玻片s上的样品t接触。例如,如图4所示,接触型染色贴片100可以以圆柱的形式提供,并且在这种圆柱形式中,圆柱的上表面和下表面中的一者可以是接触表面102。

参照图5,可以看出,通过将涂抹有样品t的载玻片s安装在图4所示的接触型染色贴片100的上表面、或相反地通过将染色贴片安装在涂抹有样品t的载玻片s上,接触型染色贴片100与样品t接触。

接触型染色贴片100的形状不限于图4所示的形状,并且还可以包括多个接触表面100。例如,接触型染色贴片100可以制备成六面体形状,并且其一个或多个表面可以用作接触表面100。在另一示例中,接触型染色贴片100还可以制备成半球形,其中其底面是接触表面100。

图6是关于根据本发明的实施例的使用接触型染色贴片100的染色过程的图。

参照图6,接触型染色贴片100可以与涂抹在载玻片s上的样品t接触。换句话说,凝胶受体120的接触表面102可以直接与样品t接触。当发生接触时,染色剂140可以穿过网状结构,并通过样品t或样品t中与染色剂140反应的的特定成分与凝胶受体120内包含(即,容纳在其中的孔隙122中)的染色剂140之间的电化学作用经过接触表面向样品t移动。已经移动到样品t的染色剂140可以与样品t或样品t中的特定成分发生反应,并对样品t进行染色。

这里,由于染色剂140储存在凝胶受体120内,同时保持反应条件,因此,即使不单独调节反应条件,也能够平稳地进行染色。

尽管染色剂140穿过凝胶受体120的网状结构,并通过在染色剂140与样品t或样品t中的特定成分之间作用的力移动至样品t,由于在受到网状结构的某种限制的同时进行移动,因此可以防止过量的染色剂140或染色溶液移动到样品t。

这里,可以通过调节网状结构的密度和凝胶的流动性、孔隙率等来控制移动至样品t的染色剂140或染色溶液的量。即,通过适当地调节凝胶的硬度,仅使适量的染色剂140可以从接触型染色贴片100转移至样品t。

例如,当使用琼脂糖凝胶制备用于giemsa染色的接触型染色贴片100以进行外周血液涂片检查时,琼脂糖的浓度可以优选为1~5%。当琼脂糖的浓度高于上述范围时,染色剂140的移动可能被延迟,并且可能不会有足够量的染色剂140移至血液,因此可能出现不进行染色的问题。相反,当琼脂糖的浓度低于上述范围时,可能发生染色剂140的过度移动,以及可以将过量的染色剂140转移到血液中。虽然在转移过量的染色剂140时能够平稳地进行染色,但是可能存在以下缺点:染色剂140被浪费,并且残留物残留在血液上,使得之后需要用于去除残留物的洗涤和干燥过程。因此,琼脂糖的浓度可以优选为1.5~2.5%。

再次参照图5,当接触型染色贴片100与样品t接触时,接触型染色贴片100可以在没有任何外部压力(仅在简单的垂直接触过程中的重力作用,但是这可以被认为几乎没有压力)的情况下简单地与样品t接触,或者可以在接触型染色贴片100与样品t之间施加预定压力。这可以根据接触型染色贴片100的硬度适当地选择。例如,当接触型染色贴片100制备得稍微柔软时,足够量的染色剂140可以仅通过简单的接触转移到样品t,相反地,当接触型染色贴片100制备得有些硬时,可能需要施加预定的压力,以使适量的染色剂140转移到样品t。

当使用与样品t直接接触以对样品t进行染色的接触型染色贴片100时,存在以下优势:1)即使不单独调节反应条件,也能够在正确的反应条件下进行染色,只需使接触型染色贴片100与样品t接触即可;2)能够使染色剂140的浪费最小化;以及3)由于省略了预处理过程(例如,在进行染色前固定样品t)或后处理过程(例如,进行染色后的洗涤和干燥),简化了染色过程。

再次参照图2和3,在常规血液涂片检查中,染色溶液必须在现场制备以进行染色,但是由于操作者的错误导致未能设置适当的反应条件,可能会出现染色错误的问题。可替代地,即使当使用将染色剂140与溶剂适当地混合的单独设备来解决上述问题时,不仅需要购买混合设备所需的额外费用,而且还存在在每次进行染色工作时必须进行混合工作所带来的不便,从而造成时间和费用方面的损失。

相反,根据本发明的实施例的接触型染色贴片100将染色剂140保存在适当的反应条件下,仅通过使接触型染色贴片100与样品t接触就可以正确地进行染色,使得染色更方便,并且任何人(即使是非专业医务人员)都能够进行染色。

此外,参照图2和3,在常规血液涂片检查中,以将染色溶液喷洒到涂抹有血液的载玻片s上的形式进行染色,在上述情况下存在浪费大量染色剂140的问题。不仅由于难以重复使用一次喷洒的染色剂140而在成本方面存在很大损失,而且当染色剂140残留时存在对环境产生不利影响的担忧,从而还增加了对染色剂140的管理负担。

相反,根据本发明的实施例的接触型染色贴片100通过与样品t接触仅将所需量的染色剂140转移至血液,同时将染色剂140或染色溶液储存在其中,使得能够节省染色剂140,并且由于使凝胶相的染色剂140而不是以喷洒到其上的液体形式的染色剂140与血液接触,因此在使用后回收染色剂140更加方便。

此外,由于接触型染色贴片100能够长时间储存,所以接触型染色贴片100在使用一次后不会被丢弃,还可以多次使用。因此,当接触型染色贴片100多次使用时,在成本和环保方面的优势变得更加明显。

此外,参照图2和3,由于在常规血液涂片检查中以将染色溶液喷洒到血液上的形式进行染色,所以需要将血液固定在载玻片s上的预处理,以防止血液被染色溶液冲走。

相反,根据本发明的实施例的接触型染色贴片100通过简单的接触将染色剂140转移到血液,使得即使当样品t保留在载玻片s上或者在该过程中一些血液从载玻片s被扫向接触型染色贴片100时,也仅涉及少量样本,因此,根据需要,样品t可以不必固定在载玻片s上。当然,可能存在需要使样品t固定以进一步优化测试结果的情况。然而,将样品t固定的益处类似于由于测试过程的简化而产生的益处,从而操作者可以在适当考虑益处的情况下选择是否固定样品t。

此外,参照图2和3,在对血液进行染色后,必须去除残留在载玻片s上的喷洒染色溶液,因此在常规血液涂片检查中需要进行后处理,例如洗涤和干燥。

相反,在根据本发明的实施例的接触型染色贴片100中,染色剂140或染色溶液不会过度转移到载玻片s,因此防止残留物残留在载玻片s上,从而可以省略洗涤过程,并且由于省略了洗涤过程,也可以省略干燥过程。

特别地,在常规血液涂片检查中存在以下问题:由于洗涤过程而导致错误的染色结果,例如,当长时间进行洗涤时发生脱色。当使用根据本发明的实施例的接触型染色贴片100时,洗涤过程本身是不必要的,并且能够防止由于洗涤过程而导致的错误染色。

1.3.制造接触型染色贴片的方法

以下,将说明根据本发明的实施例的上述接触型染色贴片100的制造方法。

制造接触型染色贴片100的方法的示例可以包括形成凝胶受体120并将染色剂140吸收到凝胶受体120中。

首先,使用用作凝胶形成物质、可凝胶物质(例如琼脂糖粉末等)等的凝胶原料形成凝胶受体120。例如,当琼脂糖粉末和水以适当的比例混合,并加热和冷却混合物时,可以制造凝胶受体120。这里,可以使用煮沸混合物、使用微波烘烤混合物等作为加热方法。此外,这里,冷却方法可以包括自然冷却或强制冷却,并且根据需要可以在冷却方法中包括搅拌过程。

接着,染色剂140可以被吸收到制造的凝胶受体120中。为了将染色剂吸收到凝胶受体120中,可以使用以下方法:将凝胶受体120浸入容纳有染色剂140的腔室、容器中一段预定时间,然后在染色剂140被充分吸收到其中后取出凝胶受体120。

在另一示例中,接触型染色贴片100的制造方法可以包括将凝胶原料、水溶液和染色剂进行混合以形成凝胶受体的方法。例如,可以通过将琼脂糖、水溶液(或缓冲溶液)和染色剂140(可以与缓冲溶液混合)以适当的比例混合、并加热和冷却混合物来制造接触型染色贴片100。这里,加热和冷却手段可以类似于上述示例。

在另一示例中,接触型染色贴片100的制造方法可以包括以下方法:将凝胶原料和溶液混合并加热,然后在冷却加热的混合物的过程中注入染色剂140。例如,在琼脂糖和水溶液以适当的比例混合并加热后,在冷却加热的混合物的过程中,可以将染色剂140添加到混合物中。

1.4接触型染色贴片的实验例

以下,将描述根据本发明的实施例的上述接触型染色贴片100的实验例。

在该实验例中,根据本发明的实施例的接触型染色贴片100与常规giemsa染色技术一起应用于疟疾的检查。

由于在包括该实验例的下面将说明的各种实验例中,仅将giemsa染色技术作为romanowsky染色技术的代表来描述,所以实施例不限于giemsa染色技术,并且还可以应用于其他各种romanowsky染色技术。此外,使用本文所述的接触型贴片100进行的样品染色技术具有简单的过程,同时保持着常规romanowsky染色技术和其他各种染色技术的效果,因此有望替代常规romanowsky染色技术。在申请人所写的与本发明相关的论文中,样品染色技术将被称为“noul染色”。

根据以下方案制造接触型染色贴片100。

1)在将琼脂糖、giemsa粉末和缓冲溶液b混合后,煮沸混合物,然后在室温下冷却。使用浓度为2%的琼脂糖,并且使用ph为7.2的缓冲溶液b。此外,将混合物加热至100℃或更高。这里,琼脂糖的浓度可以在1~3%的范围内调节。此外,缓冲溶液b的ph浓度可以在6.4~7.6的ph范围内调节。

将以这种方式制造的接触型染色贴片100置于在载玻片s上作为单层涂抹的血液上约5分钟,然后使用100x显微镜观察染色结果。使用从感染疟原虫的小鼠(引起疟疾的原生动物)的眼睛采集的血液。

图7是使用根据常规流体喷洒手段的标准giemsa染色工艺(即,giemsa染色技术)进行染色的结果的图像,图8示出了针对每个ph浓度使用根据标准giemsa染色工艺的giemsa染色技术进行染色的结果的图像,以及图9是使用应用了根据本发明的实施例的接触型染色贴片100的染色技术进行染色的结果的图像。

图7是遵循giemsa染色的合适的ph浓度进行染色的结果,而图8是在染色过程中ph浓度偏离合适值的情况下进行染色的结果。参照图9,在giemsa染色技术中应用上面的接触型染色贴片100的结果显示出与遵循合适的ph浓度的正确的染色结果类似的结果。这表明已经正确地进行了使用接触型染色贴片100的染色。

特别地,在标准giemsa染色工序中,喷洒在涂抹有血液的载玻片s上的染色溶液需要20到30分钟或更长时间才能进行染色。相反,当使用接触型染色贴片100时,能够在5分钟或更短的时间内获得相同的结果。此外,在常规的标准工艺中,制备染色溶液或在进行染色后洗涤、干燥等需要至少几十分钟。相反,当使用接触型染色贴片100时,在进行染色后大约数十秒的自然干燥之后立即使用显微镜观察,使得时间减小效果更大。

用于与上述检查相同的接触型染色贴片100也可以根据以下方案制造。

2)将0.4g的琼脂糖与20mlph为7.2的缓冲溶液b的混合溶液混合后,使用微波将混合物加热30秒,并在搅拌下冷却。然后,将1ml的giemsa改性溶液与其混合,并且进一步冷却混合物,然后硬化成凝胶相。

将以这种方式制造的接触型染色贴片100置于在载玻片s上作为单层涂抹的血液上约5分钟,然后使用100x显微镜观察染色结果。使用从感染疟原虫的小鼠(引起疟疾的原生动物)的眼睛采集的血液。

图10是应用了根据本发明的实施例的接触型染色贴片100的使用giemsa染色技术的染色的另一结果的图像。参照图10,在giemsa染色技术中应用如上所述使用微波烘烤制造的接触型染色贴片100的结果也显示出与观察到合适的ph浓度的正确染色结果类似的结果。因此,该情况也表明已经适当地进行了使用接触型染色贴片100的染色。

考虑到染色结果,根据本发明的实施例的接触型染色贴片100被预计具有比根据常规标准工艺进行的染色方法更稳定的染色性能。

尽管以上已经说明了将接触型染色贴片100应用到giemsa染色技术中的实验例,但是能够容易地理解,接触型染色贴片100也能够应用于其他不同的染色技术。

图11示出了与wright染色技术相关的根据标准染色技术和应用了接触型染色贴片100的染色技术的结果。

作为用于wright染色的接触型染色贴片100,使用将ph为6.8的缓冲溶液b与wright染色剂140混合的染色溶液和琼脂糖来制造凝胶相接触型染色贴片100。图11示出了在将接触型染色贴片100置于样品t上约5分钟后使用400x显微镜观察的结果。如图11所示,在wright染色技术的情况下,还确认了获得的结果与根据标准工序获得的结果几乎相同。

图12示出了根据与dapi染色技术相关的应用了接触型染色贴片100的染色技术的结果。

作为dapi染色的接触型染色贴片100,使用0.4g琼脂糖、20mlpbs(磷酸盐缓冲盐水)和20μldapi来制造凝胶相接触型染色贴片100。图12示出了在将接触型染色贴片100置于样品t上约5分钟后分别使用亮光20x和荧光20x的观察结果。如图10所示,在dapi染色技术的情况下,由观察结果也确认了稳定的荧光颜色形成。

考虑到染色结果,预期根据本发明的实施例的接触型染色贴片100简化了常规进行的染色技术的大多数标准工序,并通过保证稳定的染色性能来替代这些工序。

1.5.接触型染色贴片的使用

考虑到以上内容,使用接触型染色贴片100的代表性示例如下。

1.5.1染色贴片

在血液学中使用的常规染色技术中,将液相染色溶液喷洒到血细胞或组织上。然而,利用这种方法,残留物留在样品t上,并且难以控制去除残留物必不可少的洗涤和干燥过程是合格的。此外,由于结果对根据使用的染色剂的制造方法、制造时期、缓冲液的ph浓度变化等的变化敏感,因此难以获得稳定的染色结果。此外,常规标准工序需要各种类型的设备,并且由于使用设备的方案非常复杂,因此非技术人员很难执行该方案。

染色贴片是对常规染色技术的创新改进,并且基本上是指用于保存水凝胶状态的染色剂140的凝胶相受体。染色贴片可以根据需要通过正确地组合染色粉末、水凝胶、缓冲溶液b、稳定剂、水等来制造,并且能够实现简单的方案,其中,通过使制造的染色贴片在相对较短的时间内与血细胞或组织接触并分离来完成染色。

与常规方法相比,该方法的优点在于,能够从整个染色过程中省略洗涤和干燥过程,染色本身的时间短,样品t上没有残留物(例如污渍),能够最小化样品的使用,以及结果是有规律和稳定的。

因此,在染色过程中,染色贴片在保存水的同时创造了反应条件(或环境条件),使得染色剂140与待反应的物质之间发生化学反应,而水和其他缓冲物质以原样保存在水凝胶中,因此不需要洗涤和干燥过程。

染色贴片的代表性示例可以包括romanowsky染色贴片(例如,giemsa贴片和wright贴片)和papanicolaou染色贴片。

1.5.2.抗体贴片

在进行免疫组织化学或酶联免疫吸附测定(elisa)时,抗体贴片是能够以水凝胶状态而不是常规液态递送抗体或与报告(例如,荧光物质)偶联的抗体的贴片。

与染色贴片类似,使抗体贴片与血液或组织接触预定的时间。通过该接触,凝胶内含有的抗体根据抗原-抗体反应离开抗体贴片,反应结束。

当使用抗体贴片时,与常规方法相比,可以更迅速地获得结果,能够省略洗涤和干燥过程,并且能够最小化背景噪声。

1.5.3.dna贴片

在进行fish测试等时,dna贴片是递送与荧光物质报告偶联的dna探针的贴片,并且是以水凝胶状态而不是常规液态递送的贴片。

与染色贴片类似,使dna贴片与样品t(例如,血液、组织等)接触预定的时间,然后与其分离。通过该接触,dna探针离开贴片进行杂化,反应结束。

同样在dna测试中,当使用dna贴片时,与常规方法相比,能够获得更迅速、准确的结果,并且能够省略洗涤和干燥过程。

以上已经说明了使用接触型染色贴片100的各种示例。然而,能够使用接触型染色贴片100的领域不限于上述那些,并且接触型染色贴片100可以用于其他各种类型的染色(本文定义的“广泛的染色含义”,指的是测试样品时的诱导检测)。这里,可以根据使用接触型染色贴片100的领域适当地选择染色剂140。例如,在染色贴片的情况下,染色物质可以用作染色剂140;在抗体贴片的情况下,抗体可以用作染色剂140;以及在dna贴片的情况下,dna探针可以用作染色剂140。

2.接触型染色补充贴片

以上已经说明了包含与样品t(作为待反应的物质)反应的染色剂140的接触型染色贴片100。以下,将说明根据本发明的实施例的接触型染色补充贴片100’,其用于进行在整个染色过程中进行的其他过程,例如,样品t的固定或缓冲、脱色、媒染、洗涤等。

2.1.接触型染色补充贴片的示例

基本上,接触型染色补充贴片100’的构成与接触型染色贴片100的构成基本相同。具体地,与接触型染色贴片100一样,接触型染色补充贴片100’包括凝胶受体120,并且可以包括染色增强剂160而不是染色剂140。

可以根据使用接触型染色补充贴片100’的领域来选择染色增强剂160。

2.1.1.固定贴片

例如,当用于固定样品t时,染色增强剂160可以是用于将样品t固定在载玻片s等上的诸如醇类(乙醇或甲醇等)等样品固定剂。

2.1.2.脱色贴片和媒染贴片

在另一示例中,当染色增强剂160用于脱色或媒染时,可以使用脱色剂或媒染剂作为染色增强剂160。在革兰氏染色技术中,在使用结晶紫作为主要染色剂对革兰氏-阳性细菌和革兰氏-阴性细菌进行染色之后,使用碘作为媒染剂将主要染色剂固定到革兰氏-阳性细菌上,然后,使用诸如醇类(乙醇、甲醇等)等脱色剂从革兰氏阴性细菌中剥离未固定到革兰氏阴性细菌的主要染色剂,并且使用番红素作为对照染色剂对脱色的革兰氏阴性细菌进行染色,使得革兰氏-阳性细菌被主要染色剂染色,而革兰氏阴性细菌被对照染色剂染色,因此两者显示出彼此不同的颜色。在该过程中,当实际染色仅由主要染色剂和对照染色剂构成时,媒染剂和脱色剂本身不进行染色,而是起到辅助染色的作用。在革兰氏染色技术中,制备使用结晶紫(主要染色剂)作为染色剂140的主要染色贴片和使用番红精0(对照染色剂)作为染色剂140的对照染色贴片作为根据本发明的实施例的接触型染色贴片100,并且制备包含碘(媒染剂)作为染色增强剂160的媒染贴片和包含醇类(脱色剂)作为染色增强剂160的脱色贴片作为根据本发明的实施例的接触型染色补充贴片100’,从而能够通过使主要染色贴片、媒染贴片、脱色贴片以及对照染色贴片依次与样品t接触来进行革兰氏染色技术。

当使用上述固定剂或脱色剂来制造染色补充贴片100’(例如,固定贴片和脱色贴片)时,非水凝胶可以主要用于凝胶受体120的材料(当然,也可以根据情况使用水凝胶)。可能必须使用高浓度(例如,99%或更高)的醇作为固定剂,以将样品t固定在载玻片s上。这里,当使用水凝胶时,由于凝胶受体140与醇之间的相互作用,醇的浓度可能降低,因此,固定作用可能降低。相反,当凝胶受体120是非水凝胶时,在上述情况下能够相对良好地维持醇的浓度,因此能够改善固定性能或脱色性能。可以使用pdms凝胶、pmma凝胶、硅凝胶等作为非水凝胶。

此外,固定贴片或脱色贴片也可以被作为对凝胶受体120进行固化的结果的固定剂或脱色剂代替。例如,固化的甲醇本身也可以用作固定贴片或脱色贴片。

2.1.3.缓冲贴片

在另一示例中,可以存在使用缓冲溶液b作为染色增强剂160的缓冲贴片。缓冲贴片可以是如下贴片:通过在样品t染色之前、之后、或之前和之后与样品t接触而创造用于在样品t处染色的反应条件(环境条件)。在giemsa染色的情况下,缓冲贴片可以以这样的形式提供:其中,具有适合giemsa染色的ph的缓冲溶液b作为染色增强剂160被容纳在凝胶受体120中。

缓冲贴片中包含的缓冲溶液b的ph可以与根据反应条件的ph(即,最佳ph)基本相同。

可替代地,与上述不同,缓冲溶液b的ph可以与反应的最佳ph稍微不同。

当进行染色时,创造适当的染色环境,特别地,创造合适的ph可能对于适当地进行染色而言是重要因素。通常,在常规染色过程的缓冲步骤中,通过将具有最佳ph的缓冲溶液b喷洒或滴加到已经染色、正在染色或将被染色的样品上来设定ph条件。相反,在使用接触型染色补充贴片100’的缓冲步骤中,通过使缓冲贴片与样品t接触在样品中创造ph条件。因此,接触型染色补充贴片100’根据与常规手段(在常规手段中,液相中的缓冲溶液与样品接触)不同的机制,在样品t中引起缓冲作用。

具体地,当使用ph约为6.5的缓冲溶液b制造的缓冲贴片与被染色的样品t接触并且观察染色样品t时,实际观察到的染色结果类似于将ph约为6.6~6.9的缓冲溶液b喷洒到被染色的样品t上的结果。

相反,当使用ph约为7.6的缓冲溶液b制造的缓冲贴片与被染色的样品t接触并且观察样品t时,实际观察到的染色结果类似于将ph约为7.2~7.4的缓冲溶液b喷洒到被染色的样品t上的结果。

考虑到上述特点,能够认识到,与将缓冲溶液b以液相直接喷洒到样品t上时产生的ph相比,当包含在凝胶受体s中的缓冲溶液b被提供到样品t上时,样品t中产生的ph稍微更偏向于中性ph。这是因为,当使用缓冲贴片直接提供缓冲溶液b时,在缓冲溶液b与样品t之间发生的酸碱相互作用通过凝胶基质的网状结构发生,因此可能比以液相喷洒的缓冲溶液b与样品之间的酸碱相互作用稍微延迟。

换句话说,使用具有特定ph值的缓冲溶液b制造的缓冲贴片的有效ph比缓冲溶液b本身的ph值稍微更偏向于中性ph。这里,有效ph是指作用于样品t上的ph,并且例如可以是当缓冲溶液b以液相喷洒到样品上时在样品t中产生的ph。

因此,当正在制造缓冲贴片时,可以将缓冲溶液b的ph调节为使得缓冲贴片的有效ph值与其中缓冲贴片将用于缓冲的染色技术的最佳ph值基本相同。

即,对于有利于常规染色技术中可以定义的染色的最佳ph值,考虑到凝胶基质阻碍酸碱相互作用的程度,可以将在缓冲贴片中使用的缓冲溶液b自身的ph值设定为要被ph补偿值补偿的值。

这里,当最佳ph为酸性时,ph补偿值可以是负值。例如,当最佳ph为6.8时,ph补偿值可以为-0.3,因此,针对6.8的有效ph,制造缓冲贴片时使用的缓冲溶液b的ph值可以是6.5的ph。

此外,这里,当最佳ph为碱性时,ph补偿值可以是正值。例如,当最佳ph为7.4时,ph补偿值可以为+0.2,因此,针对7.4的有效ph,制造缓冲贴片使用的缓冲溶液b的ph值可以是7.6的ph。

根据凝胶受体120的凝胶的浓度、硬度、孔隙率、网状结构的密度等,可以增大或减小ph补偿值的大小(即,绝对值)。

随着凝胶受体120的凝胶的浓度增加,ph补偿值的大小可以增大,并且随着凝胶的浓度降低,ph补偿值的大小可以减小。例如,当使用琼脂糖凝胶作为凝胶受体120时,随着琼脂糖的浓度增加,ph补偿值的大小可以增大,并且随着琼脂糖的浓度降低,ph补偿值的大小可以减小。

此外,随着凝胶受体120变硬,ph补偿值的大小可以增大,并且随着凝胶受体120变软,ph补偿值的大小可以减小。

此外,随着凝胶受体120的孔隙率增加,ph补偿值的大小可以减小,并且随着孔隙率减小,ph补偿值的大小可以增大。

此外,随着凝胶受体120的网状结构的密度增加,ph补偿值的大小可以增大,并且随着密度降低,ph补偿值的大小可以减小。

缓冲贴片的ph偏移现象是与由染色剂140与接触型染色贴片100中的缓冲溶液b混合时缓冲溶液b的ph偏移的情况不同的原因引起的。即,尽管由于上述原因而发生了缓冲贴片中的ph偏移,但是由于包括上述原因和根据与接触型染色贴片100的缓冲溶液b相关的一部分描述的原因的复杂原因,接触型染色贴片100中可能发生ph偏移。

以上对缓冲溶液b的ph浓度的说明不仅适用于缓冲贴片中包含的缓冲溶液b,而且通常还适用于具有缓冲溶液b的接触型染色贴片100或接触型染色补充贴片100’。例如,即使当接触型染色贴片100中包括的染色剂140是将染色粉末与缓冲溶液b混合的溶液形式时,通过向最佳ph添加ph补偿值或从最佳ph减去ph补偿值而得到的ph值也可以被设定为缓冲溶液的ph值,而不是使缓冲溶液b的ph值对应于最佳ph。

2.1.4.洗涤贴片

在另一示例中,可以存在洗涤贴片。洗涤贴片是在染色过程中进行洗涤的贴片,并且,与上述接触型染色补充贴片100’稍微不同,洗涤贴片可以不包括单独的染色增强剂160,或者可以使用少量的水或醇等作为染色增强剂160。

洗涤贴片与样品t接触,以起到去除残留在样品t上的异物等的作用。例如,当在染色过程中将染料、媒染剂、脱色剂、固定剂等涂布到样品t上时,所涂布的一些东西残留在样品t上,并且需要洗涤掉。当洗涤贴片与样品t接触时,由于异物被吸收到洗涤贴片的凝胶基质的孔中,因此可以洗涤样品t。这是由于洗涤贴片吸收接触的异物的性质,因为该洗涤贴片中不包含溶液等或仅包含少量溶液。

由于洗涤贴片还执行吸收样品t上的液体的功能,同时在染色过程中对样品t进行洗涤和干燥,因此,洗涤贴片也可以称为干燥贴片。

洗涤贴片的洗涤和干燥功能也可以由缓冲贴片而不是洗涤贴片来进行。在缓冲贴片的情况下,由于与洗涤贴片相比,凝胶受体120内包括相对较大量的溶液,因此,当与样品t接触时,吸收样品t上的异物的性能可能稍低。然而,由于缓冲贴片的凝胶受体120也具有一些孔,因此,缓冲贴片可能在某种程度上起到吸收样品t上残留物的作用。因此,缓冲贴片除了缓冲作用(其中,相对于样品t设定了最佳ph)外,还能够起到一些洗涤和干燥作用。因此,在染色过程中,缓冲、洗涤和干燥仅通过简单地使缓冲贴片与样品t接触来进行,因此,能够简化染色过程。当然,当存在过量的残留物时,可以进行单独的洗涤过程和干燥过程。

在洗涤贴片的凝胶受体140中还可以包含作为染色增强剂160的吸收剂,以增强洗涤贴片的吸收力。可以通过如上所述地在凝胶受体140中不包括单独的溶液或仅在其中包括少量溶液来改善凝胶受体140的孔隙率,从而使得可以很好地从其接触的样品t中吸收异物。然而,当在凝胶受体140中包括作为染色增强剂160的吸收剂以进一步改善吸收力时,可以通过吸收与吸收剂接触的样品t上的异物来提高吸收率。

2.1.5.复合贴片

尽管以上已经说明了接触型染色补充贴片100’的各个功能,但是在某些情况下,染色补充贴片可以同时具有两种或更多种功能。

例如,缓冲贴片可以同时发挥缓冲反应条件(例如,染色的样品t的ph浓度)的作用和洗涤残留在样品t上的残留物的作用。尽管当使用根据本发明的实施例的接触型染色贴片100对样品t进行染色时,样品t上几乎没有残留物,但是当接触型染色贴片100与样品t分离并且随后缓冲贴片与样品t接触时,即使是在样品t处存在的极少量的残留物,也可以被清楚地去除。

尽管上面已经描述了利用一个贴片来实现接触型染色补充贴片100’的每个作用,但是,与以上描述不同,一个接触型染色补充贴片100’可以包含复合染色增强剂160,并且发挥两种或更多种作用。

例如,媒染贴片和脱色贴片可以实现为一种媒染和脱色贴片。在凝胶受体120中同时包含作为染色增强剂160的媒染剂和脱色剂的媒染和脱色贴片可以在与样品t接触时同时进行样品t的媒染和脱色。

此外,接触型染色贴片100和接触型染色补充贴片100’也可以通过彼此组合来实现。例如,当可以在凝胶受体120中容纳用于革兰氏染色技术的主要染色剂、媒染剂、脱色剂和对照染色剂时,可以使用一个贴片(以下称为“复合贴片”)来实现接触型染色贴片100和接触型染色补充贴片100’。

复合贴片大大简化了染色过程,因此具有使用方便的优点。然而,当在凝胶受体120内的染色剂140之间、染色增强剂160之间、以及染色剂140与染色增强剂160之间发生反应时,可能无法染色,或者可能获得错误的染色结果。因此,复合贴片应该在适当考虑其优缺点的情况下使用。

2.2.接触型染色补充贴片的制造方法

以下,将描述根据本发明的实施例的上述接触型染色补充贴片100’的制造方法。

接触型染色补充贴片100’的制造方法的示例可以包括形成凝胶受体120并将染色增强剂160吸收到凝胶受体120中。

首先,使用用作凝胶形成物质、可凝胶物质等的凝胶原料(例如,琼脂糖粉末等)形成凝胶受体120。例如,当琼脂糖粉末和水以适当比例混合,并加热和冷却混合物时,可以制造凝胶受体120。这里,可以使用煮沸混合物、使用微波烘烤混合物等作为加热方法。此外,这里,冷却方法可以包括自然冷却或强制冷却,并且根据需要,在冷却方法中可以包括搅拌过程。

接着,染色增强剂160能够被吸收到制造的凝胶受体120中。为了将染色增强剂160吸收到凝胶受体120中,可以使用以下方法:将凝胶受体120浸入容纳有染色增强剂160的腔室或容器中一段预定时间,然后在染色增强剂160被充分吸收到其中后取出凝胶受体120。

在另一示例中,接触型染色补充贴片100’的制造方法可以包括将凝胶原料、水溶液和染色剂进行混合以形成凝胶受体的方法。例如,可以通过将琼脂糖、水溶液(或缓冲溶液)和染色增强剂160以适当的比例混合,并且加热和冷却混合物来制造接触型染色补充贴片100’。这里,加热和冷却手段可以类似于上述示例。

在另一示例中,接触型染色补充贴片100’的制造方法可以包括以下方法:将凝胶基材和溶液混合并加热,然后在冷却加热的混合物的过程中添加染色增强剂160。例如,在琼脂糖和水溶液以适当的比例混合并加热后,在冷却加热的混合物的过程中,添加染色增强剂160。

2.3.接触型染色补充贴片的实验例

以下,将说明根据本发明的实施例的上述接触型染色补充贴片100’的实验例。

在该实验例中,根据本发明的实施例的接触型染色贴片100和接触型染色补充贴片100’应用于常规giemsa染色技术,用于检查疟疾。

制造两个接触型染色贴片100以分别以亚甲蓝和曙红(是giemsa染色剂140)作为一种试剂。

如上针对各试剂制造多个贴片可以具有以下优点:接触型染色贴片100的储存期比通过在一个贴片中混合两种染色剂140而制造贴片的情况更长。举个具体的示例,当将亚甲蓝和曙红混合,并将其容纳在一个接触型染色贴片中时,随着时间的推移,碱性的亚甲蓝和酸性的曙红可能相互反应,因此可能降低与样品t的反应性。另一方面,当针对亚甲蓝和曙红单独制造接触型染色贴片100时,可以缓和这种问题。

具体的制造方案如下。

1)在将琼脂糖、亚甲蓝和缓冲溶液b混合后,将混合物煮沸或使用微波烘烤,然后在室温下冷却,以制造亚甲蓝染色贴片。

2)在将琼脂糖、曙红和缓冲溶液b混合后,将混合物煮沸或使用微波烘烤,然后在室温下冷却,以制造曙红染色贴片。

在过程1)和2)中,使用浓度为1~5%的琼脂糖,并且在每种情况下,将缓冲溶液b的ph浓度设定为染色剂140的最佳ph。

然后,根据以下方案制造接触型染色补充贴片100’。

3)在没有染色剂140的情况下,仅将琼脂糖和缓冲溶液b混合,将混合物煮沸或使用微波烘烤,然后在室温下冷却,以制备缓冲贴片。这里,使用ph为7.2的pbs溶液作为缓冲溶液b。

将如上制造的亚甲蓝贴片、曙红贴片和缓冲贴片依次与载玻片s上涂抹的血液接触和分离。这里,使亚甲蓝贴片与血液接触约30秒,使曙红贴片与血液接触约1分钟。然后,使缓冲贴片与血液接触约3分钟。

图13是示出在亚甲蓝贴片和曙红贴片与血液接触后并且在缓冲贴片与血液接触之前所观察到的染色结果的图,以及图14是示出在亚甲蓝贴片和曙红贴片与血液接触后再使缓冲贴片与血液接触之后观察到的染色结果的图。

当将图13和14进行比较时,可以发现,图13更近似于根据giemsa染色的标准染色过程的正常染色结果。具体地,与图14相比,在图13中,蓝色(亚甲蓝)被强烈染色,并且相对地,没有观察到被曙红染色的红色。这是因为在曙红之前与血液接触的亚甲蓝阻碍了随后曙红与血液的反应。当缓冲贴片在该状态下与血液接触时,因为血液的反应条件(ph浓度等)被调节到适合反应的最佳ph,因此通过减少亚甲蓝的过度反应同时增加曙红的不充分反应来进行正常染色。

此外,当仔细检查图13和14时,可以发现,在与缓冲贴片接触之后,与缓冲贴片接触前观察到的染色等(图11中左上侧)被消除了。

考虑到这些特点,当组合使用染色剂140时,可以发现,缓冲贴片同时发挥适当地创造反应条件以使得每个染色剂140反应良好的作用,以及用于去除异物的洗涤作用。

此外,由于缓冲贴片中包含的过量缓冲溶液b不会向血液(即,样品t)移动,因此可以省略附加的干燥程序,或者可能只需要最少的干燥程序。

3.测试试剂盒

以下,将说明根据本发明的实施例的测试试剂盒。

根据本发明的实施例的测试试剂盒可以具有包含在其中的接触型染色贴片100,以在样品t插入其中时对样品t进行染色。

3.1.测试试剂盒的形式

测试试剂盒可以包括两个板。这里,两个板中的一个板可以是包含接触型染色贴片100的板(以下,称为“贴片板”),另一个板可以是涂抹有样品t的板(以下,称为“样品板”)。

在测试试剂盒中,两个板(即,贴片板和样品板)可以被接合为能够相对于彼此移动。这里,移动是涵盖旋转和滑动的概念。

在测试试剂盒中,当将样品t涂抹在样品板上时,贴片板可以相对于样品板移动,使得储存在贴片板中的接触型染色贴片100布置在涂抹有样品t的位置处,并且样品t和染色贴片可以互相接触,从而对样品t进行染色。

在本发明中,可以将测试试剂盒设计成各种形式。测试试剂盒的典型形式包括旋转型和滑动型。

图16是根据本发明的实施例的作为旋转型测试试剂盒的测试试剂盒1000的示例的立体图,并且图30是根据本发明的实施例的作为滑动型测试试剂盒的测试试剂盒2000的示例的侧视图。

这里,根据贴片板与样品板之间的相对运动方式区分测试试剂盒。在旋转型测试试剂盒1000中,当两个板相对于彼此旋转时,染色贴片被布置在样品t的涂抹区域上。在滑动型测试试剂盒2000中,当两个板相对于彼此滑动时,染色贴片被布置在样品t的涂抹区域上。

如图16和30所示,通常,旋转型测试试剂盒1000大多可以为圆盘形状,而滑动型测试试剂盒2000大多可以为四边形平板形状。

在具有上述形状的测试试剂盒中,贴片板通常可以放置在样品板上方。用于样品插入的开口或装载部可以设置在贴片板中,并且样品可以通过这种开口或装载部移到样品板。另外,用于将样品涂抹在样品板中的涂抹部可以设置在贴片板中,并且,当贴片板和样品板相对于彼此移动时,样品t可以被涂抹在样品板中。在贴片板中,可以包含染色贴片以面对样品板,并且当样品板和贴片板相对于彼此移动时,染色贴片可以被布置在涂抹有样品t的区域。当染色贴片被放置在涂抹有样品t的区域上时,可以减小贴片板与样品板之间的间隙,或者可以使染色贴片的形状或位置朝向样品板变形,以允许样品t与染色贴片之间的接触。

以下,将更详细地说明两种类型的测试试剂盒。然而,下面将说明的旋转型测试试剂盒1000和滑动型测试试剂盒2000仅仅是根据本发明的实施例的测试试剂盒的示例,并且旋转型测试试剂盒1000和滑动型测试试剂盒2000不受下面说明的限制。此外,测试试剂盒1000和2000也仅仅是用于说明根据本发明的实施例的测试试剂盒的形式的示例,并且应该注意,根据本发明的实施例的测试试剂盒的形式不限于旋转型测试试剂盒1000和滑动型测试试剂盒2000。

3.2.旋转型测试试剂盒的结构

首先,将说明旋转型测试试剂盒1000。

图15是根据本发明的实施例的旋转型测试试剂盒1000的示例的分解立体图,并且图16是根据本发明的实施例的旋转型测试试剂盒1000的示例的立体图。

参照图15和16,在测试试剂盒1000中,样品板1400可以具有圆盘形主体1402。贴片板1200可以具有主体1202,主体1202是具有切口部的圆盘形(例如,扇形板)。贴片板1200和样品板1400可以设置成彼此面对,并且可以连接,以在圆盘或扇形板的中心部分处相对于彼此可旋转。

贴片板1200和样品板1400的主体1202和1402可以分别具有内表面、外表面和侧表面。这里,内表面是贴片板1200和样品板1400的彼此面对的表面,并且外表面是与内表面相对的表面。即,贴片板1200的内表面1204是靠近样品板1400的表面,贴片板1200的外表面是远离样品板1400的表面,样品板1400的内表面1404是靠近贴片板1200的表面,样品板1400的外表面是远离贴片板1200的表面。

贴片板1200和样品板1400可以在其中央部分彼此接合。例如,如图15和16所示,朝向内表面突出的接合突起1208可以形成在贴片板1200和样品板1400的任一中央部分,并且接合孔1408或接合凹槽可以形成在另一中央部分处,使得贴片板1200和样品板1400可以通过插入到接合孔1408或接合凹槽中的接合突起1208而彼此接合。这里,为了稳定两个板之间的接合,可以将螺母连接到已经穿过接合孔的接合突起的端部,可以形成从接合突起的端部沿直径方向延伸的翼板,或者两个板可以使用单独的销钉彼此接合。

贴片板1200和/或样品板1400可以由透明或半透明材料设置。当贴片板1200和/或样品板1400是透明或半透明时,可能存在以下优点:操作者能够使用测试试剂盒1000通过目视检查来检查染色过程。

3.2.1.贴片板的结构

图17是根据本发明的实施例的旋转型测试试剂盒1000的贴片板1200的示例的立体图。

参照图17,贴片板1200可以具有包括切口部的圆盘形主体(例如,扇形板)。

用于储存接触型染色贴片100或接触型染色补充贴片100’的存储器1220可以形成在主体中。以下,接触型染色贴片100和接触型染色补充贴片100’将统称为“接触型贴片”。

存储器1220可以形成在贴片板1200的扇形区域上,更具体地,可以形成在在其径向方向上与贴片板1200的中心间隔预定距离的位置处。

可以在贴片板1200中形成一个或多个存储器1220。例如,当根据giemsa染色技术试图对血液进行染色时,贴片板1200的存储器1220的数量可以如下。在贴片板1200处,1)可以形成仅存储亚甲蓝-曙红贴片(同时包含两种染色剂140(亚甲蓝和曙红)的接触型染色贴片100)的一个存储器1220,2)可以形成分别用于存储亚甲蓝贴片和曙红贴片的两个存储器1220,或者3)可以形成分别用于存储亚甲蓝贴片、曙红贴片和缓冲贴片的三个存储器1220。作为参考,图17示出了形成有两个存储器1220的贴片板1220。

当存在多个存储器1220时,当在贴片板1200的内表面方向上观察时,每个存储器1220相对于贴片板1200的中心形成的角度可以是均匀的。例如,从贴片板1200的中心开始,第一存储器1220-1与第二存储器1220-2之间的角度和第二存储器1220-2与第三存储器1220-3之间的角度可以为45°。当存储器1220之间的角度间隔被设置为彼此相等时,由于通过每次将主体旋转相同的角度能够使接触型贴片顺序地与样品t接触,因此,存在易于控制诊断设备的优点,这将在下面进行描述。

存储器1220可以包含接触型染色贴片100或接触型染色补充贴片100’,使得接触型染色贴片100或接触型染色补充贴片100’在贴片板1200的内表面方向上露出来。

例如,如图17所示,存储器1220可以以凹槽的形式形成。凹槽可以是在贴片板1200的内表面方向上开口的形式,即,在贴片板1200的内表面方向上凹入的形式。因此,包含在存储器1220中的接触型贴片可以与将被施加到样品板1400上的样品t接触。

这里,凹槽可以具有与包含在其中的接触型贴片对应的形式。

尽管接触型贴片可以制造成各种形状,但是为了便于说明,将基于具有主表面的圆柱形或多边圆柱形制造的接触型贴片进行描述,所述主表面是圆形或多边形的上表面和下表面、以及连接上表面和下表面的侧表面。当然,接触型贴片也可以制造成各种其他形状,包括半球形、上表面和下表面的尺寸不同的圆柱形或多边圆柱形、以及侧表面为凸形的圆柱形或多边圆柱形。

图18是根据本发明的实施例的旋转型测试试剂盒1000的槽形存储器1220的示例的截面图。

参照图17和18,凹槽1220’可以具有开口表面1222、底表面1224以及侧面1226。

当在内表面1204的方向上观察凹槽1220’时,凹槽1220’的开口表面1222和底表面1224可以具有与接触型贴片的主表面相同的形式。这里,当在内表面1204的方向上观察凹槽1220’时,凹槽1220的开口表面1222和底表面1224中的至少一者可以具有小于或等于接触型贴片的主表面的尺寸。当凹槽1220’的开口表面1222或底表面1224的尺寸小于接触型贴片的主表面的尺寸时,因为接触型贴片以稍微压缩的状态被包含在凹槽中,所以存储器1220可以稳定地存储接触型贴片。

凹槽1220’的侧面1226的深度可以等于或小于接触型贴片的厚度。当凹槽1220’的侧面1226的深度小于接触型贴片的厚度时,包含在凹槽中的接触型贴片的一部分从贴片板1200的内表面突出,因此,可以进一步促进接触型贴片与样品板1400上的样品t之间的接触。

可以在凹槽1220’处设置用于防止包含在凹槽1220’中的接触型贴片偏离的防偏构件。

例如,防偏构件可以被实施为防脱台阶,其从接触凹槽1220’的开口表面1222的侧面1226朝向开口表面1222的中央部分延伸。包含在存储器1220中的接触型贴片通过防脱台阶而被锁定在凹槽的开口表面1222,从而防止其偏离到外部。

在另一示例中,防偏构件可以被实施为防脱突起,其从凹槽1220’的侧面1226朝向凹槽1220’的中央部分延伸。由于通过防脱突起而被压缩并容纳在存储器1220中,接触型贴片稳定地固定到存储器1220,因此不会偏离到外部。

在另一示例中,当凹槽1220’的侧壁1226形成为从开口表面的底表面朝向凹槽1220’的中央部分逐渐倾斜时,侧壁1226也可以代替防偏构件执行用于防止包含在凹槽1220’中的接触型贴片偏离到外部的防偏构件的功能。

此外,可以在凹槽的底表面处设置接触引导件1228,其用于促进包含在凹槽中的接触型贴片与样品板1400上的样品t之间的接触。

图19和20是根据本发明的实施例的旋转型测试试剂盒1000的具有各种接触引导件1228的槽形存储器1220的截面图。

例如,接触引导件1228可以被实施为接触引导突起1228’,其从图19中所示的凹槽1220’的底表面1224呈凸圆状突出。包含在存储器1220的接触型贴片的一部分通过凹槽的底表面的接触引导突起从贴片板1200的内表面突出,因此可以促进接触型贴片与样品板1400上的样品t接触。接触引导突起1228’并不总是以图19所示的形式出现,如图20所示,凹槽1220’的底表面1224本身可以形成为凸面1228”,并用作接触引导件1228。

尽管上面已经将存储器1220描述为以凹槽的形式实现,但是存储器1220也可以是孔的形状。

孔可以具有形成在贴片板1200的内表面处的第一开口表面、形成在外表面处的第二开口表面、以及侧面。这里,可以在第二开口表面处设置防偏构件,其用于防止包含的接触型贴片在第二开口表面的方向上偏离。例如,防偏构件可以实现为防偏网格。

在凹槽形的存储器1220的说明中提到的技术特征(例如,开口表面的尺寸、凹槽的深度、防脱台阶、防脱突起等)也可以适当地应用于孔形的存储器1220。例如,孔的直径可以等于或小于接触型贴片的直径,孔的长度可以等于或小于接触型贴片的厚度,或者可以在孔的侧面上形成防脱突起。

3.2.2.样品板的结构

图21是根据本发明的实施例的旋转型测试试剂盒1000的样品板1400的示例的立体图。参照图21,如上所述,样品板1400可以具有包括内表面1404、外表面和侧面的圆盘形主体1402。内表面1404是面对贴片板1200的表面,并且在本实施例中可以设置成圆形。

样品区域1420可以设置在样品板1400的圆形内表面处。这里,样品区域1420是放置插入(注入)到测试试剂盒1000中的样品t的区域。尽管样品区域1420可以仅仅是放置样品t的区域,但是样品区域1420应该被视为如下区域:其甚至包括在血液涂片检查中涂抹样品t时样品t被涂抹的区域。例如,当试图进行血液涂片检查时,可以将血液以滴的形式注入到样品区域1420中,然后进行涂抹。

样品区域1420可以设置在样品板1400的主体的内表面的特定区域中。例如,样品区域1420可以相对于圆盘的中心位于内表面的预定角度范围内。

如下面将说明的,放置在样品区域1420中的样品t必须与存储在贴片板1200中的接触型贴片接触,并且必须通过观察孔观察。为此,当贴片板1200相对于样品板1400旋转时,样品区域1420需要与贴片板1200的各部分(存储器1220、观察孔等)对准。

此外,考虑到使用测试试剂盒1000进行血液涂片检查的情况,样品区域1420需要提供足以使注入的血液被涂抹的区域。

考虑到这些特点,如图21所示,样品区域1420可以优选地设置为内表面的约45~90°的角度区域。可以在考虑存储在贴片板1200中的接触型贴片的数量、是否进行血液涂抹等的情况下,来调整该区域。

当将样品滴到样品区域1420上时,样品t可以直接落在样品区域1420上。这里,可以使贴片板1200的切口部与样品区域1420处对准,使得样品区域1420暴露在外部。为此,可以将样品区域1420的角度范围和贴片板1200的切口部的角度范围调节为彼此相等。

此外,可以对样品区域1420的表面进行特别地处理。例如,样品区域1420的表面可以是亲水的或疏水的。具体地,样品区域1420的表面可以被涂覆以成为亲水的或疏水的,或者可以用疏水或亲水材料来制备样品板1400的样品区域1420的一部分。

样品区域1420被制造为显示出亲水性或疏水性,以便1)使样品区域1420能够保持样品t和/或2)使样品区域1420能够接收来自接触型贴片的染色剂140、缓冲溶液b等。例如,当试图使用giemsa染色技术进行血液涂片检查时,可以将样品区域1420设置成是亲水的以保持血液,并接收来自接触型染色贴片100的giemsa染色剂140。

样品板1400的内表面的除了样品区域1420之外的剩余区域可以是非样品区域1440。非样品区域1440可以是预期不会放置或涂抹样品t的区域。

可以处理非样品区域1440的表面,以呈现出与样品区域1420的表面的特性相反的特性。例如,当样品区域1420是亲水的时,非样品区域1440可以是疏水的,相反地,当样品区域1420是疏水的时,非样品区域1440可以是亲水的。

使非样品区域1440显示出亲水性或疏水性,以便1)抑制样品t转移到非样品区域1440和/或2)防止染色剂140、缓冲溶液b等从接触型贴片转移。特别地,在贴片板1200相对于样品板1400旋转以使接触型贴片与样品t接触的过程中(即使在样品区域1420与非样品区域1440之间存在台阶时),接触型贴片可能扫过并穿过样品板1400的非样品区域1440。在该过程中,染色剂140或缓冲溶液b可能通过从接触型贴片转移到非样品区域1440而被不必要的浪费,或者接触型贴片可能由于非样品区域1440上的异物而被污染,因此,将非样品区域1440处理成亲水的或疏水的,以防止出现上述情况。例如,当试图使用giemsa染色技术来进行血液涂片检查时,可以将非样品区域1440设置成疏水的,使得滴落到样品区域1420上的血液不会被转移到其上,和/或giemsa染色剂140不会从接触型染色贴片100被转移到其上。

图22是根据本发明的实施例的在旋转型测试试剂盒1000的样品区域1420与非样品区域1440之间具有台阶的样品板1400的示例的立体图。

参照图22,非样品区域1440可以具有比样品区域1420的高度更低的高度。例如,可以在样品区域1420与非样品区域1440之间的边界处形成台阶。因此,与非样品区域1440对应的在贴片板1200的内表面与样品板1400的内表面之间的距离大于与样品区域1420对应的在贴片板1200的内表面与样品板1400的内表面之间的距离。

在样品t与接触型贴片彼此接触的过程中,使贴片板1200相对于样品板1400旋转,使得接触型贴片能够与样品区域1420对准。当在样品区域1420与非样品区域1440之间存在台阶时,可以防止接触型贴片在贴片板1200的旋转过程中扫过并穿过样品板1400的非样品区域1440,而容易保持接触型贴片与样品区域1420上的样品t之间的接触。因此,可以防止接触型贴片的染色剂140或缓冲溶液b由于被转移到非样品区域1440而被浪费,并且可以防止由于与非样品区域1440接触而导致的接触型贴片的污染。

3.2.3涂抹部

测试试剂盒1000可以进一步包括涂抹部1240,其被配置成将样品t滴在样品区域1420上。以下,将说明用于涂抹样品的涂抹部1240。

在常规染色技术中,样品t的涂抹由操作者手动进行。

图23是示出根据常规血液涂片检查过程的血液涂抹方法的图。

参照图23,在常规血液涂片检查过程中,首先,将样品t放置在载玻片s上,然后使另一个载波片与放置有样品t的载玻片s接触,使得在两个载玻片之间形成锐角。然后,当操作者滑动其上放置有样品t的载玻片s,而另一个载玻片的末端保持与样品t接触时,可以将样品t在载玻片s上展开并涂抹。需要适当地调节载玻片之间的角度和滑动速度,以便以期望的形式(例如,单层)涂抹样品t。通常,由于上述因素完全取决于操作者,因此存在稳定性低的问题。

图24是根据本发明的实施例的旋转型测试试剂盒1000的涂抹部1240的截面图。

除了图15~17之外,还参照图24,可以在贴片板1200的切口部的任一侧处设置涂抹部1240。涂抹部1240可以执行涂抹放置在样品区域1420上的样品t的功能。

涂抹部1240可以包括与样品板1400的内表面形成锐角的倾斜表面1242和附着至倾斜表面1242的涂抹膜1244,当从侧面观察时所述样品板1400的内表面面对着倾斜表面1242。

以下,将简要地说明使用涂抹部1240进行的样品涂抹过程。然而,为了便于描述,将基于血液涂片给出说明。

图25是示出根据本发明的实施例的使用旋转型测试试剂盒1000的涂抹部1240进行血液涂抹过程的图。

首先,如图25的(a)所示,将血液滴在样品板1400的样品区域1420上。这里,使贴片板1200的切口部与样品板1400的样品区域1420互相对准,使得样品区域1420暴露于外部。

当血液被注入,如图25的(b)所示,使贴片板1200相对于样品板1400旋转(该旋转方向被定义为“反方向”),使得涂抹部1240朝向注入血液的点移动。结果,涂抹膜1244和放置在样品区域1420上的血滴互相接触。

当涂抹膜1244和血液相互接触时,由于毛细管作用,血液在贴片板1200被切割的方向上沿着涂抹膜1244在涂抹膜1244与样品区域1420的表面之间扩展。当贴片板1200是沿径向方向切割圆盘的扇形板时,血液沿径向方向扩展。

当贴片板1200在血液扩展时相对于样品板1400正向(与反方向相反)旋转时,如图25的(c)所示,血液可以沿着涂抹膜1244移动,并被涂抹。

这里,优选地,涂抹部1240的倾斜表面可以相对于样品板1400的内表面具有约10~60°的倾斜角。可以根据样品t的性质适当地调节倾斜角的大小。

当倾斜角太大(例如,直角)时,涂抹膜1244与样品t互相接触的台阶中(图25的(b)中所示的台阶)可能难以发生毛细管作用,并且样品t可能无法在切割贴片板1200的方向上被充分地扩展。此外,即使当试图通过正向旋转来涂抹样品t时,也可能由于血液没有跟随涂抹膜1244而无法正确地进行涂抹。

另一方面,当倾斜角太小时,由于涂抹膜1244与样品t在除了涂抹膜1244的下端部分以外的部分互相接触,因此毛细管作用可能不适当地发生,并且由于血液不能适当地跟随涂抹膜1244,因此可能无法进行涂抹。

能够使样品t容易跟随的材料可以用于涂抹膜1244。例如,当样品t是血液时,涂抹膜1244应该使用亲水性材料,以使血液在贴片板1200正向旋转的过程中通过跟随涂抹膜1244而被涂抹。当疏水性涂抹膜1244用于作为血液的样品t时,可能无法进行涂抹。

当从顶部观察时,可以沿着切割贴片板1200的方向附接和安装涂抹膜1244。当从顶部观察时,涂抹膜1244应该具有一定的长度,该长度使得样品t根据毛细管作用在贴片板1200被切割的方向上能够被充分地展开。例如,涂抹膜1244在直径方向上的长度可以约为切割表面的30~100%。

当从侧面观察时,涂抹膜1244可以沿着其倾斜角附接并设置在倾斜表面处。这里,涂抹膜1244被安装成能够接触样品板1400的内表面。因此,涂抹膜1244可以在样品t处引起毛细管作用。

虽然理论上优选的是,涂抹膜1244的下端被制造为准确地与样品板1400的内表面接触,但是考虑到制造公差等,这实际上是不可能的,或者成本太高。

因此,为了使涂抹膜1244与样品区域1420接触,涂抹膜1244可以以其下部在样品板1400的内表面方向上从贴片板1200的内表面突出的方式安装。由此,由于涂抹膜1244具有一定程度的柔韧性,因此,因为涂抹膜1244的下部以弯曲形式卷曲,所以涂抹膜1244可以与样品区域1420接触。除此之外,可以在倾斜表面的下部形成凹槽,用于容纳涂抹膜1244的卷曲部分的空间。

尽管上面已经说明了当注入样品t时操作者直接将样品t滴在样品区域1420上,但是也可以设置插入样品t的装载部1250。

图26是示出根据本发明的实施例的旋转型测试试剂盒1000的装载部1250的图,并且图27是关于根据本发明的实施例的使用旋转型测试试剂盒1000的装载部1250来装载样品t的图。

参照图26,装载部1250可以包括压板1252、采集销1254和装载孔1256。

压板1252是被测试者的身体部分按压的部分,将从该身体部分采集样品t。例如,当试图从人的指尖采集血液时,压板1252可以设置成具有适当尺寸的板形,以被人的指尖按压。压板1252可以安装在能够将采集的样品t转移到样品板1400的样品区域1420的位置。例如,压板1252可以设置在贴片板1200的被切割表面的外边缘部分处或样品区域1420的外边缘部分处。

采集销1254是被安装为从压板1252突出的销。在被测试者的身体部分按压压板1252的过程中,采集销1254刺穿该身体部分的皮肤,以使得能够从被测试者采集样品t。采集销1254可以优选地布置在压板1252的中央部分并且朝向测试试剂盒1000的外部方向安装。

装载孔1256形成为穿过压板1252的孔的形式,并且可以通过从外表面(与被测试者的身体部分接触的表面)穿透至压板1252的相对表面而形成。因此,装载孔1256可以将样品t从压板1252的外部装载到测试试剂盒1000的内部,更具体地,朝向样品板1400的样品区域1420或涂抹部1240。装载孔1256可以形成在采集销1254附近,并接收通过采集销1254从被测试者的皮肤采集的样品t,并且可以根据毛细管作用朝着样品区域1420或涂抹部1240转移并插入样品t。

样品t的装载可以如下进行。

首先,如图27的(b)所示,当被测试者用手指按压压板1252时,通过采集销1254使血液从手指的皮肤中流出。如图27的(c)所示,血液通过装载孔1256转移到与涂抹膜1244接触的样品区域1420的外部。通过涂抹膜1244与样品区域1420之间的毛细管作用将转移的血液转移到样品区域1420的内部。然后,贴片板1200可以相对于样品板1400正向旋转,以涂抹血液。

当以这种方式使用装载部1250时,作为操作者将样品t直接注入到样品区域1420中的替代,可以仅通过用被测试者的身体部分按压装载部而将样品t插入到测试试剂盒1000中。

在上述装载样品t的过程中,可以从压板1252中省略采集销1254。在这种情况下,如图27的(a)所示,在使用被测试者的身体部分按压压板1252之前,可以使用单独的销来从相应的身体部分采集样品t。

3.2.4.测试试剂盒的旋转和提升操作

上面已经提到,能够通过在使贴片板1200相对于样品板1400旋转的同时使接触型贴片与施加到样品板1400上的样品t接触来实施对样品t进行染色的过程。

具体地,使接触型贴片与样品t互相接触的过程可以通过以下方式来进行:1)使贴片板1200相对于样品板1400旋转,以将接触型贴片放置在样品t上或者被涂抹的样品t上;以及2)相对于样品板1400降低贴片板1200,使得存储在贴片板1200中的接触型贴片与样品t接触。

贴片板1200和样品板1400基本上以它们的内表面彼此分开预定间隔的方式接合。这是为了防止存储在贴片板1200中的接触型贴片在旋转过程中被样品板1400扫过。因此,在接触型贴片被放置在样品t上之后,贴片板1200和样品板1400应该彼此粘附,以使接触型贴片与样品t接触。

为此,可以在贴片板1200和/或样品板1400处形成提升引导件1260和1460。提升引导件1260和1460可以根据贴片板1200和样品板1400的相对旋转来提升贴片板1200和样品板1400。

图28是根据本发明的实施例的旋转型测试试剂盒1000的具有提升引导件1260和1460的贴片板1200的立体图,并且图29是根据本发明的实施例的旋转型测试试剂盒1000的具有提升引导件1260和1460的样品板1200的立体图。

参照图28和29,可以在贴片板1200和样品板1400的主体的外侧形成提升引导件1260和1460。在两个板处形成的提升引导件1260和1460可以分别包括围绕主体周边的基板1262和1462以及在基板1262和1462上以预定图案形成的提升图案1264和1464。

基板1262和1462被形成为围绕贴片板1200和样品板1400的主体的外周表面并且厚度小于贴片板1200和样品板1400的主体。换句话说,基板1262和1462从贴片板1200和样品板1400的内表面的圆周朝向其外表面弯曲成台阶,以形成贴片板1200和样品板1400的边缘。

在图28中,贴片板1200可以使用圆盘形主体而不是被切割的扇形体。在这种情况下,样品t可以通过经由样品插入孔1230转移到样品板1400(而不是通过被切割部滴落)而被插入。此外,尽管已经说明了在贴片板1200处形成接合突起,但是在图28中可以形成接合孔代替接合突起。接合孔与在样品板1400处的接合孔连通,并且两个板可以通过装配至连通通道中的连接销而彼此连接。这里,应该注意,扇形形式和根据图28的圆盘形主体都是没有脱离本发明的精神的变形例。

提升图案1264和1464可以形成为从基板突出或凹进。提升图案1264和1464可以执行以下功能:在两个板彼此接合的同时,根据两个板之间的相对角度来调整两个板的内表面之间的间隔。

提升图案1264和1464可以分别包括高点部分h、低点部分l、倾斜部分i和台阶部分r。这里,高点部分h是提升图案1264和1464的最高部分,并且低点部分l是提升图案的最低部分。例如,高点部分h可以是从基板突出最多的部分,并且低点部分l可以是不从基板突出的部分。倾斜部分i可以是从低点部分向高点部分逐渐增大的斜坡部分。台阶部分r可以是从高点部分h向低点部分l垂直弯曲的部分。

当贴片板1200相对于样品板1400旋转时,随着贴片板1200的提升图案沿着样品板1400的提升图案的上部移动,贴片板1200可以相对于样品板1400被提升。这里,提升是指两个板之间的间隔变窄或变宽。远离样品板1400移动的贴片板1200被定义为“上升”,并且接近样品板1400的贴片板1200被定义为“下降”。

样品板1400的高点部分与另一个板的低点部分对准的状态是贴片板1200相对于样品板1400最大程度下降的状态,即,两个板之间的间隔最小的状态。

样品板1400的高点部分与贴片板1200的高点部分对准的状态是贴片板1200相对于样品板1400最大程度上升的状态,即,两个板之间的间隔最大的状态。

此外,当样品板1400的高点部分沿着贴片板1200的倾斜部分从贴片板1200的低点部分向贴片板1200的高点部分移动时,贴片板1200相对于样品板1400逐渐上升。反之,当样品板1400的高点部分沿着贴片板1200的倾斜部分从贴片板1200的高点部分向贴片板1200的低点部分移动时,贴片板1200相对于样品板1400逐渐下降。

此外,当样品板1400的高点部分在从贴片板1200的高点部分朝向贴片板1200的低点部分的方向上通过贴片板1200的台阶部分时,贴片板1200相对于样品板1400垂直下降。

反之,当在贴片板1200处形成台阶部分,并且样品板1400的高点部分试图在从贴片板1200的低点部分朝向贴片板1200的高点部分的方向移动时,可以通过台阶部分来抑制贴片板1200相对于样品板1400的旋转。

可以以这样的方式设计测试试剂盒1000:当贴片板1200相对于样品板1400最大程度地下降时,存储在贴片板1200中的接触型贴片与样品板1400的内表面的至少一部分接触,以下,将其定义为“接触状态”。例如,在接触状态下,包含在存储器1220中的接触型贴片可以与放置在样品区域1420中的样品t接触。

此外,可以以这样的方式设计测试试剂盒1000:在除了贴片板1200相对于样品板1400最大程度地下降的状态之外的状态下,存储在贴片板1200中的接触型贴片不与样品板1400的内表面接触,以下,将其定义为“分离状态”。例如,在分离状态下,包含在存储器1220中的接触型贴片可以不与非样品区域1440接触。

考虑到上述原则,提升图案可以设计如下。

提升图案可以被设计为使得当处于贴片板1200的存储器1220与样品板1400的样品区域1420对准的角度时,接触型贴片处于接触状态。于是,包含在存储器1220中的接触型贴片可以与样品t接触。

此外,提升图案可以被设计为使得当处于贴片板1200的存储器1220位于样品板1400的非样品区域1440上方的角度时,接触型贴片不处于接触状态。因此,包含在存储器1220中的接触型贴片可以不与非样品区域1440接触。

再次参照图29,样品板1400的提升图案可以如下形成。

在样品区域1420的边缘的一个或多个部分处设置高点部分。这里,该部分可以是放置样品的样品区域1420的边缘部分,或者可以是涂抹样品t时涂抹样品t的区域的中心点处的边缘部分。提升图案可以被形成为使得低点部分布置在非样品区域1440的边缘部分。可以在高点部分与低点部分之间设置倾斜部分或台阶部分。

再次参照图28,贴片板1200的提升图案可以如下形成。图28示出了在外表面方向上的贴片板1200。

低点部分布置在存储器1220的边缘部分处。这里,该部分可以是从贴片板1200的中心朝向存储器1220的中心的直径方向上的边缘。高点部分布置在贴片板1200的边缘的剩余部分处。可以在高点部分与低点部分之间设置倾斜部分或台阶部分。

根据提升图案,测试试剂盒1000可以如下操作。

首先,可以在样品板1400的样品区域1420的上部设置贴片板1200的切口部,使得样品区域1420暴露于外部。操作者可以直接将样品t滴在露出的样品区域1420上。当样品t滴落,贴片板1200相对于样品板1400沿反方向旋转,以使涂抹部1240与样品t接触,使得样品t沿着涂抹部1240而被展开。当样品t被展开,贴片板1200可以沿正向旋转以涂抹样品t。在该过程中,样品板1400的高点部分与贴片板1200的高点部分接触,因此,存储器1220不与样品板1400的内表面(非样品区域1440)接触。

当涂抹完成后,贴片板1200进一步沿正向旋转时,样品板1400的高点部分与设置在存储器1220的边缘处的贴片板1200的低点部分接触,因此,两个板处于接触状态,并且包含在存储器1220中的接触型贴片在样品区域1420与样品t接触。

这里,在涂抹部1240的边缘处的高点部分与存储器1220的低点部分之间可以设置有台阶部分。因此,当穿过台阶部分时,贴片板1200相对于样品板1400垂直下降,因此接触型贴片可以通过冲压在样品t上而与样品t接触。此外,在接触型贴片的冲压之后,可以通过台阶部分来抑制贴片板1200的反向旋转。

当在冲压之后,贴片板1200进一步沿正向旋转时,样品板1400的高点部分通过贴片板1200的倾斜部分。因此,当贴片板1200从样品板1400上升时,接触型贴片与样品t分离。

在通过贴片板1200的倾斜部分之后,样品板1400的高点部分再次与贴片板1200的高点部分接触,并且完成分离。因此,当存储在贴片板1200中的接触型贴片通过非样品区域1440的上部时,接触型贴片可以不与样品板1400的内表面接触。

当存在一个或多个存储器1220时,贴片板1200可以进一步沿正向旋转。这里,样品板1400的高点部分与对应于下一个存储器1220的贴片板1200的低点部分接触,因此下一个接触型贴片与样品t接触。冲压过程以及接触型贴片通过上述倾斜部分与样品t分离的过程可以类似地跟随在该过程之后。

在使样品t与设置在测试试剂盒1000中的所有接触型贴片接触之后,当贴片板1200进一步沿正向旋转时,样品板1400的高点部分与形成在贴片板1200的观察部分的边缘处的低点部分接触。

这里,观察部分可以形成有在贴片板1200的一个点处形成的观察孔,并且操作者可以使用显微镜等观察并检查完全染色的样品t等。

3.3.滑动型测试试剂盒的结构

以下,将说明滑动型测试试剂盒2000。

然而,在下面的说明中,根据需要将省略对于滑动型测试试剂盒2000和旋转型测试试剂盒1000而言相同的技术细节的详细说明。

然而,省略详细说明并不意味着关于旋转型测试试剂盒1000说明的技术细节不适用于滑动型测试试剂盒2000。换句话说,应该注意,除非另有说明,上面给出的旋转型测试试剂盒1000的详细说明(除了由于旋转型和滑动型而产生的差异之外)都适用于滑动型测试试剂盒2000。

例如,滑动型测试试剂盒2000也可以包括与旋转型测试试剂盒1000的样品区域1420对应的样品区域2420。这里,与上述旋转型测试试剂盒1000的样品区域1420一样,样品区域2420的表面可以被处理为亲水的或疏水的。在另一示例中,滑动型测试试剂盒也可以包括涂抹部。这里,如在上述关于旋转型测试试剂盒的示例中,涂抹部也可以具有约10~60°的倾斜角。

图30是根据本发明的实施例的滑动型测试试剂盒2000的示例的侧视图。

参照图30,在测试试剂盒2000中,贴片板2200和样品板2400可以分别具有矩形板状体2202和2402。

板2200和2400被设置成彼此面对,并且可以连接成相对于彼此线性移动,即,可滑动。这里,滑动方向可以沿着主体2202和2402的纵向方向。例如,在两个板的任一个板的外侧,可以沿着其主体的纵向方向形成引导突起,并且可以在另一个板中设置具有与引导突起的形状互补的形状的引导凹槽,使得两个板2202和2402以将引导突起装配到引导凹槽中的形式紧固,并且两个板2202和2402根据引导突起和引导凹槽相对于彼此可滑动。

3.3.1.贴片板的结构

图31是根据本发明的实施例的滑动型测试试剂盒2000的贴片板2200的示例的立体图。

参照图31,贴片板2200可以具有四边形板状主体2202。

主体2202可以包括:用于存储接触型贴片(例如,接触型染色贴片100或接触型染色补充贴片100’)的存储器2220、插入样品t的装载部2250、以及用于涂抹样品t的涂抹部2240。

在主体t的一侧形成装载部2250。装载部2250可以包括:插入样品t的入口2252、接收插入的样品t的接收部2254、以及用于将接收的样品引导到涂抹部2240的通道部分2256。

当通过入口2252滴入样品t,接收部2254可以容纳插入的样品t。通道部分2256是从接收部2254连接到涂抹部2240的流动路径,并且可以将容纳在接收部2254中的样品t移动到涂抹部。具体地,通道部分2256可以利用毛细管作用,并将样品t从接收部2254移动到涂抹部2240。

这里,尽管入口2252和接收部2254可以设置成圆形,但是其形状并不限于此。通道部分2256可以采取从接收部2254延伸的线性流动路径的形式,并且可以是一种微通道。然而,通道部分2256的形状和类型不限于此。

涂抹部2240可以设置成与旋转型测试试剂盒1000所述的涂抹部1240的形状类似的形状。即,涂抹部2240可以包括倾斜表面2242和附着到倾斜表面的涂抹膜2244,当从侧面观察时,所述倾斜表面2242与面对倾斜表面2242的样品板2400的内表面形成锐角。这里,涂抹膜2244可以连接到通道部分2256的末端,并且可以附着至倾斜表面2242,使得涂抹膜2244从通道部分2256沿垂直方向延伸。

因此,当插入到测试试剂盒2000中的样品t通过入口2252、接收部2254和通道部分2256与涂抹膜2244接触时,由于毛细管作用,血液在涂抹膜2244延伸的方向(从通道部分2256起的垂直方向)上沿着涂抹膜2244在涂抹膜2244与样品区域2420的表面之间展开。

对于膜2244的材料或其下端被卷起的膜2244的形式,可以应用关于旋转型测试试剂盒1000说明的那些内容。

可以存在多个存储器2220,并且当存在多个存储器2220时,存储器2220可以设置在主体2202的纵向方向上。因此,在主体2202中,装载部2250和每个存储器2220可以在主体2202的纵向方向上从一侧排列成一行。另外,可以在装载部2250与存储器2220之间设置涂抹部2240。

可以在彼此间隔预定距离的位置处形成多个存储器2202。作为参考,图31示出了形成三个存储器2220的贴片板2200。这里,尽管存储器2220按顺序依次存储第一染色贴片100-1、第二染色贴片100-2和染色补充贴片100’,但是这仅仅是示例,并且可以适当地改变包含的接触型贴片的类型以及布置和数量。

存储器2220可以包含接触型染色贴片100或接触型染色补充贴片100’,使得接触型染色贴片100或接触型染色补充贴片100’在贴片板2200的内表面方向上露出。换句话说,存储器2220中可以包含接触型贴片,使得接触型贴片的接触表面面对样品板2400。因此,包含在存储器1220中的接触型贴片可以与滴落在样品板1400上的样品t接触。

例如,如图31所示,存储器2220可以以孔的形式形成。在另一示例中,存储器2220也可以具有凹槽的形式,在这种情况下,存储器2220的底表面(即,贴片板2200的外表面)可以由柔性材料形成,使得当从贴片板2200的外表面朝向其内表面施加力时,包含的接触型贴片的至少一部分朝向样品板2400移动。

关于旋转型测试试剂盒1000说明的细节也可以应用于存储器2200。

3.3.2.样品板的结构

图32是关于根据图30的滑动型测试试剂盒2000的样品板2400的示例的图。

参照图32,样品板2400可以具有包括内表面、外表面和侧面的四边形(优选地,矩形)板状体2402。内表面是面对贴片板2200的表面。

这里,样品板2400可以由玻璃材料形成。例如,可以使用载玻片作为样品板2400。

可以在样品板2400的内表面设置样品区域2420。优选地,样品区域2420可以制备成矩形或正方形区域。样品区域2420的尺寸可以大于包含在存储器2220中的接触型贴片的接触表面的尺寸并且接触表面与样品板2400相对。

可以将样品t涂抹在样品区域2420中。具体地,在样品区域2420中,可以通过以下过程来涂抹样品t:将插入到装载部2250中的样品t移动到涂抹部2240,并且涂抹部2240经过样品区域2420。这里,可以对样品区域2420的表面进行特殊处理,以有助于涂抹样品t。

除了样品区域2420之外的样品板2400的内表面的区域可以是非样品区域2440。如上面关于旋转型测试试剂盒所述,非样品区域2440可以是预期不会放置或涂抹样品t的区域。因此,非样品区域2440的表面可以被处理为使得非样品区域2440显示出与样品区域2420的表面相反的特征。

可以在样品区域2420与非样品区域2440之间设置台阶。

3.3.3.使用测试试剂盒的染色过程

上面已经提到,可以通过在相对于样品板2400滑动的同时使接触型贴片与样品板2400上的被涂抹样品t接触的贴片板2200来进行样品t的染色过程。

以下,具体地,将说明测试试剂盒2000通过使接触型贴片与样品t接触来进行染色的过程。

图33是使用根据图30的滑动型测试试剂盒2000来进行样品插入操作的操作图。

首先,参照图33中的第一幅图,对准两个板2200和2400,使得贴片板2200的涂抹部2240布置在样品板2400的样品区域2420的端侧。在这种状态下,通过入口2252插入样品t。

接着,参照图33中的第二幅图,被插入的样品t滴至接收部2254,并通过通道部分2256沿着流动路径又移动到涂抹部2240。

然后,参照图33中的最后一幅图,通道部分2256通过流动路径将样品t移动到涂抹膜2244,并且在通过流动路径接收样品t时,涂抹膜2244将样品t从涂抹膜2244的纵向方向沿垂直方向(即,测试试剂盒2000的纵向方向)展开。

图34是使用根据图30的滑动型测试试剂盒2000来进行样品涂抹的操作图。

接着,参照图34中的第一幅图,已经到达涂抹膜2244的样品t通过毛细管作用沿着涂抹膜2244移动到样品区域2420。这里,如上所述,在样品区域2420的端侧的上部上,涂抹膜2244在涂抹膜2244的纵向方向上将样品t展开。

在这种状态下,参照图34中的第二幅图,将两个板2200和2400相对于彼此滑动。这里,滑动方向可以是涂抹膜2244从样品区域2420的一端侧移动到另一端侧的方向。因此,可以通过涂抹膜2244将样品t涂抹在样品区域2420上。

当样品t被涂抹,如图34中的最后一幅图所示,两个板2200和2400再次相对于彼此移动,使得整个样品区域2420或其一部分暴露于外部。当样品t被涂抹并且样品区域2420暴露于外部时,可以将样品固定剂(例如,甲醇)添加到样品区域t,以将样品t固定在涂抹状态。必要时可以省略该步骤。

图35是使用根据图30的滑动型测试试剂盒2000进行染色的操作图。

参照图35中的第一幅图,滑动两个板2200和2400,使得样品区域2420和存储器2240在样品t被涂抹的状态下布置成彼此相对。这里,可以滑动两个板2200和2400,使得当在垂直方向上观察时,样品区域2420的中心和存储器2240的中心或样品区域2420的中心和包括在存储器2240中的接触型贴片的中心基本匹配。在这种状态下,从贴片板2200的外表面向接触型贴片施加压力或力,使得接触型贴片与样品t接触。以这种方式,可以通过接触型贴片来进行样品t的染色。

如图35的第一至第三幅图所示,当多个存储器2240中包含多个接触型贴片时,各存储器2240按照从离装载部2250最近的存储器2240到离装载部2250最远的存储器2240的顺序依次与样品区域2420对准,然后使接触型贴片与被涂抹样品t接触,以进行染色过程。

如图35中的最后一幅图所示,当所有的接触型贴片已与样品t接触,滑动两个板2200和2400,使得样品区域2420露出于外部。这里,滑动方向可以是如图35所示的在远离装载部2250侧露出样品区域2420的任何方向,或者可以是如图34中最后一幅图所示的在靠近装载部2250侧露出样品区域2420的方向。

可以在贴片板2200的上部中设置观察孔。这里,也可以滑动两个板2200和2400,使得样品区域2420设置在其与观察孔对准的位置处。

在这样的布置中,可以利用诸如显微镜或照相机等光学装置或通过视觉检查来观察样品t的染色结果。

3.3.4.装载部的变形例

尽管在上面滑动型测试试剂盒2000的说明中已经将装载部2250设置在贴片板2200中进行了说明,但是装载部2250也可以设置在样品板2400上。

图36是根据本发明的实施例的滑动型测试试剂盒2000的另一示例的侧视图,并且图37是关于根据图36的滑动型测试试剂盒2000的样品板2400的示例的图。

参照图36和37,可以看出,与上面的说明不同的是,在样品板2400上设置装载部2250。

这里,在贴片板2200中设置插入样品t的入口2252。通过入口2252,在样品板2400上设置装载部2450。

具体地,样品板2400的装载部2450可以包括容纳器2252。容纳器2252容纳通过入口2252插入的样品t。

容纳器2252可以包括接收部2256和通道部分2458。例如,容纳器2252可以设置成薄膜的形式,在该薄膜上形成有接收部2256和通道部分2458。这里,接收部2256可以是接收初始插入样品t的位置,并且通道部分2458可以是接收部2546到涂抹部2240的流动路径。作为示例,流动路径可以是微通道。样品t可以通过通道部分2258输送到涂抹部2240。

装载部2450可以进一步包括运动引导件2454。这里,运动引导件2454与通道部分2458相互作用并引导毛细管作用,使得容纳在接收部2456中的样品t通过流动路径被输送到涂抹部2240。

可以将运动引导件2454设置为部分覆盖容纳器2252的薄膜。优选地,运动引导件2454覆盖通道部分2458的至少一部分,以限制通道部分2458的流动路径的尺寸,使得在样品t中创造了促进毛细管作用的诱导的环境。

运动引导件2454可以设置成使得其一部分延伸到容纳器2252的外侧。优选地,运动引导件2454可以设置成从通道部分2458的末端(即,接收部2456的另一端)延伸到容纳器2252的外侧。

因此,样品t可以沿着通道部分2456移动,并通过运动引导件2454沿着与通道部分2456垂直的方向从通道部分2456的末端展开。以这种方式,样品t从滑动方向沿着垂直方向扩展到样品区域2420,从而之后可以通过滑动操作来涂抹样品t。

不言而喻,即使当使用如上的变形滑动型测试试剂盒时,也可以进行与通过根据图30的滑动型测试试剂盒2000进行的染色操作基本类似的染色操作。

3.4.滑动型测试试剂盒的变形例

上面已经描述了滑动型测试试剂盒2000的结构。然而,滑动型测试试剂盒2000的结构可以以各种方式进行变形。特别地,可以以各种方式修改装载部2250、存储器2200和涂抹部2240的布置顺序,以适当地调整滑动操作的方向或数量。

以下,将说明各种变形例的示例。然而,以下示例不限于各种变形例,并且滑动型测试试剂盒2000也可以以除了下面将描述的示例之外的各种形式来设置。

图38是根据本发明的实施例的滑动型测试试剂盒2000的变形例的立体图,图39是根据本发明的实施例的滑动型测试试剂盒2000的变形例的平面图,以及图40是根据本发明的实施例的滑动型测试试剂盒2000的变形例的侧视图。

参照图38~40,根据变形例的滑动型测试试剂盒2000可以具有贴片板2200和样品板2400,并且如上所述,贴片板2200和样品板2400可分别包括矩形板状主体2202和2402。

参照图40,可以在贴片板2200和样品板2400处形成突起2001、凹槽2002等,使得贴片板2200和样品板2400可以彼此连接。

贴片板2200可以包括:用于存储接触型贴片的存储器2220、插入样品t的装载部2250、以及用于涂抹样品t的涂抹部2240。

样品板2400可以包括样品区域2420。

这里,可以从贴片板2200的上部的一侧按顺序依次设置涂抹部2240、存储器2220、装载部2250和另一存储器2220。

特别地,可以在测试试剂盒2000中设置至少两个存储器2220。一个存储器2220可以设置在装载部2250与涂抹部2240之间,并且另一个存储器2220可以与涂抹部2240相对设置,同时装载部2250设置在这两个存储器之间。

这里,与上述存储器一样,与涂抹部2240相对设置的存储器2220可以包含接触型贴片。

设置在装载部2250与涂抹部2240之间的存储器2220可以包含固定贴片(即,用于固定的贴片)。可以使用容纳固定剂(例如醇)的多孔构件(例如,海绵)代替固定贴片。这适用于所有上述实施例。

可替代地,设置在装载部2250与涂抹部2240之间的存储器2220可以容纳固定剂(例如,乙醇或甲醇等醇)。这里,存储器2220形成为使得其内部是与外部隔离的空间,并且特别地,该存储器2220的下表面被配置成使得容纳在存储器2220的内部中的液相固定剂可以通过特定操作而被排出到外部。例如,存储器2220的下表面可以由膜形成,并且相应的膜可以被配置成通过滑动两个板2200和2400的操作或冲压操作而被撕开(例如,在样品板2400中形成突起,并且当将贴片板2200压向样品板2400时,所述膜被该突起撕开,使得液相固定剂从所述膜中流出)。

具有这种形式的测试试剂盒2000的操作如下。

首先,通过装载部2250插入样品t。样品t通过入口2252放置在样品区域2420上。

在这种状态下,两个板2200和2400沿一个方向滑动,使得样品t与涂抹部2240的薄膜2244接触,然后两个板2200和2400在另一方向上滑动,使得样品t被涂抹在样品区域2420中。

接着,两个板2200和2400再次沿另一方向滑动,使得装载部2250与涂抹部2240之间的存储器2220布置在样品t被涂抹的区域上。

在这种状态下,当存储器2220中包含固定贴片时,通过冲压使固定贴片与样品t接触,从而固定样品t。

当存储器2220中容纳的是液相固定剂而不是固定贴片时,可以通过冲压操作使液相固定剂流出并施加在样品t上,从而固定样品t。

这里,使用固定贴片或固定剂来固定涂抹血液的操作可以在涂抹后经过预定的时间之后进行。当没有充分干燥的被涂抹样品与固定贴片接触或者在这种状态下将固定剂施加到被涂抹样品上时,可能无法正确地固定样品,并且可能出现血液(样本)展开的现象。特别地,即使在血液充分干燥之前将固定贴片设置在血液附近而不是与血液接触的情况下,也可能发生由于固定剂(例如甲醇)的蒸发而导致血液展开的现象。因此,优选的是,在涂抹样品t后的预定时间段之后进行滑动操作(或旋转操作)。

当固定样品t时,与涂抹部2240相对的存储器2200再次靠着固定的样品t设置,以便在每个存储器2200中包含的贴片与样品t接触时进行染色。

与上述其他测试试剂盒2000不同,根据本变形例的测试试剂盒2000在涂抹部2240第一次与样品t接触后,能够仅通过沿一个方向滑动来进行固定和染色。因此,根据本变形例的测试试剂盒2000具有便于使用者使用测试试剂盒2000的优点。

上面已经说明了如下示例,其中,在涂抹过程中,涂抹部沿一个方向移动(滑动或旋转)以与样品接触使得样品被展开,然后涂抹部在另一个方向上移动,使得样品被涂抹在样品区域中。然而,与上述示例不同,在涂抹过程中,前一操作(样品与涂抹部接触的操作)和后一操作(接触的样品被涂抹的操作)可以在相同的方向上进行。为此,可以将涂抹膜的方向设成与上述示例中的方向相同或相反,并且涂抹部与样品区域之间的位置关系可以设计成相反。

3.5.涂抹方法

上面已经说明了,在使用测试试剂盒的涂抹方法中,涂抹膜在样品滴落的方向(正向)上移动,使得样品在载玻片s的纵向方向上展开,然后涂抹膜在另一个方向(反向)上移动,使得样品被涂抹在载玻片s的样品区域1420和2420中。

这种方法如图41所示。图41是根据本发明的实施例的样品涂抹方法的示例。尽管已经参照滑动型测试试剂盒2000描述了图41,但是当滑动型测试试剂盒2000的滑动方向改为旋转方向时,该描述也可以适用于旋转型测试试剂盒1000。

然而,这种涂抹方法(涂抹方法)可以以各种方式进行变形。下面将详细地描述涂抹方法的变形例。

3.5.1.涂抹方法

涂抹膜不是沿正向移动到样品t,而是与样品t接触,使得样品在涂抹膜的宽度方向(即,载玻片s的宽度方向)上展开,然后反向移动,使得样品t被涂抹在样品区域中。当朝着样品t正向移动时,涂抹膜可以移过样品t预定距离(直至转向位置),然后反向移动。

图42是根据本发明的实施例的样品涂抹方法的另一示例。

参照图42,例如,当扫过样品t时,涂抹膜可以从初始位置移动到样品插入(注射)位置,然后,不是停在样品插入位置,而是移动到与初始位置相对的转向位置,其中,样品插入位置设置在转向位置与初始位置之间。与图41中的方法不同,当转向位置位于样品插入位置后面时,在扫过样品t的同时,样品t可以通过移动的涂抹膜在涂抹膜的宽度方向上自然地展开,而不是在涂抹膜停在样品插入位置处的同时样品由于毛细管作用在涂抹膜的宽度方向上展开。

然后,当涂抹膜再次从转向位置反向移动时,样品t可以被涂抹。

这里,从样品插入位置到转向位置的距离可以约为从样品插入位置到涂抹完成位置的距离的1/5。

3.5.2.涂抹膜

尽管上面主要基于对样品友好的涂抹膜进行了说明,但是涂抹膜可以根据其表面性质分为对样品友好的膜和对样品不友好的膜。

例如,当样品t是血液时,可以使用亲水的涂抹膜。即,可以将涂抹膜的表面涂覆成亲水的,或者涂抹膜本身可以用亲水的材料制造。

当如上使用对样品t友好的涂抹膜时,在涂抹操作过程中,样品t可以仅通过样品与涂抹膜之间的接触而在膜的宽度方向上展开,而不用移动涂抹膜以扫过样品t。

当涂抹膜反向移动时,样品t可以跟随涂抹膜并被涂抹在样品区域中。

然而,在这种情况下,当在调整插入的样品量的过程中发生故障时,可能需要精细地调整涂抹膜与载玻片之间形成的角度和涂抹膜的移动速度,以使样品t被涂抹成单层。

然而,当易于调整角度和速度时,优点在于,可以自由地调整单层涂抹(薄涂抹)和多层涂抹(厚涂抹)。

例如,对癌症的筛查大多需要单层涂抹,而对疟疾的检查有时需要多层涂抹,这些情况可以据此处理。

与上述不同,涂抹膜的表面可以是对样品(样本)不友好的。

例如,当样品t是血液时,可以使用疏水的涂抹膜。即,可以将涂抹膜的表面涂覆成疏水的,或者可以用疏水的材料制造涂抹膜本身。

当如上使用对样品t不友好的涂抹膜时,在涂抹操作的过程中,这对于涂抹膜在扫过样品t时移动可能是有利的,使得由于涂抹膜的张力,样品t在涂抹膜的宽度方向上展开。根据载玻片的表面性质和涂抹膜的角度等,图41中所示的方法也是适用的。

当使用对样品(样本)不友好的涂抹膜时,由于将样品t粘附到涂抹膜的力多少会减弱,因此与使用对样品友好的膜时相比,优点在于,薄涂抹略微更容易。

3.5.3.涂抹速度和涂抹角度

在使用涂抹膜进行涂抹的过程中,涂抹速度以及涂抹膜与载玻片之间的角度可能很重要。

角度越小,毛细管作用越明显,使得样品t通常被很好地粘附到膜上。反之,角度越大,毛细管作用越不明显,使得样品t粘附到膜上的力变弱。

因此,当涂抹角度小时,可以增大涂抹速度,反之,当涂抹角度大时,可以减小涂抹速度。

当试图进行薄涂抹时,可以扩大角度或可以增大涂抹速度。当试图进行厚涂抹时,可以减小角度或可以减小涂抹速度。

根据本发明的示例,合适的涂抹角度可以是约30~45°。

当在以上范围内的涂抹角度中适当地调整涂抹速度时,可以在一次涂抹中同时进行薄涂抹和厚涂抹。即,当在涂抹的早期阶段将涂抹速度设定得高,而在涂抹的后期阶段将涂抹速度设定得低时,可以在前部分上进行薄涂抹,并且可以在后部分上进行厚涂抹。当然,也可以进行相反的操作。

以上说明仅仅是对本发明的技术精神的说明,并且本发明所属领域的普通技术人员应该能够在不脱离本发明的本质特征的范围内进行各种改变和变形。因此,本发明的上述实施例可以彼此分离地实现或者组合地实现。

因此,这里公开的实施例用于说明(而不是限制)本发明的技术精神,并且本发明的技术精神的范围不受这些实施例的限制。本发明的范围应该由下面的权利要求来解释,并且等同范围内的所有技术精神应该被解释为属于本发明的范围。

4.诊断系统

上面已经说明了在插入样品t时对样品t进行染色的测试试剂盒。以下,将说明根据本发明的实施例的诊断系统4300,其使用上述测试试剂盒并自动进行样品t的诊断。

根据本发明的实施例的诊断系统4300可以进行如下诊断操作:其中,获取样品t(该样品t通过对插入到测试试剂盒中的样品t进行涂抹和/或染色的过程而被染色)的图像,分析和诊断所获取的图像,并将样品t的状态的诊断结果作为反馈提供给诊断系统4300的使用者。

通过使用能够控制上述测试试剂盒并诊断样品t的状态的诊断系统4300,使用者可以解决诸如由于使用者直接手动地操作测试试剂盒而导致的样品t诊断过程的麻烦或样品t的诊断结果不准确等问题。

这里,诊断系统4300使用的测试试剂盒包括上述旋转型测试试剂盒和/或滑动型测试试剂盒和/或其变形例。以下,将依据与上述测试试剂盒的结构相关的术语来说明诊断系统4300的操作。

图43是示出根据本发明的实施例的诊断系统4300的构成例的图。

参照图43,例如,诊断系统4300可以包括诊断设备4310、服务器4330和/或用户终端4350。可以通过无线因特网或诸如无线通信网络等网络连接系统的各元件以传输数据资源等。

根据本发明的实施例的诊断设备4310可以进行包括涂抹放置在测试试剂盒中的样品t的涂抹操作和/或对样品t进行染色的涂抹操作的诊断操作。诊断设备4310可以将在一系列诊断操作过程中获取的数据与另一外部设备进行交换。例如,诊断设备4310可以通过通信网络等将从染色样品t获取的数据发送到用户终端4350并从用户终端接收反馈数据,并且还可以与服务器4330交换数据。

根据本发明的实施例的服务器4330可以与连接到服务器4330的诸如诊断设备4310和/或用户终端4350等外部设备交换数据资源,并且可以包含数据资源。服务器4330可以连接到外部设备,以整合外部设备的信息,并提供整合的信息,使得诊断系统4300的使用者能够方便使用整合的信息。

根据本发明的实施例的用户终端4350可以包括能够连接到服务器4330和/或诊断设备4310的任何设备。例如,用户终端4350可以包括移动终端、计算机、笔记本电脑、智能电话、个人数字助理(pda:personaldigitalassistant)、智能频带、智能手表等。

以下,将更详细的说明用于进行诊断系统4300的诊断操作的诊断设备4310的元件以及元件的操作。

4.1诊断设备

根据本发明的实施例的诊断设备4310可以是用于涂抹放置在测试试剂盒中的样品t,对被涂抹样品t进行染色并且获取染色样品t的图像的设备。

图44是根据本发明的实施例的构成诊断设备4310的元件的示例的框图。

参照图44,例如,诊断设备4310可以包括:移动部4311,其被配置成执行用于移动测试试剂盒的结构的一系列操作;接触部4313,其被配置成执行使包含在贴片板中的接触型贴片与样品t接触以对样品t进行染色的操作;图像获取部4315;诊断结果生成器4317;和/或其他元件4319。

在根据本发明的实施例的诊断设备4310中,可以形成能够向诊断设备4310提供测试试剂盒的空间。为了便于说明,将可以设置测试试剂盒的空间称为装载区域4610。装载区域4610可以形成为任何形状,只要装载区域4610是能够向诊断设备4310提供测试试剂盒的空间即可。诊断设备4310的使用者可以通过装载区域4610向诊断设备4310提供测试试剂盒。在“4.3.本发明的诊断系统的实施”部分中将说明根据本发明的实施例的装载区域的形状。

根据本发明的实施例的移动部4311可以由用于移动测试试剂盒的结构的元件形成。如图45所示,移动部4311可以包括用于产生动力的动力产生器和用于将由动力产生器产生的动力传输到测试试剂盒的结构的动力传输构件。

尽管如图45所示,可以在放置有测试试剂盒的装载区域4610的上部形成接触部4313,但是实施例不限于此,并且接触部4313可以存在于任何位置(例如诊断设备4310的内部或诊断设备4310的外表面),在该位置,可以进行使包含在测试试剂盒中的接触型板与样品t接触的操作。

以下,将更详细地说明可以构成诊断设备4310的元件。

4.1.1移动部

根据本发明的实施例的移动部4311可以移动用于对放置在测试试剂盒中的样品t进行涂抹和/或染色的操作的测试试剂盒的结构。例如,移动部可以移动构成上述测试试剂盒的结构的贴片板、样品板、涂抹部、装载区域4610等。为了便于说明,下面将移动部4311移动测试试剂盒的结构的操作称为移动操作。

图45是示出根据本发明的实施例的移动部4311的示例的框图。

参照图45,移动部4311可以包括用于将功率传输给测试试剂盒以便进行移动操作的动力传输构件4703和/或用于产生功率的动力产生器4701。可以存在多个动力传输构件4703和/或多个动力产生器4701,并且根据情况可以不存在动力传输构件4703和/或动力产生器4701。

动力产生器4701可以设置成任何形状,只要动力产生器4701能够为移动部4311的移动操作提供功率即可。动力传输构件4703可以设置成任何形状,只要动力传输构件4703能够将动力传输到测试试剂盒即可。

这里,动力传输构件4703可以以如下形式实施:可以分别移动测试试剂盒的样品板和/或贴片板,或者只移动样品板和/或贴片板中的一个板而固定另一个板。

上述预定的动力传输构件4703可以单独地连接到放置在装载区域4610上的测试试剂盒的结构。例如,动力传输构件可以以包括第一安装部和第二安装部的形式实现,在第一安装部上,安装有放置在装载区域4610上的测试试剂盒的贴片板,在第二安装部上,安装样品板。可以通过第一安装部和/或第二安装部来将动力传输到测试试剂盒的样品板和/或贴片板,从而执行移动每个板的移动操作。

动力传输构件4703和/或动力产生器4701可以根据移动部4311的各种形式以各种不同的形式来实现。以下,将说明移动部4311的各种形式。

根据本发明的实施例的移动部4311可以具有机械形式,或者也可以具有电磁形式。

这里,具有机械形式的移动部4311可以指的是如下移动部4311的形式,所述移动部4311包括使得能够将动力传输至测试试剂盒的动力传输构件4703与用于产生机械功率的动力产生器4701能够彼此连接和/或接触的的预定构造,使得可以根据机械连接方式将动力产生器4701产生的动力传输到测试试剂盒。

这里,用于产生机械功率的动力产生器4701的形式不受限制,并且动力产生器4701可以以各种形式实现。作为示例,动力产生器4701可以以电动机的形式实现。动力产生器4701可以是能够产生旋转动力的dc电机、ac电机、dc/ac电机、无刷dc电机、线性感应电机、同步磁阻电机、步进电机等。

动力产生器4701也可以实现为使用流体或气体的圆筒型动力产生器4701。圆筒型动力产生器4701可以以由流体和/或气体引起的压力的形式产生动力,将产生的动力传输到测试试剂盒的结构,以及执行移动部4311的移动操作。

具有电磁形式的移动部4311可以指以下形式:其中,动力产生器4701以电力和/或磁力的形式产生动力,影响测试试剂盒,并且执行移动操作。

例如,具有电磁形式的移动部4311的动力产生器4701可以是利用电磁铁的动力产生器4701。具有电磁形式的移动部4311可以通过使测试试剂盒受到由电磁动力产生器4701产生的磁力的影响来执行移动操作,从而移动测试试剂盒的结构。通过磁力来移动测试试剂盒的结构的方法可以包括通过调节由电磁动力产生器4701产生的磁力强度来移动测试试剂盒的结构的方法,或者移动电磁动力产生器4701本身使得受其影响的动力传输构件4703移动等。

这里,测试试剂盒的结构可以由诸如导体等能够从电磁动力产生器4701接收动力的材料形成。

上面已经说明了进行移动操作的移动部4311的形式和/或结构。下面将更详细地说明用于在移动部4311的移动操作过程中进行涂抹和染色操作的相对运动操作和/或用于图形获取操作的移动操作。

4.1.2接触部

根据本发明的实施例的接触部4313可以移动测试试剂盒的用于对被涂抹样品t进行染色的结构。通过移动测试试剂盒的该结构,接触部4313可以使包含在贴片板中的接触型贴片与样品t接触。

如上所述,接触型贴片可以包括与样品t接触以对样品t进行染色接触型染色贴片以及诸如用于固定样品t的固定贴片、脱色贴片和/或媒染贴片、缓冲贴片、洗涤贴片和复合贴片等接触型染色补充贴片。多个接触型贴片可以顺序地包含在贴片板中。

以下,为了便于说明,移动测试试剂盒的结构以进行染色的接触部4313的上述操作被称为接触操作。

虽然由于接触部4313执行与移动部4311类似的功能(即,接触部4313移动测试试剂盒的结构)而将接触部4313命名为第二移动部4311似乎更合适,但是由于接触部4313是具有使接触型贴片与样品t接触这一特殊目的元件,因此将保持接触部4313的名称。

尽管接触部4313可以单独执行接触操作,但是接触部4313也可以执行与上述移动部4311的移动操作相关联的接触操作。

图46是示出根据本发明的实施例的接触部4313的示例的框图。

参照图46,像上述移动部4311一样,接触部4313也可以包括用于移动测试试剂盒的结构的动力传输构件4903和/或用于产生动力的动力产生器4901。可以存在多个动力传输构件4903和/或多个动力产生器4901,并且根据情况,可以不存在动力传输构件4903和/或动力产生器4901。

这里,动力传输构件4903可以用于将动力产生器4901产生的动力传输到测试试剂盒的结构,使得包含在测试试剂盒中的接触型贴片移动以与样品t接触。

动力产生器4901可以被设置成任何形状,只要动力产生器4901能够为接触部4313提供动力以执行接触操作即可。动力传输构件4903可以被设置成任何形状,只要动力传输构件4903能够将动力传输到测试试剂盒即可。

像上述移动部4311一样,接触部4313也可以以各种形式来实现。因此,动力传输构件4903和/或动力产生器4901可以具有各种形式。

根据本发明的实施例的接触部4313可以具有机械形式或电磁形式。

这里,具有机械形式的接触部4313可以指如下接触部4313的形式:其中,由机械动力产生器4901产生的机械动力通过使用机械接触手段的动力传输构件4903而被传递至测试试剂盒的结构,从而执行接触操作。

由于机械动力产生器4901的说明与移动部4311的动力产生器4901的说明相同,因此将省略对机械动力产生器4901的说明。

动力传输构件4903可以将由机械动力产生器4901产生的动力传输到测试试剂盒的结构。例如,动力传输构件可以具有能够通过由动力产生器产生的动力击打测试试剂盒的结构的形式。

这里,电磁形式可以指如下形式:其中,电力和/或磁力形式的动力被传递到测试试剂盒的结构,从而移动测试试剂盒的结构。

上面已经说明了用于执行接触操作的接触部4313的形式和/或结构。下面将更详细地描述用于诊断设备(下面将描述的)的染色操作的接触部4313的接触操作。

4.1.3图像获取部

根据本发明的实施例的图像获取部4315可以生成染色样品t的图像。

根据本发明的实施例的图像获取部4315可以包括用于获取染色样品t的图像的装置。例如,图像获取部4315可以包括:诸如包括互补金属氧化物半导体(cmos:complementarymetal-oxidesemiconductor)图像传感器和电荷耦合器件(ccd:charge-coupleddevice)图像传感器等图像生成器、能够产生透过染色样品t的光束的预定光束发生器、和/或被配置成在图像生成器上形成发射光束的图像的光学系统。图像获取部4315的元件不限于此,并且能够生成染色样品t的图像的任何元件可以是图像获取部4315的元件。

根据本发明的实施例的光学系统可以用一个或多个透镜实现。尽管优选的是,透镜由玻璃形成,但是透镜的材料不受限制,并且透镜可以用允许透镜执行在上述图像生成器上形成光束图像的操作的任何材料来实现。

根据图像获取部的上述装置,图像获取部4315可以使从光束发生器发射的光束透过光学系统和/或测试试剂盒(放置有染色样品t),通过图像生成器获取发射的光束,并生成图像。

从图像获取部4315生成的染色样品的图像可以具有各种放大率。例如,所生成的图像可以具有放大染色样品的放大率或以其精确的尺寸来显示染色样品的放大倍数。

图像获取部4315可以具有能够移动放置有染色样品的测试试剂盒的预定动力传输构件和/或动力产生器。以这种方式,能够便于获取染色样品的图像。

4.1.4诊断结果生成器

根据本发明的实施例的诊断结果生成器4317可以分析根据诊断系统4300的诊断操作产生的数据并诊断样品t的状态。在本实施例中,诊断结果生成器4317可以分析从染色样品t获取的图像并诊断样品t的状态。

下面将在“4.3.诊断结果生成操作”部分中说明诊断染色样品t的状态的诊断结果生成器4317的操作

4.1.5其他元件

图47是关于根据本发明的实施例的诊断设备的其他元件的框图。

图47所示的设备不是必需的,并且其他元件4319可以具有更多或更少的元件。

参照图47,诊断设备4310的其他元件4319可以包括:包含模块5101,其被配置成存储各种数据;通信模块5103,其被配置成向其他设备发送数据和从其他设备接收数据;输入模块5105,其被配置成接收来自使用者的各种输入;输出模块5107,其被配置成使数据可视化;和/或控制模块5109,其被配置成控制诊断设备4310的每个元件的操作。

包含模块5101可以暂时或半永久地含有数据。用于操作诊断设备4310的操作系统(os)、固件、中间件和用于支持它们的各种程序可以包含在包含模块5101中,并且从其他外部设备(例如,诊断结果生成器4317)接收的数据等可以包含在包含模块5101中。包含模块5101的典型示例可以包括硬盘驱动器(hdd:harddiskdrive)、固态驱动器(ssd:solidstatedrive)、闪存、只读存储器(rom:read-onlymemory)、随机存取存储器(ram:randomaccessmemory)、云存储器等。

通信模块5103可以与外部设备进行通信。例如,通信模块5103可以向外部设备发送数据和从外部设备接收数据。作为示例,通信模块5103可以将由诊断设备4310获取的染色样品t的图像发送到诊断结果生成器4317。

这种通信模块5103可以使用有线装置与外部设备通信,并且也可以使用无线装置与外部设备通信。为此,通信模块5103可以包括:有线通信模块,其被配置成通过局域网(lan)连接到因特网等;移动通信模块(例如长期演进(lte:longtermevolution)),其被配置成通过移动通信基站连接到移动通信网络,并发送和接收数据;短距离通信模块5103,其被配置成使用基于无线lan(wlan)的通信装置(例如,无线保真(wi-fi))或基于无线个人区域网络(wpan)的通信装置(例如蓝牙和zigbee);卫星通信模块,其被配置成使用全球导航卫星系统(gnss)(例如全球定位系统(gps));或者它们的组合。

包含模块5101可以暂时或半永久地包含控制设备的数据。

用于操作本地设备的os、固件、中间件和用于支持它们的各种程序可以包含在包含模块5101中,并且从其他外部设备(例如,服务器4330)接收的数据等可以包含在包含模块5101中。

包含模块5101的典型示例可以包括hdd、ssd、闪存、rom、ram或云存储等。

输入模块5105可以从使用者接收与诊断设备4310的操作相关的输入。例如,输入模块5105可以接收来自使用者的与操作时间相关的使用者输入,以便设置诊断设备4310的移动部4311的操作时间。

使用者输入可以是包括键输入、触摸输入和语音输入的各种形式。输入模块5105是包括以下的概念:具有常规形式的按键、键盘或鼠标;以及触摸传感器,其被配置为感测使用者的触摸;麦克风,其被配置为接收语音信号;照相机,其被配置为通过图像识别来识别手势等;包括照度传感器、红外传感器等接近传感器,其被配置为感测使用者的接近;运动传感器,其被配置为使用加速度传感器、陀螺仪传感器等识别使用者的运动;和/或各种输入装置,其被配置为感测或接收其他形式的各种使用者输入。这里,触摸传感器可以被实现为:压电或电容触摸传感器,其被配置为通过触摸面板或附接到显示面板的触摸膜来感测触摸;光学触摸传感器,其被配置为通过光学装置来感测触摸;或类似的传感器。

输出模块5107可以输出与诊断设备4310有关的信息。例如,控制设备可以通过输出模块5107输出是否正在执行诊断设备4310的涂抹和/或染色设备的操作。

输出模块5107可以包括:显示器,其被配置为输出图像;扬声器,其被配置为输出声音;触觉设备,其被配置为产生振动;和/或各种其他形式的输出装置。以下,将说明能够以视觉的方式传送图像的显示器作为图像处理设备的输出模块5107的示例。然而,图像不一定通过图像处理设备中的显示器输出给使用者,并且图像可以通过任何其他上述输出设备输出给使用者。显示器是表示包括以下所有的广义上的图像显示设备的概念:液晶显示器(lcd)、发光二极管(led)显示器、有机led(oled)显示器、平板显示器(fpd:flatpaneldisplay)、透明显示器、曲面显示器、柔性显示器、3d显示器、全息显示器、投影仪、和/或能够执行图像输出功能的各种其他形式的设备。这种显示器可以是与输入模块5105的触摸传感器一体构成的触摸显示器的形式。此外,输出模块5107也可以以将外部输出设备连接到图像处理设备的输出接口(通用串行总线(usb)端口、个人系统2(ps/2)端口等)的形式实现,而不是以通过自身向外部输出信息的形式实现。

根据本发明的实施例的控制模块可以控制诊断设备4310的每个元件的整体操作。例如,控制模块可以给出开始命令,使得上述诊断设备4310的元件开始操作。

控制模块可以根据硬件、软件、或其组合用计算机或与其类似的设备来实现。在硬件方面,控制模块可以被设置成电子电路的形式,例如处理电信号并执行控制功能的中央处理部(cpu),并且在软件方面,控制模块可以被设置成操作控制模块的硬件的程序的形式。

诊断系统4300的诊断操作(其中,涂抹诊断设备4310的测试试剂盒中的样品t,对被涂抹样品t进行染色,生成染色样品t的图像,以及诊断样品t的状态)可以通过诊断设备4310的上述元件的操作来执行。除非另有特别说明,否则可以认为诊断设备4310的每个元件的操作都是由控制模块控制。

尽管上面已经将移动部4311、接触部4313、图像获取部4315、诊断结果生成器4317、和/或其他元件4319描述为包含在诊断设备4310中的元件,但是每个元件可以在诊断系统中的服务器4330、用户终端4350等中实现。诊断系统中的除了诊断设备4310之外的元件中的被实现的各元件可以表示:可以在诊断系统中单独地实现从属于各元件的那些元件。

例如,根据本发明的实施例的图像获取部4315可以在诊断系统的除了诊断设备4310之外的元件中实现。作为示例,图像获取部4315可以在服务器4330和/或用户终端4350中实现。在图像获取部4315的元件之中,诸如包括ccd图像传感器和cmos图像传感器的图像传感器的图像生成器可以在诊断系统的服务器4330和/或用户终端4350中实现,并且光学系统和/或预定光束发生器可以在诊断设备4310中实现。

例如,根据本发明的实施例的诊断结果生成器4317可以在诊断系统的除了诊断设备4310之外的元件中实现。作为示例,诊断结果生成器4317可以在服务器4330和/或用户终端4350中实现。

尽管诊断结果生成器4317可以以分析数据的硬件的形式实现,但是诊断结果生成器4317也可以以被安装用来执行诊断的软件的形式实现。

诊断结果生成器4317可以单独地设置在另一个外部设备的内部或外部。即,诊断结果生成器4317可以设置在诊断设备4310的内部,并且创建诊断结果;可以存在于信息被集成的服务器4330中,并且基于由服务器4330收集的信息来创建样品t的诊断结果;或者,可以安装在使用诊断系统4300的用户终端4350中。即,诊断结果生成器4317可以具有任何形式,只要诊断结果生成器4317能够分析根据诊断系统4300的诊断操作生成的数据并诊断样品t的状态即可。

也可以不实施诊断设备4310的上述元件。当未实施上述元件时,由元件执行的诊断操作(将在下面描述)可以由使用者直接执行。

诊断设备4310的元件可以冗余地存在于诊断系统中。当元件是冗余地存在时,可以从系统中的冗余元件中选择用来执行冗余元件的诊断操作的元件。这种选择可以由使用者进行,或者可以在诊断系统内自动进行。

下面将说明诊断系统诊断样品t的状态的诊断方法。

4.2诊断操作

根据本发明的实施例的诊断系统4300可以执行诊断样品t的状态的诊断操作。

由于,如上所述,诊断系统4300的每个元件可以单独在诊断系统4300的不同元件中实现,因此,诊断操作(将在下面说明)可以由诊断系统的诊断设备4310、服务器4330、和/或用户终端4350单独地执行。

根据本发明的实施例的诊断系统4300的诊断操作可以包括装载操作、涂抹操作、染色操作、图像获取操作、和/或诊断结果生成操作。包括在诊断操作中的上列操作可以通过诊断系统4300的各元件的操作来执行。

例如,装载操作、涂抹操作、和/或图像获取操作可以通过以下操作来执行:移动部4311将装载区域4610中的测试试剂盒移动到诊断系统4300中,使得装载在装载区域4610中的测试试剂盒可以插入到诊断系统4300中。

例如,可以通过彼此相关地执行的移动部4311的移动操作和/或接触部4313的接触操作来执行染色操作。

诊断操作可以根据诊断系统4300中使用的测试试剂盒的类型而变化。因此,诊断系统4300需要检查测试试剂盒的类型。可以通过使用者输入来获取关于测试试剂盒的类型的信息。可替代地,可以通过诊断系统4300可识别的标识符等(诸如包括在测试试剂盒中的近场通信(nfc)标签和识别码)来获取关于测试试剂盒的类型的信息。

因此,将结合诊断系统4300的元件的上述操作来说明诊断操作中包括的操作。

4.2.1装载操作

根据本发明的实施例的诊断设备4310可以执行装载操作,其中,制备测试试剂盒,以便可以执行诊断操作。

这里,可以存在用于执行装载测试试剂盒的操作的装载区域移动部。装载区域移动部可以通过移动装载区域4610来执行装载操作,使得可以向使用者和/或诊断设备4310提供其中放置有测试试剂盒的装载区域4610。例如,装载区域移动部可以包括预定的动力产生器和/或动力传输机,并通过将由动力产生器产生的动力经由动力传输机传递至装载区域4610并移动装载区域4610来执行装载操作。

当诊断设备4310中不存在装载区域移动部时,移动部4311可以执行将测试试剂盒提供给使用者和/或诊断系统4300的装载操作。

例如,移动部4311可以执行如下装载操作:其中,通过移动操作,将放置在装载区域4610中的测试试剂盒提供给诊断设备4310。

当不存在用于产生动力并传递动力的上述装载区域移动部和/或移动部时,使用者可以执行将测试试剂盒手动放置在诊断设备4310的装载区域4610中的操作。

4.2.2涂抹操作

根据本发明的实施例的诊断系统4300可以执行涂抹操作,其中,放置在测试试剂盒中的样品t被涂抹。

这种涂抹操作可以主要通过移动测试试剂盒的结构的移动部4311的移动操作和/或控制移动部4311的移动操作的控制器4315的控制操作来执行。

如上所述,在涂抹操作中,样品与贴片板的涂抹膜接触,使样品在涂抹膜的宽度方向上自然展开,并且在扫过样品区域的同时,贴片板的涂抹部再次通过样品区域,使得样品被涂抹在样品区域中。

下面将说明能够进行诊断系统4300的涂抹操作的移动部4311的相对运动操作。

根据本发明的实施例的诊断系统4300可以通过执行移动部4311的移动操作来执行诊断操作,在移动操作中,测试试剂盒中的板相对彼此移动。这里,板相对于彼此的移动可以表示测试试剂盒的样品板和/或贴片板的移动方向不同。例如,相对运动可以表示,当样品板沿一个方向移动时,贴片板在与所述一个方向相反的另一方向上移动。相对运动也可以表示,固定测试试剂盒的样品板和贴片板中的一个并且移动另一个。例如,相对运动可以表示,固定贴片板并且沿一个方向移动样品板,使得贴片板相对于样品板布置在与所述一个方向相反的另一方向上。尽管已经将关于相对运动的一个方向的另一方向描述为与所述一个方向相反的方向,但是另一个方向不限于相反的方向,并且与所述一个方向不同的任何方向都可以是另一个方向。相对运动可以表示,即使板在相同的方向上移动,板将以不同的速度移动。

这种相对运动的典型示例可以包括板相对于彼此的滑动和/或旋转。

下面将移动部4311的移动操作的上述操作(其中测试试剂盒中的板相对于彼此移动)称为相对运动操作。

图48和/或图49是示出根据本发明的实施例的响应于移动部4311的相对运动操作而与测试试剂盒的移动相关的示例的概念图。

参照图48和/或图49,能够看到当移动部4311执行根据本发明的实施例的相对运动操作时样品板或贴片板移动的方向。通过测试试剂盒中的板相对于彼此的相对运动,放置在样品板上的样品t可以被涂抹。

根据移动部4311的各种相对运动操作,构成测试试剂盒的贴片板和/或样品板可以表现出各种形式的相对运动。

例如,根据移动部4311的移动测试试剂盒的一个元件的相对运动操作,可以存在一种相对运动的形式。具体地,可以通过移动部4311执行如下移动操作来进行相对运动,在所述移动操作中,在固定样品板的同时使贴片板沿一个方向移动。可替代地,可以通过在固定贴片板的同时,移动部4311沿一个方向移动样品板来进行相对运动。

在另一示例中,根据移动部4311的移动测试试剂盒的多个元件的相对运动操作,可以存在一种相对运动的形式。即,可以通过移动部4311执行移动测试试剂盒的多个元件的移动操作来进行相对运动操作。这里,以相对运动的形式,可以同时移动元件,或者可以顺序移动每个元件。具体地,可以通过移动部4311执行移动操作来对测试试剂盒进行相对运动操作,从而使样品板沿一个方向移动,并且使贴片板在不同于该一个方向的另一方向上移动。

可以通过移动部4311执行如下移动操作来进行相对运动操作,在所述移动操作中,测试试剂盒的样品板和/或贴片板在同一方向上移动,而样品板和/或贴片板的移动速度不同。然而,为了执行涂抹样品t的涂抹操作,必须通过移动部4311来执行相对运动操作,使得贴片板沿一个方向的移动速度高于样品板在该一个方向上的移动速度。

根据上述相对运动操作,诊断系统4300可以执行涂抹操作。如上关于测试试剂盒的涂抹方法的描述,涂抹操作可以包括使样品t与贴片板的涂抹部接触以进行涂抹操作的操作(以下,称为涂抹第一操作)和涂抹部相对于样品板移向样品区域以使样品被涂抹的操作(以下,称为涂抹第二操作)。

下面将说明由诊断系统4300执行的涂抹第一操作和/或第二操作。

4.2.2.1涂抹第一操作

根据本发明的实施例的诊断系统4300可以执行涂抹第一操作,其中,通过移动部4311的相对运动操作,使测试试剂盒的涂抹部与样品t接触。

可以通过移动部执行相对运动操作来进行涂抹第一操作,在相对运动操作中,在放置样品的方向上移动测试试剂盒的涂抹部,使得涂抹部与样品接触。

移动部可以通过执行使涂抹部与样品接触的操作并且随后进行移动测试试剂盒的结构的操作来进行涂抹第一操作。例如,在使涂抹部与样品接触之后,移动部可以执行如下移动操作:其中,在已经在放置样品的方向上移动涂抹部的方向的正向和/或反向上将测试试剂盒的结构移动预定距离。

通过在使涂抹部与样品接触之后移动部进一步执行移动操作,测试试剂盒的涂抹部可以与样品接触,并且可以有效地促进样品在涂抹膜的宽度方向上展开。这是因为,如上所述,由于虽然当涂抹膜对样品友好时仅通过涂抹膜与样品接触样品就能在涂抹膜的宽度方向上展开,但是当涂抹膜对样品不友好时,样品难以在涂抹膜的宽度方向上展开,所以需要一种在涂抹部与样品接触之后促进样品展开的预定过程。因此,对于所述预定过程,在涂抹部与样品接触之后,在涂抹样品之前移动涂抹膜,使得样品在涂抹膜的宽度方向上展开。

4.2.2.2涂抹第二操作

根据本发明的实施例的诊断系统4300可以执行涂抹第二操作,其中,通过移动部4311的相对运动操作,使测试试剂盒的涂抹部将样品t涂抹在样品区域中。例如,在涂抹第一操作之后,为了涂抹样品t,移动部可以执行涂抹第二操作,其中,相对地移动测试试剂盒的结构,使得涂抹部在第一操作的相反方向上扫过样品板的样品区域的同时移动。

这里,根据本发明的实施例的控制器4315可以在执行诊断系统4300的涂抹第二操作时控制移动部4311的移动操作。

例如,在涂抹样品t的操作之后,必须将被涂抹样品t干燥,以便对被涂抹样品t进行染色。控制器4315可以控制移动部4311的移动操作,使得在干燥时间期间,不执行移动部4311的移动操作。

而且,如上所述,可以根据测试试剂盒的涂抹膜的类型和涂抹速度来执行厚涂抹或薄涂抹。为了将其适当地应用于诊断系统4300的诊断操作,控制器4315可以控制移动部4311的相对运动操作的速度。

图50是示出根据本发明的实施例的控制器4315控制移动部4311的相对运动操作的速度的示例的概念图。

参照图50,控制器4315可以控制移动部4311的相对运动速度的速度。例如,当移动器4311移动测试试剂盒的结构时,控制器4315可以为每个移动区段分配移动部4311移动板的不同速度。具体地,例如,当移动部4311执行在固定样品板的同时沿一个方向移动贴片板的相对运动操作时,当贴片板正在x1区段中移动时,控制器4315可以控制移动部4311以速度v1移动贴片板,并且当贴片板正在x2区段中移动时,控制器可以控制移动部4311以速度v2移动贴片板。

尽管区段和/或速度可以是存在于诊断系统4300中的数值,但是区段和/或速度也可以是基于通过使用者输入等接收的数据而设置的数值。

通过控制器4315的控制操作(其中,针对每个区段使样品t的涂抹程度不同),诊断系统4300可以针对每个区段执行不同的涂抹操作。

通过使每个区段的移动部4311移动板的速度不同,控制器4315可以改变样品t的涂抹程度。诊断系统4300可以通过调节涂抹程度对每个区段进行厚涂抹或薄涂抹。当对被涂抹样品t进行染色并随后进行诊断时,由于可以对每个区段应用不同的诊断方法,因此使用者可以以各种方式执行样品t的状态的诊断。

4.2.3染色操作

根据本发明的实施例的诊断系统4300可以执行对测试试剂盒中的被涂抹样品t进行染色的染色操作。如上所述,可以通过接触部执行接触操作来执行染色操作,使得接触型贴片与样品区域中的被涂抹样品接触。

根据本发明的实施例的染色操作可以包括使测试试剂盒中的板对准的对准操作和/或对放置在测试试剂盒中的样品t进行染色的染色操作。

诸如上述对准操作和染色操作等染色操作可以作为上述接触部4313的接触操作来执行,其中,移动测试试剂盒的结构,使得包含在测试试剂盒中的接触型贴片与样品t接触,执行移动部4311的移动操作和/或控制器4315的控制操作。

4.2.3.1调整操作

根据本发明的实施例的诊断系统4300可以执行以下操作:其中,为了染色操作而调整测试试剂盒中贴片板的位置和/或样品板的位置。

参照图35中的图,诊断系统4300可以执行如下调整操作:其中,包含在测试试剂盒的贴片板中的多个存储器2240被依次放置在对应于样品区域2420的位置处。对应于样品区域的位置可以指样品板的样品区域的进行了涂抹以适于染色的区域的正上方的位置。

当执行移动部的移动操作和/或控制移动操作的控制器的控制操作时,可以执行这种调整操作。例如,可以通过移动部执行相对地移动测试试剂盒的结构的操作和控制器控制相对运动操作来执行调整操作,使得存储器可以被放置在与样品区域对应的位置。

通过调整操作,诊断系统4300可以使接触型贴片与被涂抹样品有效接触,使得在下面将说明的染色操作中有效地执行被涂抹样品的染色。

4.2.3.2染色操作

根据本发明的实施例的诊断系统4300可以执行对样品t进行染色的染色操作。

如上所述,诊断系统4300可以通过接触部的接触操作来执行染色操作,其中,使包含在测试试剂盒的贴片板中的接触型贴片与涂抹的样品区域接触。

图51和/或图52的(a)和(b)是示出根据本发明的实施例的通过接触部4313的接触操作来移动测试试剂盒的结构的示例的概念图。

参照图51,接触部4313可以通过移动测试试剂盒的板的接触操作来执行染色操作。例如,通过接触部4313执行垂直地移动贴片板和/或样品板的接触操作,诊断系统4300可以执行染色操作。即,当接触部4313移动贴片板和/或样品板时,存储在贴片板中的接触型贴片与被涂抹样品t接触,从而可以执行染色操作。

如图52的(a)和(b)所示,接触部4313可以通过执行移动包含在测试试剂盒中的接触型贴片的接触操作来执行染色操作。例如,接触部4313可以对存储在贴片板中的接触型贴片执行接触操作,以使其与样品板上的被涂抹样品t接触,从而对样品进行染色。

图53是示出根据本发明的实施例的执行本发明的染色操作的示例的概念图。

参照图53,可以通过彼此相关联地执行的上述接触部4313的接触操作和移动部4311的移动操作来执行诊断系统4300的染色操作。例如,可以在移动部4311执行移动操作(其中,沿一个方向移动测试试剂盒中的板)的同时,通过接触部4313执行接触操作来执行染色操作。

具体地,染色操作可以通过移动部4311执行以下操作来执行,其中,使两个板相对于彼此移动,使得样品区域和存储器彼此相对设置,并且接触部4313在移动部4311的相对运动操作期间在贴片板的外表面处顺序地执行接触操作,使得接触型贴片被移到样品区域。

为了在诊断系统4300的染色操作中对被涂抹样品t进行染色,需要至少预定的染色时间,在该染色时间内,接触型贴片与被涂抹样品t接触,并且在对被涂抹样品t进行染色之后,可能需要干燥染色样品t的时间。

即,如上所述,当在接触部4313执行预定时间长度的接触操作的同时连续地执行移动操作时,接触型贴片可能与样品t分离,并且染色时间可能不满足。当移动部4311和接触部4313连续地执行操作时,染色样品t的干燥时间可能不满足。因此,在接触部4313执行接触操作时需要移动部4311不执行移动操作或需要移动部4311再次执行移动操作。

为此,控制器4315可以根据染色时间和干燥时间设置接触部4313的接触操作和/或移动部4311的移动操作之间的时间间隔。

图54是示出根据本发明的实施例的染色操作中控制器控制诊断系统的元件操作的示例的图。

参照图54,控制器4315可以控制接触部4313的接触操作和/或移动部4311的移动操作之间的时间间隔。具体地,例如,参照图58,控制器4315可以根据时间间隔控制接触部4313在预定时间间隔δt1内执行接触操作并且在预定时间间隔δt2内不执行接触操作。此外,为了移动部4311在将样品t涂抹在样品板上后的用于干燥样品t的时间之后执行移动操作,控制器4315可以将移动部4311的移动操作设定为在预定时间间隔δt1内不执行,而在预定时间间隔δt2内执行。

为了(1)去除接触表面的气泡,(2)允许接触型贴片的染色剂适当地转移到被涂抹样品上,或者(3)以其他方式补充染色操作以进行有效的染色操作,根据本发明的实施例的接触部4313可以执行移动与样品接触的接触型贴片的操作。例如,为了有效的染色操作,接触部4313可以执行接触操作,使得与样品接触的接触型贴片在与样品接触的同时起伏。起伏可以表示在接触型贴片与样品接触的同时,接触型贴片可以在测试试剂盒的纵向方向上和/或垂直于纵向方向的方向上振动。而且,例如,为了有效的染色操作,接触部4313可以执行接触操作,使得在接触型贴片与样品接触的同时,接触型贴片可以在垂直于测试试剂盒的宽表面的方向上移动。

尽管与接触部4313和移动部4311相关的操作时间间隔可以是在诊断系统4300中预设的数值,但是操作时间间隔也可以是基于通过使用者输入等接收的数据而设置的数值。

4.2.4图像获取操作

以下,将描述诊断系统4300的图像获取操作,执行该图像获取操作来诊断通过上述涂抹操作和/或染色操作进行染色的样品t的状态。

根据本发明的实施例的诊断系统4300可以执行获取通过涂抹操作和/或染色操作产生的与测试试剂盒中的染色样品t有关的图像的操作。

这种图像获取操作可以通过图像获取部4315和/或图像获取部4315与其他元件相关联的执行操作来执行。

当图像获取部4315存在于系统的除了诊断设备4310之外的元件中时,可以针对图像获取操作执行附加操作等。例如,当通过在诊断系统的另一元件中实现的图像获取部4315执行图像获取操作时,诊断设备4310可以将诊断设备4310中的测试试剂盒提供给诊断系统的另一元件,使得诊断系统的所述另一元件能够执行能够获取染色样品t的图像的图像获取操作。

下面将说明图像获取操作。

4.2.4.1测试试剂盒的移动

根据本发明的实施例的诊断系统4300可以移动测试试剂盒的结构,并在获取放置在测试试剂盒中的染色样品的图像时获取图像。

图55是示出根据本发明的实施例的移动测试试剂盒的结构以便获取图像的过程的图。

参照图55,移动部4311可以执行移动操作,使得样品板的样品区域暴露于图像获取部4315。例如,移动部4311可以执行如下移动操作:其中,使贴片板和/或样品板相对于彼此移动,使得样品板的样品区域暴露于图像获取部4315。

当在贴片板的上部中设置有观察孔时,移动部4311可以执行移动操作,使得样品区域布置在其通过观察孔而被露出的位置处。

为了便于生成测试试剂盒的图像,诊断设备4310可以将测试试剂盒移动到诊断设备4310中的另一空间以生成图像。

图56是示出根据本发明的实施例的将测试试剂盒移动到另一空间以便获取图像的过程的图。

参照图56,移动部4311可以将测试试剂盒移动到诊断系统4300中的另一空间。在这种情况下,移动部4311可以将样品板和贴片板一起移动到另一空间或者只将测试试剂盒中的样品板移动到另一空间。

当将测试试剂盒移动到诊断设备4310中的另一空间以进行图像获取操作时,可以与图像获取操作相关联地执行移动部4311的如下移动操作:其中,为了上述图像获取而移动测试试剂盒的结构。例如,移动部可以执行移动操作,使得在将测试试剂盒移动到另一空间后,样品板的样品区域露出。

即使在没有移动测试试剂盒的状态下,也可以执行根据本发明的实施例的图像获取操作。例如,通过形成结构,使得可以将测试试剂盒放置在图像获取部4315的光学系统之间,或者通过使用反射器(例如镜子)用光束照射测试试剂盒,即使不移动测试试剂盒,也可以进行图像获取操作。

4.2.4.2图像帧的组合

根据本发明的实施例的诊断系统4300可以执行图像获取操作,其中,在移动测试试剂盒的结构和/或测试试剂盒的上述操作之后获取染色样品t的图像。

图57是示出根据本发明的实施例的获取图像的示例的图。

参照图57,诊断系统4300可以通过获取染色样品t的多个图像帧并组合所获取的图像帧来获取染色样品t的图像。这是因为,在诊断系统4300内的低照度情况下或有限空间中,与获取单帧的图像相比,当通过组合多个帧来获取图像时,可以获取更高质量的图像。

因而,为此在诊断系统4300执行获取图像的操作的同时,可以执行移动测试试剂盒和/或图像获取部4315的操作。

例如,可以分别设置连接到图像获取部4315的移动构件,用于获取多个帧图像和移动包括图像生成器、光学系统、和/或光束生成器的图像获取部4315,或者可以执行移动部4311的如下移动操作:其中,移动测试试剂盒。

图57中所示的拍摄1~9仅仅是获取多个帧的示例,并且图像获取部4315拍摄染色样品的图像的方法不限于图57中所示的拍摄的数量或拍摄的方向。

4.2.5诊断结果生成操作

诊断系统4300可以执行分析染色样品的图像并生成诊断结果的操作。

可以通过分析染色样品的图像并通过上述诊断结果生成器4317诊断样品的状态来生成根据本发明的实施例的诊断结果。

在根据本发明的实施例的诊断结果生成操作过程中,分析染色样品的图像的方法可以优选地通过图像处理技术来实现。例如,诊断结果生成操作可以是以下方法:感测染色样品的图像的每个像素的数据并分析感测的数据,以根据诊断结果生成器4317中预设的算法自动诊断样品。这里,所述算法可以是将染色样品的图像与染色样品的预先包含诊断结果图像进行比较的算法。然而,分析图像的方法不限于以上方法,只要可以执行该方法来分析诊断结果即可。

根据本发明的实施例的诊断结果生成操作也可以在没有操作诸如诊断结果生成器4317等硬件或软件元件的操作的情况下,分析染色样品的图像,诊断样品的状态并且生成诊断结果。例如,诊断结果生成操作也可以是以下方法:其中,由管理者分析染色样品的图像,诊断样品的状态,以及在诊断系统中给出诊断结果作为反馈。

由于生成的诊断结果最终包含在诊断系统4300中,因此,诊断结果生成器4317可以形成大数据。因此,根据本发明的实施例的诊断结果生成器4317可以基于大数据执行诊断结果操作。例如,通过分析染色样品的图像并根据诊断结果生成器4317生成的大数据通过预定算法生成诊断结果,可以在诊断结果中降低误诊率,并且还可以依照根据大数据的预定算法来验证由诊断结果生成器4317生成的诊断结果。

通过诊断结果生成器4317基于上述大数据执行诊断操作,诊断系统4300可以根据本发明自行学习生成精确的诊断结果。

可以单独执行根据本发明的实施例的诊断系统4300的每一个上述诊断操作。

根据本发明的实施例,“每个诊断操作能够被单独执行”可以表示:可以在诊断系统4300的每个元件中单独执行上述诊断操作中的每一个;或者可以表示:可以不执行上述诊断操作中的一些操作。

作为具体示例,在上述诊断操作之中,当单独执行涂抹操作和染色操作时,可以通过诊断系统4300的第一诊断设备来执行涂抹操作并且通过第二诊断设备来执行染色操作,或者在不执行染色操作的情况下可以在诊断系统4300的诊断设备4310中仅执行涂抹操作,或者在不执行涂抹操作的情况下可以在诊断系统4300的诊断设备4310中仅执行染色操作。

可以在诊断系统4300中多次执行根据本发明的实施例的每个诊断操作。

根据本发明的实施例,“能够多次执行每个诊断操作”可以表示:可以在一个元件和/或另一元件中的一个或多个中多次执行每个诊断操作。

作为具体的示例,在上述诊断操作之中,当多次执行染色操作时,可以在诊断系统4300的诊断设备4310中多次执行染色操作,或者可以在诊断系统4300的多个诊断设备4310中多次执行染色操作,或者可以在诊断系统4300的诊断设备4310和/或用户终端4350中多次执行染色操作。

可以根据执行每个诊断操作的上述类型,在诊断系统中实现根据本发明的实施例的诊断设备4310的上述元件。例如,在上述诊断操作之中,当单独地执行涂抹操作和染色操作并且涂抹操作由诊断系统4300的第一诊断设备执行而染色操作由第二诊断设备执行时,可以在第一诊断设备中仅实现第一移动部,并且可以在第二诊断设备中实现第二移动部和接触部。

4.3本发明的诊断系统的实现

根据本发明的实施例的测试试剂盒的使用者可以通过形成在测试试剂盒的贴片板中的样品注射部将样品注射到样品板的样品区域中。为了诊断放置在测试试剂盒的样品板上的样品的状态,使用者可以使用本发明的诊断系统4300。

下面将说明使用者使用通过本发明实现的诊断系统4300的方法。

图58是示出根据本发明的实施例的通过本发明实现的诊断设备的侧视图的图。

参照图58,通过本发明实现的诊断设备4310可以包括移动部4311、接触部4313和图像获取部4315。除了移动部4311、接触部4313和图像获取部4315之外,诊断设备4310还可以包括形成在诊断设备的主体内部的装载区域,用于诊断系统的使用者放置测试试剂盒。

图59示出了根据本发明的实施例的通过本发明实现的诊断设备4310的装载区域。参照图59,使用者可以将装载区域4610从主体的内部抽出到外部,以便使用者将测试试剂盒从诊断设备4310的外部放置到装载区域中。这里,通过上述装载区域移动部和/或移动部的移动操作,可以将装载区域4610移动到外部和/或内部。

图60是示出根据本发明的实施例的通过本发明实现的移动部的图。

参照图60,可以看出,根据本发明的实施例的移动部4311已经以机械形式实现。移动部4311可以包括:动力传输构件4703(以下称为第一动力传输构件),其被配置成将动力传输到测试试剂盒;动力产生器4701,其被配置成产生动力;和/或动力传输构件4703(以下称为第二动力传输构件),其连接至动力产生器4701和第一动力传输构件以与它们配合,使得动力被传递到动力产生器4701和第一动力传输构件。

这里,如图60所示,第二动力传输构件可以以传送带的形式实现,所述传送带连接动力产生器4701的驱动轴和第一动力传输构件的从动轴,使得第二动力传输构件传递电机的旋转力。然而,第二动力传输构件的形状不限于本实现方式。例如,第二动力传输构件也可以以连接到动力产生器4701的驱动轴的杆的形式实现,或者可以是第二动力传输构件向第一动力传输构件传递动力的形式。

图61是示出根据本发明的实施例的由本发明实现的移动部执行的移动操作的图。

参照图61,将说明由本发明实现的移动部4311执行的移动操作。移动测试试剂盒的结构的移动操作可以由移动部4311执行,移动部4311将动力产生器4701产生的旋转动力传输到第二动力传输构件,第二动力传输构件将接收的动力传输到第一动力传输构件,并且第一动力传输构件以齿条的形式将动力传输到测试试剂盒的结构。在实现的本发明中,第一动力传输构件可以包括安装有测试试剂盒的贴片板的第一安装部和安装有样品板的第二安装部。

在本发明的实施方式中,通过上述移动部4311的移动操作,诊断设备4310可以执行涂抹操作,使得放置在测试试剂盒的样品板的样品区域中的样品在样品板的纵向方向上被涂抹在样品区域中。参照图61,诊断设备4310的移动器4311可以是执行涂抹操作的元件。移动器4311可以通过第二动力传输构件将动力产生器产生的动力传输到测试试剂盒并使样品板和/或贴片板相对于彼此移动来执行涂抹操作,所述第二动力传输构件连接到测试试剂盒的其上安装有样品板的第一安装部和其上安装有贴片板的第二安装部。涂抹操作可以包括涂抹第一操作和涂抹第二操作。通过上述相对运动操作,移动部4311可以执行涂抹第一操作和涂抹第二操作,涂抹第一操作允许贴片板的涂抹部与样品板中的样品接触,在涂抹第二操作中,移动与样品接触的涂抹部,以沿板的纵向扫过样品区域。在涂抹第二操作之后,可以执行以下操作:将固定溶液施加在被涂抹样品上或使固定贴片与被涂抹样品接触,以便固定被涂抹样品。

图62是示出根据本发明的实施例的由本发明实现的接触部的图。

参照图62,可以认识到,由本发明实现的接触部4313是具有机械形式的接触部4313。本发明的接触部4313可以包括用于将动力传输到测试试剂盒的结构的动力传输构件4903和用于产生动力的动力产生器4901。

动力传输构件4903和动力产生器4901可以连接以彼此啮合,从而将动力产生器4901产生的动力立即传递到测试试剂盒的结构。例如,如图62所示,动力传输构件4903和动力产生器4901可以被实现为以齿条的形式接合,使得动力传输构件4903可以传递由动力产生器4901产生的机械型旋转动力。以这种方式,可以执行以下接触操作:其中,动力产生器4901的动力在与测试试剂盒接触时被传递到其结构,并且根据接收的动力移动测试试剂盒的结构,使得包含在测试试剂盒中的接触型贴片与样品t接触。

在本发明的实施方式中,在执行涂抹操作之后,诊断设备4310可以执行染色操作,以对样品区域中的被涂抹样品进行染色。

图63是示出根据本发明的实施例的诊断设备的接触部执行的接触操作的图。

参照图61和63,可以通过移动部4311和/或接触部4313的上述操作来执行染色操作。对于染色操作,移动部4311可以通过向连接到贴片板和/或样品板的第一安装部和/或第二安装部传递动力来使贴片板和/或样品板相对于彼此移动,使得存储在贴片板中的接触型贴片可以位于样品区域上。这里,为了使多个接触型贴片与样品板上的样品顺序地接触以便对样品进行染色,移动部4311可以相对于样品板将包含接触型贴片的空间的上表面顺序地移动到位于接触部4313的动力传输构件4903正下方的位置。当移动部4311使贴片板和/或样品板相对于彼此移动时,接触部4313可以执行接触操作,其中,如图63所示,移动动力传输构件4903,并且敲击包含接触型贴片的空间的上表面,使得接触型贴片可以与样品板上的样品接触。当执行诊断设备4310的染色操作时,控制器可以在考虑到通过接触型贴片与样品接触而执行染色的时间和染色之后进行干燥的时间的情况下控制移动部4311和接触部4313的操作。

在本发明的实施方式中,在对样品进行染色后,诊断设备4310可以执行生成染色样品的图像的操作。为了便于生成染色样品的图像,可以将染色样品的测试试剂盒移动到诊断设备4310内的另一空间。可以通过移动部4311或构成图像获取部4315的预定动力传输机执行移动测试试剂盒的操作。在移动测试试剂盒之后,从光源输出的光可以通过光学系统而被聚焦在测试试剂盒上,并且光可以由图像传感器接收,从而可以生成染色样品的放大图像。这里,如图57所示,当移动部4311和/或构成图像获取部4315的预定动力传输机移动放置有染色样品的测试试剂盒时,本发明中实现的图像获取部4315可以拍摄多个图像,并生成染色样品的放大图像。诊断设备4310可以通过电子控制图像获取部4315的光学系统的透镜厚度来调整染色样品的放大率。

可以通过服务器4330的诊断结果生成器4317分析染色样品的放大图像,并且可以生成样品的诊断结果。样品的这种诊断结果可以通过诸如预定通信网络等网络被发送到诊断设备4310,并通过诊断设备4310的输出模块输出,从而将诊断结果提供给使用者。

4.4诊断方法

下面将说明与上述诊断系统4300和/或诊断系统4300执行的诊断操作有关的一系列过程。

图64是示出根据本发明的实施例的诊断方法的流程图。

参照图64,诊断方法可以包括:装载操作,其中,将测试试剂盒提供给诊断设备4310;涂抹操作,其中,涂抹测试试剂盒中的样品t;染色操作,其中,对样品t进行染色;图像获取操作,其中,获取染色样品t的图像;以及诊断结果生成操作,其中,根据图像诊断样品t的状态。尽管可以执行所有的步骤s6310~s6390,但是并不总是需要执行s6310~s6390的所有步骤,并且可以仅执行步骤s6310~s6390中的至少一个。

下面将详细描述每个步骤。

在将测试试剂盒提供给诊断设备4310的装载操作步骤s6310中,控制模块5109可以掌握装载区域4610中的测试试剂盒的状态,并将掌握的状态作为反馈提供给使用者。例如,可以检测装载区域4610中是否存在测试试剂盒,并且可以将检测的结果作为反馈提供给使用者。当测试试剂盒未放置在适当的位置时,可以将这个事实作为反馈提供给使用者。

在涂抹测试试剂盒中的样品t的涂抹操作步骤s6330中,可以根据移动部4311的操作和/或用于控制诊断设备4310的操作的控制器4315的操作,将放置在测试试剂盒的样品板上的样品t涂抹在样品板的样品区域上。

在根据本发明的实施例的涂抹操作步骤s6330之后或在下面将说明的染色操作步骤s6350之前,可以执行固定染色样品的诊断系统4300的操作。在固定操作中,优选地,可以进行使用化学方法的固定。例如,如上所述,固定操作可以是如下操作:其中,使包括用于产生化学变化以使样品被固定的固定剂的固定贴片与被涂抹样品接触;或者将包括固定剂的固定溶液施加至被涂抹样品。

尽管可以通过诊断系统的移动部和/或接触部的移动操作来执行上述固定操作,但是也可以由诊断系统的使用者来执行固定操作。也可以省略涂抹操作步骤s6330与染色操作步骤s6350之间的固定操作。

在对样品t进行染色的染色操作步骤s6350中,可以根据移动部4311、接触部4313、和/或控制诊断设备4310的操作的控制器4315的操作来执行测试试剂盒的样品板上的被涂抹样品t的染色。

在获取染色样品t的图像的图像获取操作步骤s6370中,获取染色样品t的多个帧图像的过程可以是以下过程:其中,除了扫描手段之外,还获取染色样品t的多个帧图像,并且还可以合成获取的多个帧图像以获取染色样品t的图像。

在诊断样品t的状态的诊断结果生成操作步骤s6390中,诊断系统4300的诊断结果生成器4317可以分析染色样品t的图像,并生成与样品t的状态相关的诊断结果。

在根据本发明的实施例的诊断结果生成操作步骤中,诊断系统4300的涂抹操作和/或染色操作可以单独执行或者可以不执行。作为其示例,诊断系统4300可以仅包括移动部4311并因此仅执行涂抹操作;或者,可以包括移动部4311和接触部4313并因此仅执行染色操作;或者,在用户执行相对运动的情况下仅包括接触部,并因此仅执行染色操作;或者,包括多个移动部4311和/或接触部4313,并因此分别执行涂抹操作和染色操作。

所生成的样品t的诊断结果可以包括在诊断结果生成器4317中,或者被发送到另一外部设备并包含在其中。诊断结果可以通过输出的方式作为反馈给出,使得使用者可以通过诊断系统4300的诊断设备4310、服务器4330、和/或用户终端4350查看诊断结果。

在根据上述本发明的书写方法和/或浏览方法中,构成每个实施例的步骤不是必需的,因此,每个实施例可以选择性地包括上述步骤。构成每个实施例的步骤并不总是必须按照上述顺序进行,并且较后说明的步骤也可以在较前说明的步骤之前执行。而且,在执行每个步骤的同时,可以重复执行任何一个步骤。

尽管上面已经基于根据本发明的实施例说明了本发明的构成和特征,但是本发明不限于此,并且本发明所属领域的普通技术人员应该清楚,在本发明的精神和范围内,可以进行各种改变或变形。因此,应当注意,这些改变或变形属于所附权利要求的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1