一种干涉式光纤水听器光路系统及其声波信号检测方法与流程

文档序号:16599061发布日期:2019-01-14 20:07阅读:139来源:国知局
一种干涉式光纤水听器光路系统及其声波信号检测方法与流程

本发明涉及一种新型干涉式光纤水听器光路系统,属于光纤水听器领域。



背景技术:

光纤水听器是建立在光纤、光电子技术基础上的一种新型传感器,其原理是利用声波调制光波的强度、偏振、相位等参量来获取声波的频率、强度等信息。光纤水听器具有灵敏度高、带宽较宽、频响特性好、耐静水压、“湿端”全光、稳定性高、光缆更轻更小、耐高温、抗腐蚀性、传输距离远、可大规模复用等优点,在军事、商业、科研等多个领域逐步取代传统压电水听器而得到应用。如在军事领域,水听器可以远距离捕获海洋中声发射源,如潜艇发出的噪声,以便进行定位和警报,也可布置在海岸线上用于岸基警戒。在石油、天然气勘探,海洋地震波检测以及海洋环境检测,水文地理研究、鱼群探测、港口监视和海上缉毒等民用领域,水听器也有很大的应用前景。

目前实用的光纤水听器普遍为干涉型光纤水听器,常用的结构是马赫-泽德光纤干涉仪和迈克尔逊光纤干涉仪。干涉式光纤水听器是利用相干光相位随声压变化而改变的光学水听器,具有灵敏度高,易组阵,舰船拖曳负担小,成熟度高等优点。在干涉型光纤水听器的光路系统中,通常配备光纤水听器参考端,参考端的主要作用是为信号解调系统提供无外界声波信息的参考信号,进而在信号解调系统内,参考信号与含有声波信息的有用信号通过一定的数字算法得到外界声波信息。上述包含光纤水听器参考端的光路系统具有一定的局限性:难以实现光纤水听器参考端的隔音、隔振和隔热;光纤水听器参考端增加了光路系统的复杂性,容易引入多余噪声;光纤水听器参考端使匹配的信号解调系统功耗增加,结构复杂化。



技术实现要素:

本发明的技术解决问题是:相比于现有技术,提供了一种干涉式光纤水听器光路系统及信号解调方法,使得光路系统简单,成本降低,便于工程实用化;同时抗噪性能好,解调系统功耗降低,便于光纤水听器阵列的大规模复用。

本发明的技术解决方案是:一种干涉式光纤水听器光路系统,该系统包括光源调制系统、环形器、光纤水听器探头、光电探测器、模数转换器和信号解调处理器,其中:

光源调制系统输出脉冲光序列经环形器进入光纤水听器探头,所述脉冲光序列由两种不同频率的光脉冲信号交替构成,所述光脉冲信号间隔固定,脉冲宽度相同;

光纤水听器探头,将脉冲光序列分成两路,其中一路用于感应外界声波信号,将有外界声波信号时或者无外界声波信号时的感应信号作延迟处理,该延迟后的光序列与另一路光序列发生干涉,形成拍频光信号,该拍频光信号经环形器进入光电探测器;

光电探测器,将拍频光信号转换为模拟拍频电信号,进入模数转换器;

模数转换器,将模拟拍频电信号进行模数转换,变成数字拍频电信号,输出至信号解调处理器;

信号解调处理器,将无外界声波信号时的数字拍频电信号进行存储,根据存储的无外界声波信号时的数字拍频电信号,对收到的有外界声波信号时的数字拍频电信号进行信号解调处理,得到外部声波信号。

所述两种不同频率的光脉冲信号光强度表示为:

其中,b1和b2分别为不同频率脉冲光序列的脉冲光幅度值,f0+f1、f0+f2分别为不同频率脉冲光序列的光频率,分别为不同频率脉冲光序列的初相位。

信号解调处理器的具体实现为:

(a)、采集无外界声波信号作用时的数字拍频信号,并滤除该数字拍频信号的直流分量,得到无声数字拍频信号,所述无声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为无外界声波信号作用时数字拍频信号的初相位;

(b)、将步骤(a)所得到的无声数字拍频信号记为同向参考信号,对同向参考信号进行90°移相处理,得到正交参考信号,并将同向参考信号和正交参考信号存储;

(c)、采集有外界声波信号作用时光电探测器输出的模拟拍频电信号,得到有声数字拍频信号,所述有声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为有外界声波信号作用时无声数字拍频信号的初相位,为光纤水听器探头感应的外界声波信号;

(d)、滤除有声数字拍频信号的直流分量,并将其与存储的同向参考信号和正交参考信号分别相乘,之后采用低通滤波,滤除和频分量,得到差频分量:

(e)、步骤(d)的处理结果的正弦量和余弦量相除,得到有声数字拍频信号与参考信号相位差的正切,将其进行反正切处理,得到有声数字拍频信号与参考信号的相位差信号;

(f)、对有声数字拍频信号与参考信号相位差的信号进行高通滤波,滤除无外界声波信号作用时数字拍频信号的初相位以及有外界声波信号作用时数字拍频信号的初相位得到光纤水听器探头感应的外界声波信号

所述光纤水听器探头包括光纤耦合器、光纤延时环、第一法拉第旋转镜和第二法拉第旋转镜,其中,

光源调制系统输出的脉冲光序列经环形器进入光纤耦合器后,分为两路光,一路光到达第二法拉第旋转镜后反射回光纤耦合器,记为第一脉冲光序列;另一路光经光纤延时环到达第一法拉第旋转镜后反射回光纤延时环,形成第二脉冲光序列,第二脉冲光序列和第二脉冲光序列在光纤耦合器中发生干涉,得到模拟拍频电信号并输出;所述光纤延时环的时延等于脉冲光序列中的光脉冲间隔。

当外界存在声波信号时,光纤延时环感应外界声波信号,采用外界声波信号对从第一法拉第旋转镜反射回来的光信号进行相位调制。

光电探测器、模数转换器以及信号解调处理器的硬件电路三者置于同一电路板中。

所述方法包括以下步骤:所述模数转换器以及信号解调处理器采用同源外部晶振提供时钟。

所述信号解调处理器采用fpga实现。

一种干涉式光纤水听器系统的声波信号检测方法,其特征在于步骤如下:

1)、输出脉冲光序列至光纤水听器探头,所述脉冲光序列由两种不同频率的光脉冲信号交替构成,所述光脉冲信号间隔固定,脉冲宽度相同;

2)、采集无外界声波信号作用时的数字拍频信号,并滤除该数字拍频信号的直流分量,得到无声数字拍频信号,所述无声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为无外界声波信号作用时数字拍频信号的初相位;

3)、将步骤(2)所得到的无声数字拍频信号记为同向参考信号,对同向参考信号进行90°移相处理,得到正交参考信号,并将同向参考信号和正交参考信号存储;

4)、采集有外界声波信号作用时的数字拍频信号,所述有声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为有外界声波信号作用时数字拍频信号的初相位,为光纤水听器探头感应的外界声波信号;

5)、滤除有声数字拍频信号的直流分量,并将其与存储的同向参考信号和正交参考信号分别相乘,之后采用低通滤波,滤除和频分量,得到差频分量:

6)、将步骤(5)的处理结果的正弦量和余弦量相除,得到有声数字拍频信号与参考信号相位差的正切,将其进行反正切处理,得到有声数字拍频信号与参考信号的相位差信号;

7)、对有声数字拍频信号与参考信号相位差的信号进行高通滤波,滤除无外界声波信号作用时数字拍频信号的初相位以及有外界声波信号作用时数字拍频信号的初相位得到光纤水听器探头感应的外界声波信号

本发明与现有技术相比的优点在于:

(1)、本发明干涉式光纤水听器光路系统与常用光纤水听器光路系统相比,从物理角度上减少了光纤水听器参考端,使光路系统更简单,有效降低光路噪声,同时,降低信号解调系统电路结构的复杂性,同时也降低系统功耗;

(2)、本发明将无外界声波信号时的拍频光信号进行存储,根据存储的无外界声波信号时的数字拍频电信号,与外界声波信号时的数字拍频信号进行比对,得到外部声波信号的方法,可以有效降低系统成本,便于工程实用化,并有利于现场安装调试;

(3)、本发明光电探测器、模数转换器以及信号解调处理器的硬件电路三者置于同一电路板中,可减少因电路板之间导线连接引入的噪声;

(4)、本发明干涉式光纤水听器光路系统采用同源外部晶振,降低噪声;

(5)、本发明便于光纤水听器大规模复用,在复用时,只需更换很少的器件,即可实现光纤水听器阵列的大规模复用,同时并不影响其它器件的工作性能,大大降低了系统成本。

附图说明

图1为本发明实施例提供的新型干涉式光纤水听器光路系统的示意图;

图2是本发明实施例提供的新型干涉式光纤水听器光路解调方法的流程图。

具体实施方式

下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

图1示出了本发明实施例提供的干涉式光纤水听器光路系统图。如图1所示,该干涉式光纤水听器光路系统包括光源调制系统1、环形器2、光纤水听器探头3、光电探测器8、模数转换器9和信号解调处理器10。具体实施时,光电探测器8的外围电路需做好温度控制,使光电探测器8的外围电路处于光电探测器8最佳工作性能的温度环境中,当温度升高或降低,对温度进行补偿,避免外界温度变化引入噪声;模数转换器9的采样速率可调,最大采样率为400m,位宽至少为12bit;光电探测器8、模数转换器9以及信号解调处理器10的硬件电路三者最好置于同一电路板中,可减少因电路板之间导线连接引入的噪声,同时模数转换器9以及信号解调处理器10最好采用同源外部晶振,数据建立和保持可以得到保证,并且相位之间的关系固定。其中,

光源调制系统1输出脉冲光序列经环形器2进入光纤水听器探头3;

光纤水听器探头,将脉冲光序列分成两路,其中一路用于感应外界声波信号,将有外界声波信号时或者无外界声波信号时的感应信号作延迟处理,该延迟后的光序列与另一路光序列发生干涉,形成拍频光信号,该拍频光信号经环形器2进入光电探测器8;

光电探测器8,将拍频光信号转换为模拟拍频电信号,进入模数转换器9;

模数转换器9,将模拟拍频电信号进行模数转换,变成数字拍频电信号,输出至信号解调处理器10;

信号解调处理器10,将无外界声波信号时的拍频光信号进行存储,根据存储的无外界声波信号时的数字拍频电信号,对收到的有外界声波信号时的数字拍频电信号进行信号解调处理,得到外部声波信号。

上述实施例中,如图1所示,光源调制系统1输出不同频率的脉冲光序列中脉冲间隔固定,脉冲宽度相同脉冲光序列由两种不同频率的光脉冲信号交替构成,所述光脉冲信号间隔固定,脉冲宽度相同。具体的,光源调制系统1连续输出脉冲光序列,为后续的光路结构提供光信号;同时脉冲宽度和脉冲间隔应可微调,以保证调试阶段,确定最佳的光路结构光路系统。

上述实施例中,如图1所示,光纤水听器探头3包括光纤耦合器4、光纤延时环5、第一法拉第旋转镜6和第二法拉第旋转镜7;具体的,第一法拉第旋转镜6和第二法拉第旋转镜7是为了消除信号的偏振衰落现象。其中,

光源调制系统1输出的脉冲光序列经环形器2进入光纤耦合器4后,分为两路光,一路光到达第二法拉第旋转镜7后反射回光纤耦合器4,记为第一脉冲光序列;另一路光经光纤延时环5到达第一法拉第旋转镜6后反射回光纤耦合器4,记为第二脉冲光序列;第二脉冲光序列和第二脉冲光序列在光纤耦合器4中发生干涉,得到模拟拍频电信号并输出;所述光纤延时环5的时延等于脉冲光序列中的光脉冲间隔。

在光纤耦合器4内两路反射脉冲光序列中只有满足干涉条件的脉冲产生拍频,形成拍频光信号。具体的,在满足脉冲光序列经光纤延时环5的往返时间恰好等于光源调制系统1输出脉冲光序列的脉冲时间间隔时,满足干涉条件,形成拍频光信号。详细说明,在光纤水听器探头3内由第一法拉第旋转镜6反射的频率为f0+f2的脉冲光与第二法拉第旋转镜7反射的频率为f0+f1的脉冲光,所经光程相等,产生拍频光信号,其频率为f1-f2。

上述实施例中,如图1所示,光纤水听器探头3具有不同时段传感功能不同的特性。

当整个光路系统所在的系统处于自检过程或人为因素调试时,无外界声波信号对光纤水听器探头3内的脉冲光序列进行相位调制,因而光纤水听器探头3内拍频光信号的相位不会发生变化,无相位变化的拍频光脉冲经环形器2进入光电探测器8,光电探测器8将拍频光信号转换为模拟拍频电信号,经模数转换器9变成数字拍频电信号进入信号解调处理器10,并进行存储。具体的,光纤水听器探头3输出的拍频光脉冲没有携带外界声波信号,并在信号解调处理器10内经数字处理后进行存储,存储信号周期的整数倍且至少一个周期信号,以用于后续声波信号解调,此阶段光纤水听器探头3起到参考探头的作用。

当有声波信号时,外界声波信号对光纤水听器探头3内的脉冲光序列进行相位调制,光纤水听器探头3内拍频光信号的相位发生变化,带有相位变化的拍频光脉冲经环形器2进入光电探测器8,光电探测器8将拍频光信号转换为模拟拍频电信号,经模数转换器9变成数字拍频电信号进入信号解调处理器10。具体的,光纤水听器探头3输出的拍频光脉冲携带外界声波信号,并在信号解调处理器10内,对含有声波信息的数字信号与存储的参考信号进行数字解调处理,得到外界声波信号对应的信息,此阶段光纤水听器探头3起到传感探头的作用。

所述信号解调处理器10采用fpga实现,其具体实现为:

(a)、采集无外界声波信号作用时的数字拍频信号,并滤除该数字拍频信号的直流分量,得到无声数字拍频信号,所述无声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为无外界声波信号作用时数字拍频信号的初相位;

(b)、将步骤(a)所得到的无声数字拍频信号记为同向参考信号,对同向参考信号进行90°移相处理,得到正交参考信号,并将同向参考信号和正交参考信号存储;

(c)、采集有外界声波信号作用时光电探测器8输出的模拟拍频电信号,得到有声数字拍频信号,所述有声数字拍频信号的表达式为:

其中,b为交流项幅值,δf为拍频频率差,为有外界声波信号作用时数字拍频信号的初相位,为光纤水听器探头3感应的外界声波信号;

(d)、滤除有声数字拍频信号的直流分量,并将其与存储的同向参考信号和正交参考信号分别相乘,之后采用低通滤波,滤除和频分量,得到差频分量:

(e)、步骤(d)的处理结果的正弦量和余弦量相除,得到有声数字拍频信号与参考信号相位差的正切,将其进行反正切处理,得到有声数字拍频信号与参考信号的相位差信号;

(f)、对有声数字拍频信号与参考信号相位差的信号进行高通滤波,滤除无外界声波信号作用时数字拍频信号的初相位以及有外界声波信号作用时数字拍频信号的初相位得到光纤水听器探头3感应的外界声波信号

本实施例还提供了上述一种干涉式光纤水听器系统的声波信号检测方法,结合图2描述,该方法包括以下步骤:

1)、采用光源调制系统1输出脉冲光序列,该输出脉冲光序列经环形器2进入光纤水听器探头3,所述脉冲光序列由两种不同频率的光脉冲信号交替构成,所述光脉冲信号间隔固定,脉冲宽度相同。

所述两种不同频率的光脉冲信号光强度表示为:

其中,b1和b2分别为不同频率脉冲光序列的脉冲光幅度值,f0+f1、f0+f2分别为不同频率脉冲光序列的光频率,分别为不同频率脉冲光序列的初相位。

2)、采集无外界声波信号作用时的数字拍频信号,并滤除该数字拍频信号的直流分量,得到无声数字拍频信号。

当无外界声波信号时,在光纤水听器探头3内发生拍频,形成频率差为δf=f1-f2的拍频光信号,由光电探测器8转换为模拟拍频电信号,信号表达式为:

3)将步骤2)所得到的无声数字拍频信号记为同向参考信号,对同向参考信号进行90°移相处理,得到正交参考信号,并将同向参考信号和正交参考信号存储;

同向参考信号yr为:

其中,b为交流项幅值,δf为拍频频率差,表示无外界声波信号作用时数字拍频信号的初相位。

对yr进行移相90°,得到其正交参考信号:

其中,b为交流项幅值,δf为拍频频率差,表示无外界声波信号作用时数字拍频信号的初相位。

4)、采集有外界声波信号作用时的数字拍频信号;

当有外界声波信号时,声波信号只对拍频光信号的相位进行调制,光信号的幅值保持不变,由光电探测器8转换为模拟拍频电信号,信号表达式为:

其中,c为直流分量,d为交流项幅值,δf为拍频频率差,表示无外界声波信号作用时数字拍频信号的初相位,表示有外界声波信号作用时数字拍频信号的初相位,表示光纤水听器探头3感应的外界声波信号,是需要被解调的量。

5)、滤除有声数字拍频信号的直流分量,并将其与存储的同向参考信号和正交参考信号分别相乘,之后采用低通滤波,滤除和频分量,得到差频分量;

光电探测器8输出的模拟信号由模数转换器9变成数字拍频电信号进入信号解调处理器10,在信号解调处理器10内准确选取拍频电信号,并采用带通滤波器,去除直流分量,得到携带声信息的信号表达式:

其中,b为交流项幅值,δf为拍频频率差,表示有外界声波信号作用时数字拍频信号的初相位,表示光纤水听器探头3感应的外界声波信号,是需要被解调的量。

在信号解调处理器10内,将上式存储的同向参考信号yr、正交参考信号ysr分别相乘,并采用低通滤波,得到:

其中,b2表示交流项分量,表示无外界声波信号作用时数字拍频信号的初相位,表示有外界声波信号作用时数字拍频信号的初相位,表示光纤水听器探头3拾取的外界声波信号,是需要被解调的量。

6)、将步骤(5)的处理结果的正弦量和余弦量相除,得到有声数字拍频信号与参考信号相位差的正切,将其进行反正切处理,得到有声数字拍频信号与参考信号的相位差信号;

正切信号表达式:

相位差信号表达式:

7)、对有声数字拍频信号与参考信号相位差的信号进行高通滤波,滤除无外界声波信号作用时数字拍频信号的初相位以及有外界声波信号作用时数字拍频信号的初相位得到光纤水听器探头3感应的外界声波信号

本发明采用光纤水听器探头在不同时段传感功能不同的方法,与常用光纤水听器光路系统相比,从物理角度上减少了光纤水听器参考端,使光路系统更简单,有效降低光路系统噪声;并且本发明可以有效降低系统成本,便于工程实用化,有利于现场安装调试;并且本发明实现的光纤水听器光路系统可以使信号解调系统的信号采集通道至少减少1路,从而降低了信号解调系统电路结构的复杂性,同时也降低了系统功耗;本发明便于光纤水听器大规模复用,在复用时,只需更换很少的器件,即可实现光纤水听器阵列的大规模复用,同时并不影响其它器件的工作性能,大大降低了系统成本。

以上所述的实施例只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1