一种测量物体运动速度的连续调频激光雷达装置的制作方法

文档序号:16312677发布日期:2018-12-19 05:20阅读:179来源:国知局
一种测量物体运动速度的连续调频激光雷达装置的制作方法

本发明涉及连续调频激光雷达测量领域,特别涉及一种测量物体运动速度的连续调频激光雷达装置。

背景技术

调频连续波雷达具有高距离分辨力、低发射功率、高接收灵敏度、结构简单等优点,且其最大的优点是可对漫反射物体进行测量,这是迈克尔逊干涉仪等无法做到的,调频连续波雷达的测距原理是通过提取频率信息,来解算距离信息,这一步可以通过基于fft的处理器完成,且对于工业场景中的测距和测速来说,依赖频率测量比依赖相位测量更为简便,因为工业场景中的测量环境往往不能达到很高的要求,这对依赖于相位测量的影响是非常大的。

然而,连续调频雷达采用的是线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统的实际分辨力下降,而且会引起运动目标测距和测速误差。



技术实现要素:

本发明的目的是克服现有技术中的不足,提供一种测量物体运动速度的连续调频激光雷达装置。本发明利用较低成本的器件和较为简便的算法完成运动目标(包括漫反射物体)的测速,同时能判断物体的速度方向。

本发明所采用的技术方案是:一种测量物体运动速度的连续调频激光雷达装置,包括抑制振动效应的调频连续波激光测距装置,所述抑制振动效应的调频连续波激光测距装置的可调谐激光器的输出端连接有第四分束器,所述可调谐激光器的输出经过所述第四分束器分为g路和h路,所述h路和所述抑制振动效应的调频连续波激光测距装置的固定激光器的输出端并列连接至所述抑制振动效应的调频连续波激光测距装置的第一耦合器,所述g路进入方向判别系统,所述方向判别系统的输出端连接至所述抑制振动效应的调频连续波激光测距装置的同步数据采集系统的输入端;

所述方向判别系统产生吸收峰信号,用于与所述抑制振动效应的调频连续波激光测距装置的测量干涉系统结合,共同判断物体速度方向;

所述同步数据采集系统用于对所述抑制振动效应的调频连续波激光测距装置产生的测量拍频信号、辅助拍频信号以及所述方向判别系统产生的吸收峰信号进行同步采样。

进一步的,所述方向判别系统包括与所述第四分束器输出端相连接的气体吸收池和与所述气体吸收池输出端相连接的第五光电探测器,所述第五光电探测器的输出端连接至所述抑制振动效应的调频连续波激光测距装置的同步数据采集系统;

所述气体吸收池对不同频率的光吸收程度不同,从而根据气体吸收池的吸收峰的趋势走向,判断所述可调谐激光器的频率扫描方向,进一步根据所述抑制振动效应的调频连续波激光测距装置的测量干涉系统产生的第一测量拍频信号的频谱相对于物体静止时发生的频率偏移方向来判断物体速度方向;

所述第五光电探测器用于探测气体吸收池对所述可调谐激光器输出的调频连续波的吸收峰曲线,并形成吸收峰信号。

进一步的,所述可调谐激光器与所述固定激光器输出的光频率的分离满足相干长度条件。

本发明的有益效果是:针对包括漫反射物体在内的目标,通过一种连续调频激光雷达进行测速,本装置同时也可完成测距功能,这在申请号为2018105811330、名称为一种抑制振动效应的调频连续波激光测距装置的专利申请中有所详细说明,本装置在原有装置基础上增加了气体吸收池和光电探测器,依据气体吸收池对不同频率的光吸收程度不同,再结合第一测量拍频信号的频谱图,从而能分析出物体的运动速度方向,物体的运动速度大小通过处理两个测量拍频信号解算获得。本发明解决了传统连续调频雷达的距离与速度耦合的问题,扩展了传统连续调频雷达的功能和应用范围,且装置成本较低,经济适用性较强。

附图说明

图1为本发明一种测量物体运动速度的连续调频激光雷达装置结构示意图;

图2为本发明的发射激光信号;

图3a为本发明的气体吸收池的吸收峰谱线;

图3b为图3a的8点高斯拟合谱线;

图4为本发明在静止时刻和匀速运动时刻对s1进行快速傅里叶变换得到的频谱图;

图5为本发明对匀速运动时刻的s5进行快速傅里叶变换得到的频谱图;

附图标注:1、固定激光器;2、可调谐激光器;3、第一耦合器;4、偏振控制器;5、掺铒光纤放大器;6、光子晶体光纤;7、光纤光栅;8、第二分束器;9、光环形器;10、准直透镜;11、反射镜;12、第一光电探测器;13、第二光电探测器;14、第三光电探测器;15、第四光电探测器;16、第一粗波分复用器;17、第二耦合器;18、第三分束器;19、延时光纤;20、第三耦合器;21、第二粗波分复用器;22、同步数据采集系统;23、数据处理系统;24、第一分束器;25、测量干涉系统;26、辅助干涉系统;27、第四分束器;28、气体吸收池;29、第五光电探测器;30、方向判别系统;

s1、第一测量拍频信号;s2、第二测量拍频信号;s3、第一辅助拍频信号;s4、第二辅助拍频信号;s5、重采样后的第一测量拍频信号和第二测量拍频信号相乘并低通滤波得到的信号;s6、吸收峰信号。

具体实施方式

为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:

如附图1所示,一种测量物体运动速度的连续调频激光雷达装置,包括抑制振动效应的调频连续波激光测距装置和方向判别系统30。

所述抑制振动效应的调频连续波激光测距装置记载在申请号为2018105811330的专利申请中,包括固定激光器1、可调谐激光器2、第一耦合器3,其中,所述可调谐激光器2与所述固定激光器1输出的光频率的分离满足相干长度条件。

所述可调谐激光器2的输出端连接有第四分束器27,所述可调谐激光器2的输出经过所述第四分束器27分为g路和h路,所述g路进入方向判别系统30,所述h路和所述固定激光器1的输出端并列连接至所述第一耦合器3,所述第一耦合器3的输出端依次连接有偏振控制器4和掺铒光纤放大器5,所述掺铒光纤放大器5的输出端通过光子晶体光纤6连接至光纤光栅7的输入端,所述光纤光栅7的输出经过第一分束器24分为a路和b路,所述a路进入测量干涉系统25,所述b路进入辅助干涉系统26。

所述方向判别系统30产生吸收峰信号s6,用于与所述抑制振动效应的调频连续波激光测距装置的测量干涉系统25结合,共同判断物体速度方向。所述方向判别系统30包括与所述第四分束器27输出端相连接的气体吸收池28和与所述气体吸收池28输出端相连接的第五光电探测器29,所述第五光电探测器29的输出端连接至同步数据采集系统22;所述方向判别系统30包括与所述第四分束器27输出端相连接的气体吸收池28和与所述气体吸收池28输出端相连接的第五光电探测器29,所述第五光电探测器29的输出端连接至所述抑制振动效应的调频连续波激光测距装置的同步数据采集系统22。所述气体吸收池28对不同频率的光吸收程度不同,从而根据气体吸收池28的吸收峰的趋势走向,可以判断所述可调谐激光器2的频率扫描方向,进一步根据所述测量干涉系统25产生的第一测量拍频信号s1的频谱相对于物体静止时发生的频率偏移方向来判断物体速度方向。所述第五光电探测器29用于探测气体吸收池28对所述可调谐激光器2输出的调频连续波的吸收峰的变化趋势(气体吸收池对频率低的光信号吸收峰短,对频率高的光信号吸收峰长),并形成吸收峰信号s6。

所述测量干涉系统25用于对待测运动目标进行探测,产生两个测量拍频信号。所述测量干涉系统25包括与所述第一分束器24的输出端相连接的第二分束器8,所述第二分束器8的输出端分为c路和d路,c路和d路的输入均为含有频率扫描信号和镜像频率扫描信号的组合光信号。所述d路上依次连接有第二耦合器17、第一粗波分复用器16,所述第一粗波分复用器16的输出端并列连接有第一光电探测器12和第二光电探测器13,所述第一光电探测器12和第二光电探测器13的输出端共同连接至所述同步数据采集系统22的输入端。所述c路上包括光环形器9、准直透镜10和反射镜11,所述反射镜11设置在所述准直透镜10的前端,所述光环形器9采用带有第一、第二、第三端口,用来将光循环地从第一端口传输到第二端口,从第二端口传输到第三端口的3端口光环形器,所述光环形器9的第一端口与所述第二分束器8相连接,第二端口与所述准直透镜相10连接,第三端口连接至所述第二耦合器17的另一输入端。所述第二耦合器17能发生所述频率扫描信号和所述镜像频率扫描信号的分别干涉。所述第一粗波分复用器16用于将所述频率扫描信号和所述镜像频率扫描信号分开。所述第一光电探测器12和第二光电探测器13分别用于探测所述频率扫描信号和所述镜像频率扫描信号分别干涉后所形成的第一测量拍频信号s1和第二测量拍频信号s2。进入所述测量干涉系统25的激光经过第二分束器8分为c路和d路。其中,所述c路激光经过所述光环形器9、准直透镜10,由所述反射镜11反射后,原路返回进入所述光环形器9,再进入所述第二耦合器17,d路激光与c路激光在所述第二耦合器17汇合;由于进入所述测量干涉系统25的光信号包含两个频率段的信号,故在第二耦合器17能发生两种信号的分别干涉;第一粗波分复用器16用于将上述处在不同频率段的两种信号分开,故在第一光电探测器12和第二光电探测器13上能分别检测到第一测量拍频信号s1和第二测量拍频信号s2。

所述辅助干涉系统26产生两个辅助拍频信号,利用所述两个辅助拍频信号消除所述可调谐激光器2的光频调制的非线性。所述辅助干涉系统26包括与所述第一分束器24的输出端相连接的第三分束器18,所述第三分束器18的输出端分为e路和f路,e路和f路的输入均为含有频率扫描信号和镜像频率扫描信号的组合光信号。所述f路上依次连接有第三耦合器20、第二粗波分复用器21,所述第二粗波分复用器21的输出端并列连接有第三光电探测器14和第四光电探测器15,所述第三光电探测器14和第四光电探测器15的输出端共同连接至所述同步数据采集系统22的输入端。所述e路上连接有长度恒定且已知光程差的延时光纤19,所述延时光纤19的输出端连接至所述第三耦合器20的另一输入端。所述第三耦合器20能发生所述频率扫描信号和所述镜像频率扫描信号的分别干涉。所述第二粗波分复用器21用于将所述频率扫描信号和所述镜像频率扫描信号分开。所述第三光电探测器14和第四光电探测器15分别用于探测所述频率扫描信号和所述镜像频率扫描信号分别发生干涉后所形成的第一辅助拍频信号s3和第二辅助拍频信号s4。进入所述辅助干涉系统26的激光经过所述第三分束器18分为e路和f路,所述e路激光经过长度恒定且已知光程差的延时光纤19后进入第三耦合器20与f路激光汇合;同理由于进入所述辅助干涉系统26的光信号包含两个频率段的信号,故在第三耦合器20能发生两种信号的分别干涉;第二粗波分复用器21用于将上述处在不同频率段的两种信号分开,故在第三光电探测器14和第四光电探测器15上能分别检测到第一辅助拍频信号s3和第二辅助拍频信号s4。

所述测量干涉系统25、所述辅助干涉系统26以及所述方向判别系统30的输出端共同连接至同步数据采集系统22的输入端,所述同步数据采集系统22的输出端连接至数据处理系统23。

所述同步数据采集系统22用于对所述测量干涉系统25产生的第一测量拍频信号s1和第二测量拍频信号s2、所述辅助干涉系统26产生的第一辅助拍频信号s3和第二辅助拍频信号s4以及所述方向判别系统30产生的吸收峰信号s6进行同步采样。

所述数据处理系统23,包括通过方向判别系统30的气体吸收池28对可调谐激光器2输出的调频信号的吸收峰曲线的走向趋势(即,吸收峰信号s6的曲线)以及第一测量拍频信号s1的频谱进行结合从而判断运动物体的速度方向;对所述辅助干涉系统26产生的第一辅助拍频信号s3和第二辅助拍频信号s4进行处理产生等光频重采样信号,采用等光频重采样信号对所述测量干涉系统25产生的第一测量拍频信号s1和第二测量拍频信号s2同时进行等光频重采样;然后将等光频重采样后的两个测量拍频信号相乘并低通滤波得到s5,对s5进行快速傅里叶变换便可得到与速度信息有关的频率信息,进一步根据频率解算出物体的速度大小。对于匀速运动的物体,s5是一个单频信号,通过提取其频率便可解算得到物体的速度大小;对于非匀速运动的物体,可以以极短时间的时间窗口(如1μs)对采集到的数据的不同段进行快速傅里叶变换,在极短的时间窗口内物体的运动速度仍可视为恒定不变,故可解算出物体运动速度随时间变化的规律。

图2示出了本发明的发射激光信号,f0为固定激光器1的发射信号的频率,可调谐激光器2发射信号为频率f1到f2的频率扫描信号,而新生成的另一信号为频率f3到f4的频率扫描信号,两个信号的频率是关于f0对称的(图中f1和f0之间与f3和f0之间的差值均为δf),将两个信号产生的拍频信号分别经过等光频重采样,然后相乘并低通滤波得到s5,由于两个频率扫描信号扫描方向相反,故两个测量拍频信号相乘并低通滤波后得到的s5信号的频率是一个与速度有关的一次函数,通过其频率信息便可得到物体的运动速度信息,再结合方向判别系统30以及第一测量拍频信号s1的频谱可获得其速度方向。在以下的应用实例中,仅以物体以恒定速度运动作举例,但本发明不仅限于测量恒定的运动速度。

应用实例:

如图1所示,被测目标11放置在导轨上,导轨放置在距离激光雷达大约1m的地方,控制导轨让物体以200mm/s的速度运动,且物体速度方向是接近激光雷达的,设置可调谐激光器2的带宽为10nm(1546.7nm-1556.7nm),扫描速度为100nm/s,固定激光器1发射的激光频率为1543.7nm,按照本发明的测距方法,气体吸收池28加上第一测量拍频信号s1的频谱相结合来判别运动速度方向,由图3a和图3b气体吸收池28对可调谐激光器2输出光信号的吸收峰谱线可知,吸收峰在由长变短,故扫描频率在降低,可调谐激光器2处于下扫频阶段。光纤光栅7的输出包含1546.7nm-1556.7nm的频率扫描信号和1540.7nm-1530.7nm的频率扫描信号,且两个频率扫描信号的扫描方向是相反的,将由两个频率扫描信号组成的混合光通过第一分束器24分为a、b两路,其中,a路进入测量干涉系统25,b路进入辅助干涉系统26,辅助干涉系统26用于消除可调谐激光器2的光频调制的非线性,对第一辅助拍频信号s3和第二辅助拍频信号s4进行处理产生重采样信号,将重采样信号作为第一测量拍频信号s1和第二测量拍频信号s2的触发采样信号(即重采样过程),以消除可调谐激光器2的调频非线性影响。由于可调谐激光器2处于下扫频阶段,故此时第一测量拍频信号s1的频率可表示为(-α1τ+fd)/(4×α1×τr),其中fd是多普勒频移(可由公式fd=2v/λ得到,v为速度,λ为可调谐激光器2输出光的中心波长),是包含方向的矢量;α1是可调谐激光器2的扫描速度;τ是测量干涉系统25中运动目标产生光程差的时间延迟;τr是辅助干涉系统26的已知光程差的时间延迟;由于频率均为正值,故可改写为(α1τ-fd)/(4×α1×τr),对待测物体静止时刻和匀速运动时刻的第一测量拍频信号s1分别进行快速傅里叶变换,频谱图如图4所示,由频谱图可知,对于运动的物体,第一测量拍频信号s1并非是单频信号,运动时刻引入的多普勒频移导致相对于静止时刻的频率向右偏移,且由于物体运动使得第一测量拍频信号s1经快速傅里叶变换后的频谱展宽,由此得出速度为负值,即速度方向接近激光雷达系统,与实际相符。将重采样后的第一测量拍频信号s1和第二测量拍频信号s2相乘并低通滤波得到s5,对s5进行快速傅里叶变换,其频谱图如图5所示,由图5可知,相比较于单独对测量拍频信号进行快速傅里叶变换,s5经快速傅里叶变换后其频谱图显示为一个单频信号,根据其峰值频率为5.1616×105hz解算出待测物体运动速度为200.012mm/s,与实际符合,且频谱峰值频率与静止时刻的测距值无关,也就是说本发明无须知道静止时刻待测物体的具体位置,便可完成速度的测量。通过上述实例验证了本发明可以在不测量物体静止时刻位置的前提下,通过比较简单的系统和方法实现物体(包括漫反射物体)的速度测量。

尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1