砂岩井的开采确定方法及系统与流程

文档序号:17582422发布日期:2019-05-03 21:02阅读:355来源:国知局
砂岩井的开采确定方法及系统与流程

本发明涉及油气田勘探技术领域,具体地,涉及一种砂岩井的开采确定方法及系统。



背景技术:

目标层段的砂岩储层位于两套较厚煤层之间,岩性结构复杂。砂岩储层上部的煤层厚度横向变化较快,在地震剖面中通常与其附近的泥岩、薄层砂岩共同形成较强波峰反射;砂岩储层本身属三角洲前缘亚相下的河道沉积物,形态大多呈条带状分布,但厚砂岩区仅局部分布,是良好的天然气储集体;砂岩储层上部煤层的上方通常为泥岩夹薄层砂岩,储层下部紧邻一套泥岩、灰岩、砂岩互层的地层,这些砂岩与其上下地层共同在地震剖面中形成复杂多变的反射波组;该地层的下方是一套厚度4m-8m的煤层,在地震剖面中通常形成强而稳定的波峰反射。受上下煤层地震反射太强、陆地地震数据分辨率低、储层上下地层地震反射系数差异较小、储层厚度横向变化快等因素影响,现有技术无法准确确定砂岩井是否有开采价值,浪费了不必要的开采成本。



技术实现要素:

本发明实施例的主要目的在于提供一种砂岩井的开采确定方法及系统,以准确确定有开采价值的砂岩井,节约了开采成本。

为了实现上述目的,本发明实施例提供一种砂岩井的开采确定方法,包括:获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

本发明实施例还提供一种砂岩井的开采确定系统,包括:

获取单元,用于获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

第一时差单元,用于根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

第二时差单元,用于根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

波谷振幅比值单元,用于根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

门槛值单元,用于确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断单元,用于判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

标记单元,用于将待测井标记为待开采的砂岩井。

本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:

获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:

获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

本发明实施例的砂岩井的开采确定方法及系统先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井,可以准确确定有开采价值的砂岩井,节约了开采成本。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明一实施例中砂岩井的开采确定方法的流程图;

图2是本发明一实施例中其中一个已开采砂岩井对应的地震振幅剖面的示意图;

图3是本发明一实施例中已开采砂岩井的第一时差与砂岩储层厚度的交会图;

图4是本发明一实施例中已开采砂岩井的第二时差与砂岩储层厚度的交会图;

图5是本发明一实施例中已开采砂岩井的波峰的最大振幅值与砂岩储层厚度的交会图;

图6是本发明一实施例中已开采砂岩井的第一波谷的最大振幅值与砂岩储层厚度的交会图;

图7是本发明一实施例中已开采砂岩井的第二波谷的最大振幅值与砂岩储层厚度的交会图;

图8是本发明一实施例中已开采砂岩井的波谷振幅比值与砂岩储层厚度的交会图;

图9是本发明实施例中砂岩井的开采确定系统的结构框图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

鉴于现有技术无法准确确定砂岩井是否有开采价值,浪费了不必要的开采成本,本发明实施例提供一种砂岩井的开采确定方法,以准确确定有开采价值的砂岩井,节约了开采成本。以下结合附图对本发明进行详细说明。

图1是本发明一实施例中砂岩井的开采确定方法的流程图。如图1所示,砂岩井的开采确定方法包括:

s101:获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面。

s102:根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差。

s103:根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差。

s104:根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值。

s105:确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值。

s106:判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值。

s107:当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

图1所示的砂岩井的开采确定方法的执行主体可以为计算机。由图1所示的流程可知,本发明实施例的砂岩井的开采确定方法先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井,可以准确确定有开采价值的砂岩井,节约了开采成本。

一实施例中,通过如下公式得到待测井的第一时差:

δt1=t1-t2;

其中,δt1为第一时差,t1为第一煤层的顶面的反射时间,t2为第二煤层的顶面的反射时间。

一实施例中,通过如下公式得到待测井的第二时差:

δt2=t2-t3;

其中,δt2为第二时差,t2为第二煤层的顶面的反射时间,t3为砂岩储层的底面的反射时间。

一实施例中,通过如下公式得到待测井的波谷振幅比值:

b=a1/a2;

其中,b为波谷振幅比值,a1为第一波谷的最大振幅值,a2为第二波谷的最大振幅值。

具体实施时,可以通过如下方式确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值:

1、获取每个已开采砂岩井的砂岩储层厚度、第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值。其中,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面。图2是本发明一实施例中其中一个已开采砂岩井对应的地震振幅剖面的示意图。如图2所示,图2的横坐标为地震道号,单位为道,纵坐标为地震波双程反射时间,单位为ms。tp10为第二煤层的顶面反射时间线,tp10-1为砂岩储层的底面反射时间线,tc2为第一煤层的顶面反射时间线。

2、根据每个已开采砂岩井的第一煤层的顶面的反射时间和每个已开采砂岩井的第二煤层的顶面的反射时间,得到每个已开采砂岩井的第一时差(tc2与tp10的时差)。

3、根据每个已开采砂岩井的第二煤层的顶面的反射时间和每个已开采砂岩井的砂岩储层的底面的反射时间,得到每个已开采砂岩井的第二时差(tp10与tp10-1的时差)。

4、根据每个已开采砂岩井的第一波谷的最大振幅值和每个已开采砂岩井的第二波谷的最大振幅值,得到每个已开采砂岩井的波谷振幅比值。

表1是本发明实施例中已开采砂岩井的振幅属性数据表。如表1所示,已开采砂岩井的振幅属性数据表包括每个已开采砂岩井的tc2与tp10的时差、tp10与tp10-1的时差、第一波谷的最大振幅值、第二波谷的最大振幅值、波峰的最大振幅值、已开采砂岩井的波谷振幅比值和砂岩储层厚度。

表1

5、根据已开采砂岩井的第一时差(tc2与tp10的时差)和砂岩储层厚度确定第一时差门槛值。图3是本发明一实施例中已开采砂岩井的第一时差与砂岩储层厚度的交会图。如图3所示,横坐标为第一时差,单位为毫秒(ms);纵坐标为砂岩储层厚度,单位为米。由图3中可以看出,砂岩储层厚度在10米以上的已开采砂岩井数据均在竖线右边,即砂岩储层厚度在10米以上的已开采砂岩井对应的第一时差均大于或等于38毫秒,由此可以确定第一时差门槛值为38毫秒。

6、根据已开采砂岩井的第二时差(tp10与tp10-1的时差)和砂岩储层厚度确定第二时差门槛值。图4是本发明一实施例中已开采砂岩井的第二时差与砂岩储层厚度的交会图。如图4所示,横坐标为第二时差,单位为毫秒(ms);纵坐标为砂岩储层厚度,单位为米。由图4中可以看出,砂岩储层厚度在10米以上的已开采砂岩井数据均在竖线右边,即砂岩储层厚度在10米以上的已开采砂岩井对应的第二时差大于或等于17毫秒,由此可以确定第二时差门槛值为17毫秒。

7、根据已开采砂岩井的波峰的最大振幅值和砂岩储层厚度确定波峰振幅门槛值。图5是本发明一实施例中已开采砂岩井的波峰的最大振幅值与砂岩储层厚度的交会图。如图5所示,横坐标为波峰的最大振幅值;纵坐标为砂岩储层厚度,单位为米。由图5中可以看出,砂岩储层厚度在10米以上的已开采砂岩井对应的波峰的最大振幅值大于或等于1000,由此可以确定波峰振幅门槛值为1000。

8、根据已开采砂岩井的波谷振幅比值和砂岩储层厚度确定波谷振幅比值门槛值。图6是本发明一实施例中已开采砂岩井的第一波谷的最大振幅值与砂岩储层厚度的交会图。图7是本发明一实施例中已开采砂岩井的第二波谷的最大振幅值与砂岩储层厚度的交会图。图8是本发明一实施例中已开采砂岩井的波谷振幅比值与砂岩储层厚度的交会图。图6的横坐标为第一波谷的最大振幅值,纵坐标为砂岩储层厚度,单位为米;图7的横坐标为第二波谷的最大振幅值,纵坐标为砂岩储层厚度,单位为米;图8的横坐标为波谷振幅比值,纵坐标为砂岩储层厚度,单位为米。如图6至图8所示,砂岩储层厚度在10米以上的已开采砂岩井的大部分数据在竖线右边,即砂岩储层厚度在10米以上的已开采砂岩井对应的波谷振幅比值大于或等于0.9,由此可以确定波谷振幅比值门槛值为0.9。

本发明实施例的具体流程如下:

1、获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值。其中,待测井位于鄂尔多斯盆地。

2、根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差。根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差。根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值。

3、获取每个已开采砂岩井的砂岩储层厚度、第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值。

4、根据每个已开采砂岩井的第一煤层的顶面的反射时间和每个已开采砂岩井的第二煤层的顶面的反射时间,得到每个已开采砂岩井的第一时差。根据已开采砂岩井的第一时差和砂岩储层厚度确定第一时差门槛值。

5、根据每个已开采砂岩井的第二煤层的顶面的反射时间和每个已开采砂岩井的砂岩储层的底面的反射时间,得到每个已开采砂岩井的第二时差。根据已开采砂岩井的第二时差和砂岩储层厚度确定第二时差门槛值。

6、根据已开采砂岩井的波峰的最大振幅值和砂岩储层厚度确定波峰振幅门槛值。

7、根据每个已开采砂岩井的第一波谷的最大振幅值和每个已开采砂岩井的第二波谷的最大振幅值,得到每个已开采砂岩井的波谷振幅比值。根据已开采砂岩井的波谷振幅比值和砂岩储层厚度确定波谷振幅比值门槛值。

8、判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值。

9、当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

综上,本发明实施例的砂岩井的开采确定方法先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井。目前常规方法确定的有开采价值的砂岩井的准确率为72%左右,而采用本发明确定的有开采价值的砂岩井的准确率为85.7%,因此本发明可以准确确定有开采价值的砂岩井,节约了开采成本。

基于同一发明构思,本发明实施例还提供了一种砂岩井的开采确定系统,由于该系统解决问题的原理与砂岩井的开采确定方法相似,因此该系统的实施可以参见方法的实施,重复之处不再赘述。

图9是本发明实施例中砂岩井的开采确定系统的结构框图。如图9所示,砂岩井的开采确定系统包括:

获取单元,用于获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

第一时差单元,用于根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

第二时差单元,用于根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

波谷振幅比值单元,用于根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

门槛值单元,用于确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断单元,用于判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

标记单元,用于将待测井标记为待开采的砂岩井。

在其中一种实施例中,通过如下公式得到待测井的第一时差:

δt1=t1-t2;

其中,δt1为第一时差,t1为第一煤层的顶面的反射时间,t2为第二煤层的顶面的反射时间。

在其中一种实施例中,通过如下公式得到待测井的第二时差:

δt2=t2-t3;

其中,δt2为第二时差,t2为第二煤层的顶面的反射时间,t3为砂岩储层的底面的反射时间。

在其中一种实施例中,通过如下公式得到待测井的波谷振幅比值:

b=a1/a2;

其中,b为波谷振幅比值,a1为第一波谷的最大振幅值,a2为第二波谷的最大振幅值。

综上,本发明实施例的砂岩井的开采确定系统先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井,可以准确确定有开采价值的砂岩井,节约了开采成本。

本发明实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:

获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

综上,本发明实施例的计算机设备先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井,可以准确确定有开采价值的砂岩井,节约了开采成本。

本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:

获取待测井的第一煤层的顶面的反射时间、待测井的第二煤层的顶面的反射时间、待测井的砂岩储层的底面的反射时间、待测井的第一波谷的最大振幅值、待测井的第二波谷的最大振幅值和待测井的波峰的最大振幅值;其中,第一煤层位于砂岩储层的正下方,第二煤层位于砂岩储层的正上方,第一波谷位于第二煤层的顶面与砂岩储层的底面之间,第二波谷位于砂岩储层的底面与第一煤层的顶面之间;波峰位于砂岩储层的底面;

根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间,得到待测井的第一时差;

根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间,得到待测井的第二时差;

根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值;

确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;

判断待测井的第一时差是否大于或等于第一时差门槛值,判断待测井的第二时差是否大于或等于第二时差门槛值,判断待测井的波峰的最大振幅值是否大于或等于波峰振幅门槛值,判断待测井的波谷振幅比值是否大于或等于波谷振幅比值门槛值;

当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值时,将待测井标记为待开采的砂岩井。

综上,本发明实施例的计算机可读存储介质先获取待测井的第一煤层的顶面的反射时间、第二煤层的顶面的反射时间、砂岩储层的底面的反射时间、第一波谷的最大振幅值、第二波谷的最大振幅值和波峰的最大振幅值,再根据第一煤层的顶面的反射时间和第二煤层的顶面的反射时间得到待测井的第一时差,根据第二煤层的顶面的反射时间和砂岩储层的底面的反射时间得到待测井的第二时差,根据第一波谷的最大振幅值和第二波谷的最大振幅值,得到待测井的波谷振幅比值,接着确定第一时差门槛值、第二时差门槛值、波峰振幅门槛值和波谷振幅比值门槛值;最后将当第一时差大于或等于第一时差门槛值、第二时差大于或等于第二时差门槛值、波峰的最大振幅值大于或等于波峰振幅门槛值,且波谷振幅比值大于或等于波谷振幅比值门槛值的待测井标记为待开采的砂岩井,可以准确确定有开采价值的砂岩井,节约了开采成本。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1