红外探测器及红外成像仪的制作方法

文档序号:21401357发布日期:2020-07-07 14:33阅读:166来源:国知局
红外探测器及红外成像仪的制作方法

本发明涉及一种红外探测器,特别涉及一种基于碳纳米管阵列的红外探测器及红外成像仪。



背景技术:

红外光是介于微波与可见光之间的电磁波,太阳的热量主要通过红外光传到地球。同时,自然界的任何物体都是红外光辐射源,时时刻刻都在不停地向外辐射红外光。目前,红外光主要应用在军事、医疗领域,如侦察敌情、诊断疾病等。但是,广泛存在的红外光仍没有被充分和有效利用,因此,研究能够充分吸收红外光的吸收体并能将红外光方便应用是十分必要的。



技术实现要素:

有鉴于此,确有必要提供一种采用完美吸收红外光的吸收体制备的红外探测器。

一种红外探测器,其包括:一红外光谱吸收体,用于吸收红外光谱并将红外光谱转化为热量;一热电元件,所述红外光谱吸收体设置在所述热电元件上,与所述热电元件接触设置;一电信号检测器,与所述热电元件电连接并串联形成一回路,用于检测所述热电元件的电学性能的变化;其中,所述红外光谱吸收体包括一碳纳米管阵列,所述碳纳米管阵列包括多个碳纳米管,该多个碳纳米管的高度基本相同,且垂直于所述热电元件的表面。

相较于现有技术,本发明提供的红外探测器具有以下有益效果:采用碳纳米管阵列作为红外光的吸收体,由于碳纳米管阵列对波长在0.4微米-20微米的红外宽光谱的吸收率可达99.5%以上,碳纳米管阵列可有效将红外光转化为热,因此,该红外探测器可有效检测出红外光的存在;所述红外探测器制备简单,成本低,灵敏度高。

附图说明

图1是本发明第一实施例提供的红外光吸收体的制备方法流程图。

图2是本发明第一实施例提供的激光束扫描路径图。

图3是本发明提供的激光束处理前后碳纳米管阵列对红外线的反射率曲线图。

图4是本发明提供的激光束处理前后碳纳米管阵列的扫描电镜图。

图5是本发明第二实施例提供的红外光吸收体的制备方法流程图。

图6是本发明提供的刻蚀处理前后碳纳米管阵列对红外线的反射率曲线图。

图7是本发明提供的刻蚀处理前后碳纳米管阵列的扫描电镜图。

图8是本发明提供的刻蚀处理前后碳纳米管阵列的侧面扫描电镜图。

图9是本发明提供的激光束处理和刻蚀处理后碳纳米管阵列对红外线的反射率曲线图。

图10是本发明第三实施例提供红外探测器的结构示意图。

图11是发明提供的基于热电偶的红外探测器的结构示意图。

图12是本发明第四实施例提供的红外成像仪的结构示意图。

主要元件符号说明

如下具体实施例将结合上述附图进一步说明本发明。

具体实施方式

下面将结合具体实施例及附图对本发明所提供的红外光吸收体的制备方法、采用该方法得到的吸收体制备的红外探测器、红外成像仪作进一步说明。

请一并参阅图1及图2,本发明第一实施例提供一种红外光吸收体100的制备方法,依次包括以下步骤:

步骤s10,提供一基底101,在所述基底101上生长一碳纳米管阵列102;

步骤s20,采用激光束103对所述碳纳米管阵列102远离基底101的一端进行双向扫描处理,且两扫描方向呈一定夹角。

在步骤s10中,所述碳纳米管阵列102包括多个大致沿其同一生长方向排列的碳纳米管,该生长方向即为碳纳米管的长轴方向。在这里还需要进一步说明的是,所述“大致”的意思是由于碳纳米管在生长过程中受各种因素的制约,如碳源气气流的流动速度不一致,碳源气的浓度不均匀以及催化剂的不平整,不可能也不必使碳纳米管阵列中的每根碳纳米管完全平行排列,碳纳米管阵列中的多个碳纳米管的长度也不必完全相等。所述碳纳米管阵列102的生长方向基本垂直于所述基底101的表面。所述碳纳米管阵列102由纯碳纳米管组成。所谓“纯碳纳米管”是碳纳米管未经过任何化学修饰或功能化处理。本实施例中,所述碳纳米管阵列102为超顺排碳纳米管阵列。所述超顺排碳纳米管阵列为由多个彼此大致平行且垂直于基底生长的碳纳米管形成的碳纳米管阵列。所述多个碳纳米管为多壁碳纳米管。优选地,所述多个碳纳米管为金属性碳纳米管。

本实施例中,超顺排碳纳米管阵列的制备方法采用化学气相沉积法,所述生长超顺排碳纳米管阵列的方法包括以下步骤:

步骤s101,提供一具有平整表面的基底101。该基底101的材料可为硅、玻璃、石英,或选用形成有氧化层的硅基底。本实施例中,所述基底101为形成有氧化层的硅基底。所述基底101的形状不限,可为圆形、方形或无规则的任意形状。所述基底101的尺寸不限,可根据需要选择。

步骤s102,在基底101的至少一平整表面均匀形成一催化剂层。该催化剂层的制备可通过热沉积法、电子束沉积法或溅射法实现。所述催化剂层的材料可选用铁(fe)、钴(co)、镍(ni)或其任意组合的合金之一。本实施例中,采用铁为催化剂。

步骤s103,将上述形成有催化剂层的基底在700~900℃的空气中退火约30分钟~90分钟。

步骤s104,将处理过的基底置于反应炉中,在保护气体环境下加热到500~740℃。然后通入碳源气体反应约5~30分钟,生长得到超顺排碳纳米管阵列。所述碳源气可选用乙炔、乙烯、甲烷等碳氢化合物。本实施例中,所述碳源气为乙炔,所述保护气体为氩气,所得碳纳米管阵列生长高度为275微米。

通过控制上述生长条件,该超顺排碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。该碳纳米管阵列102中的碳纳米管彼此通过范德华力紧密接触形成阵列。

在步骤s20中,采用一激光束103扫描所述碳纳米管阵列102以去除碳纳米管阵列表面横向排列等杂乱分散的碳纳米管,并截短碳纳米管使得截短后该碳纳米管阵列102中每根碳纳米管的长度基本相同,形成平整的碳纳米管阵列。所述“基本”的意思是碳纳米管在经过处理的过程中受各种因素的影响,不可能也不必使该碳纳米管阵列102中的多个碳纳米管的长度严格意义上的完全相等,如所述多个碳纳米管的长度可存在一高度差值,该高度差值不大于10纳米。由于碳纳米管对激光具有良好的吸收特性,该碳纳米管阵列102中远离基底的一端与氧气充分接触,在氧气和激光束103的共同作用下,该碳纳米管阵列102远离基底101的一端与氧气发生反应生成碳氧化物而被烧蚀去除,该碳纳米管阵列102被截短。采用激光束103扫描时,所述激光束103的照射方向平行于该碳纳米管阵列102的生长方向,即所述激光束103的照射方向基本垂直于所述基底101的表面。

为了明确说明采用激光束103对碳纳米管阵列102进行双向扫描处理的工作过程,在此定义平行于碳纳米管阵列102表面的任意两方向分别为x方向和y方向。其中,x方向和y方向的夹角为α,夹角α的取值为30°~90°,优选地,夹角α的取值为60°~90°。本实施例中,x方向和y方向的夹角为90°。采用激光束103对碳纳米管阵列102进行扫描处理时,激光束103首先沿x方向在碳纳米管阵列102的表面移动并逐行扫描,扫描过程中碳纳米管被激光束103烧蚀截短,直至该碳纳米管阵列102中碳纳米管全部经过扫描处理。该激光束103在沿x方向对碳纳米管阵列102扫描结束以后,调整激光束103扫描移动方向,使激光束103沿y方向在碳纳米管阵列102的表面移动并逐行扫描,直至该碳纳米管阵列102中的碳纳米管全部经过扫描处理。

激光束103沿x方向在碳纳米管阵列102表面逐行扫描的路径是由激光束103沿x方向来回扫描多行形成。具体地,激光束103沿x方向扫描一行后,再使激光束103沿垂直于x方向的x’方向平移一段距离,优选地,平移距离与激光束103的光斑直径相同,之后保持激光束103在x’方向的位置不变,使激光束103继续沿x方向在碳纳米管阵列102表面扫描,从而使得激光束103沿x方向在碳纳米管阵列102表面来回进行多行扫描,直至该碳纳米管阵列102中碳纳米管全部经过扫描处理,从而完成激光束103对该碳纳米管阵列102沿x方向的扫描。当所述激光束103沿所述碳纳米管阵列102完成沿x方向的扫描后,将激光束103沿x方向改变为沿y方向并继续扫描,该激光束103沿y方向扫描所述碳纳米管阵列102的方法与沿x方向相同,在此不再赘述。在此定义所述激光束103完成对所述碳纳米管阵列102仅沿x方向或y方向的扫描为单向扫描,所述激光束103同时完成对所述碳纳米管阵列102沿x方向和y方向的扫描为双向扫描。因此,所述激光束103在对所述碳纳米管阵列102完成x方向和y方向的扫描后,即完成了采用激光束103对碳纳米管阵列102的双向扫描处理。

所述激光束103是由一激光装置产生,该激光装置包括固体激光器、液体激光器、气体激光器及半导体激光器中的一种。该激光装置照射形成激光束光斑,激光束光斑的直径为1微米~5微米。所述激光束103的扫描速度小于等于100毫米/秒,优选地,所述激光束103的扫描速度大于80毫米/秒。设定激光束103在扫描相邻两行的平移距离为扫描间隔距离,该扫描间隔距离为1微米~20微米,优选地,所述扫描间隔距离与激光束103的光斑的直径相同。所述激光束103的功率为6w~12w。本实施例中,所述激光束103功率为6w,激光束103的光斑的直径为5微米,激光束103的扫描速度为100毫米/秒,激光束103的扫描间隔距离为5微米。经过激光束103的双向扫描后,所述碳纳米管阵列的高度大于3微米,优选地,所述碳纳米管阵列102的高度为100微米-300微米。

由于所述碳纳米管阵列102中多个平行的碳纳米管之间形成多个微小间隙,当碳纳米管阵列102接收红外光线照射时,所述多个微小间隙能够将光子捕获并限制在碳纳米管阵列中,并通过碳纳米管的不断散射与吸收以达到入射红外光的吸收。由于碳纳米管阵列102的高度很大,入射进来的红外光还没到基底101就已经被完全吸收,所以所述碳纳米管阵列102的吸收率可以用“1-反射率”来表示。又因为所述碳纳米管阵列102的阵列结构对红外线的反射率很小,可用作红外光吸收体以吸收红外线。然而,所述碳纳米管阵列102在未经处理前对宽光谱红外线的吸收有限,这是由于处理前,所述碳纳米管阵列102远离基底101的表面可能存在分散的横向排列的碳纳米管,或者多个碳纳米管的高度不同导致碳纳米管阵列102远离基底101的表面凹凸不平,从而使得红外线照射在该表面发生反射的光线多,进而影响红外光的吸收率的再提高。采用激光束103扫描所述碳纳米管阵列102的表面,通过截短碳纳米管可去掉位于所述碳纳米管阵列102表面分散的横向排列的碳纳米管,同时,截短后的碳纳米管也可保持大致相同的高度。然而,从图3可以看出,所述碳纳米管阵列102在经过激光束103的单向扫描后,该碳纳米管阵列102对红外线的反射率相比于未经激光束103处理的情况在远红外波段反而增加,导致吸收率在远红外波段变小。

请参阅图3,图中1#为未经过任何处理的碳纳米管阵列对红外线的反射率曲线,2#和3#为碳纳米管阵列经过激光束103单向扫描后对红外线的反射率曲线,4#为碳纳米管阵列经过双向扫描后对红外线的反射率曲线。由图可知,所述碳纳米管阵列102在经过激光束103单向扫描后对红外线的反射率高于未经处理的碳纳米管阵列102对红外线的反射率,而经过激光束103双向扫描后碳纳米管阵列102对红外线的反射率则低于未经处理的碳纳米管阵列102对红外线的反射率。这是由于碳纳米管阵列102经过激光束103单向扫描后,虽然截短后所述碳纳米管阵列102表面横向排列的碳纳米管被去掉,但碳纳米管远离基底的一端会随着激光束103的扫描移动而向激光束103移动的方向弯曲,而碳纳米管弯曲部分的延伸方向近似平行于基底101的表面,因此,所述碳纳米管的弯曲部分反而会增加红外线的反射率。而当所述碳纳米管阵列102经过激光束103的双向扫描时,由于双向扫描是由两次单向扫描组成且两次扫描的移动方向不同,在对碳纳米管阵列102进行第二次单向扫描的过程中,激光束103的扫描移动会大大改善第一次单向扫描时造成的碳纳米管弯曲。因而,在经过激光束103的双向扫描后,所述碳纳米管阵列102表面不仅不会存在横向的分散的碳纳米管且表面平整,同时,碳纳米管阵列102中碳纳米管的长度一致且基本垂直于所述基底101的表面。由于碳纳米管阵列可吸收和发射红外线,碳纳米管阵列对红外线的吸收率可通过直接测试吸收率或测试发射率再计算得到。从图3中也可以看出,选取波长在2微米-20微米的红外光照射经过激光束103的双向扫描后的碳纳米管阵列,所述碳纳米管阵列102对红外线的反射率在0.5%以下。因此,所述碳纳米管阵列102在选取的红外宽光谱范围内均能保持较高吸收率,且吸收率能高达到99.5%以上,因此,通过激光束103的双向扫描处理后的碳纳米管阵列102可作为红外光吸收体,实现对红外光的完美吸收。请参阅图4,(a)和(b)分别为所述碳纳米管阵列102在经过激光束103扫描前后的扫描电镜图,从图中可以看出,在激光束103扫描前,所述碳纳米管阵列表面横向分布杂乱的碳纳米管,经过扫描处理后,横向杂乱分布的碳纳米管减少。

请参阅图5,本发明第二实施例提供一种红外光吸收体的制备方法,依次包括以下步骤:

步骤s10,提供一基底101,在所述基底101上生长一碳纳米管阵列102;

步骤s20,采用等离子体104对所述碳纳米管阵列102远离基底101的一侧进行刻蚀处理。

本发明第二实施例提供的红外光吸收体的制备方法与第一实施例提供的红外光吸收体的制备方法基本相同,其区别在于,第二实施例中采用刻蚀方法对碳纳米管阵列102进行处理以截短碳纳米管使得碳纳米管阵列中每根碳纳米管的长度基本相同。

在步骤s20中,对所述碳纳米管阵列102进行刻蚀的方法选用干法刻蚀。干法刻蚀是指通入一气体在电场作用下得到一等离子体,该等离子体可与被刻蚀物质发生反应而得到挥发性物质。所述干法刻蚀可以为反应性离子刻蚀(rie)、或电感耦合等离子体刻蚀(icpe)。具体地,刻蚀所述碳纳米管阵列102的过程中,刻蚀参数如刻蚀功率、刻蚀气压、偏压可根据刻蚀方法的不同进行调节。

具体地,刻蚀所述碳纳米管阵列102的过程中,刻蚀方向与碳纳米管阵列102的生长方向平行,即刻蚀方向沿着碳纳米管的长轴方向向着基底101的一侧刻蚀碳纳米管阵列102。所述碳纳米管阵列102中碳纳米管被刻蚀截短,既可以去掉碳纳米管阵列102表面分散的横向排列的碳纳米管,又可使每根碳纳米管的长度基本相同。

本实施例中,采用反应性离子刻蚀法刻蚀所述碳纳米管阵列102,通入的气体为氧气。反应性离子刻蚀的功率是50瓦~150瓦,优选地,刻蚀的功率为100瓦~150瓦。氧气的通入速率为50标况毫升每分钟(standard-statecubiccentimeterperminute,sccm),形成气压为10pa。反应性等离子刻蚀时间为30秒~240秒,优选地,刻蚀时间为30秒~60秒。刻蚀处理后,所述碳纳米管阵列的高度大于3微米,优选地,所述碳纳米管阵列的高度为100-300微米。本实施例对5个不同样品进行了测试。请参阅图6,1#为未经刻蚀处理的碳纳米管阵列对红外线的反射率曲线;2#为刻蚀时间为30秒的碳纳米管阵列对红外线的反射率曲线;3#为刻蚀时间为60秒的碳纳米管阵列对红外线的反射率曲线;4#为刻蚀时间为2分钟的碳纳米管阵列对红外线的反射率曲线;5#为刻蚀时间为4分钟的碳纳米管阵列对红外线的反射率曲线。同样选取波长在2微米-20微米的红外光照射碳纳米管阵列,碳纳米管阵列经过刻蚀后对红外线的反射率均低于未经刻蚀处理的碳纳米管阵列对红外线的反射率。其中,刻蚀时间为30秒~60秒的碳纳米管阵列102对红外线的反射率远低于刻蚀时间超过60秒时碳纳米管阵列对红外线的反射率。请参阅图7,(a)和(b)分别为所述碳纳米管阵列在经过刻蚀前后的扫描电镜图,从图中可以看出,在刻蚀处理前,所述碳纳米管阵列表面横向分布杂乱的碳纳米管,经过刻蚀处理后,横向杂乱分布的碳纳米管减少。请参阅图8,(a)和(b)分别为所述碳纳米管阵列在经过刻蚀前后的侧面扫描电镜图,从图中可以看出,刻蚀后,碳纳米管阵列在碳纳米管生长方向的长度被截短,截短后碳纳米管阵列表面平整。

为了测试处理后的碳纳米管阵列102可对宽光谱的红外线具有高吸收率,进一步选取波长范围在0.4微米-2.5微米的光线进行照射。请参阅图9,当光波长在0.4微米-2.5微米时,所述碳纳米管阵列102在经过本发明第一实施例的激光束处理或者经过本发明第二实施例的刻蚀处理后,对红外线的吸收率仍能保持较高吸收率,且吸收率能高达到99.5%以上。因此,经过上述两种方法的处理后碳纳米管阵列102均对红外宽光谱的具有很好的吸收效果。波长范围在2.1微米-2.5微米,等离子体刻蚀处理的碳纳米管阵列102的吸收率高于激光束103处理的碳纳米管阵列102的吸收率。

本发明提供的红外光吸收体的制备方法具有以下优点:通过直接沿着碳纳米管阵列的生长方向进行刻蚀处理,碳纳米管阵列表面散乱的横向碳纳米管被去除,从而得到一具有平整表面的碳纳米管阵列,经过刻蚀处理的碳纳米管阵列对波长在0.4微米-20微米的红外宽光谱的吸收率可达99.5%以上,可作为外红光谱吸收体实现对红外线的完美吸收。

请参阅图10,本发明第三实施例提供一种红外探测器10,该红外探测器10包括一红外光吸收体100,一热电元件200及一电信号检测器300。所述红外光吸收体100包括多个高度相同的碳纳米管,该多个碳纳米管相互平行形成一碳纳米管阵列。所述红外光吸收体100设置于所述热电元件200上,与所述热电元件200接触设置。该多个碳纳米管垂直于所述热电元件200的表面。所述电信号检测器300与所述热电元件200通过导线电连接,所述电信号检测器300与所述热电元件200串联形成一回路,用于检测所述热电元件200的电学信号变化。

所述红外光吸收体100用于吸收红外光,并将红外光转化为热量。该红外光吸收体100是通过本申请第一实施例或第二实施例的制备方法得到的。所述红外光吸收体100对波长在4微米-25微米的红外光具有很好的吸收效果。优选地,该红外光吸收体100对波长在8微米-15微米的红外光具有很好的吸收效果。更优选地,该红外光吸收体100对波长在10微米的红外光具有很好的吸收效果。具体地,所述红外光吸收体100对红外线光谱的吸收是通过所述碳纳米管阵列102实现的。所述碳纳米管阵列102在吸收红外光后自身温度升高,又由于碳纳米管的导热系数高,该碳纳米管阵列102能够有效将热量传递给所述热电元件200。由于所述碳纳米管阵列的完美吸收可极大增加所述热电元件200的响应度和灵敏度。

所述热电元件200与所述红外光吸收体100接触设置。具体地,所述红外光吸收体100中的碳纳米管垂直于所述热电元件200的表面,可将所述红外光吸收体100吸收的热量直接传递至所述热电元件200。所述碳纳米管阵列直接设置于所述热电元件200的表面。具体地,所述碳纳米管阵列可直接生长于所述热电元件200的表面,也可通过转移法直接设置于所述热电元件200的表面。其中,直接生长所述碳纳米管阵列可通过本申请第一实施例中生长碳纳米管阵列的方法制备得到,然后再将所述碳纳米管阵列经过上述第一实施例的激光扫描处理或第二实施例的刻蚀处理得到所述红外光吸收体100。转移所述碳纳米管阵列的方法即为常规的转移碳纳米管阵列的方法,转移至所述热电元件200的表面后,再制备得到所述红外光吸收体100。当然,也可先将所述碳纳米管阵列制备得到所述红外光吸收体100,再经过常规转移方法转移至所述热电元件200的表面。

当所述热电元件200吸收热量后,该热电元件200的温度升高,使得该热电元件200的电学性能发生改变。所述热电元件200可为热释电元件、热敏电阻或热电偶元件。具体地,所述热释电元件为高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、铌酸锂、硫酸三甘钛等。所述热敏电阻可为半导体热敏电阻、金属热敏电阻、合金热敏电阻。本实施例中,所述热电元件200为锆钛酸铅系陶瓷,所述热电元件200的尺寸为2*1毫米。

所述电信号检测器300用于检测所述热电元件200的电学性能的改变。在一实施例中,所述热电元件200为热释电元件,热释电元件的温度升高使热释电元件的两端出现电压或产生电流,这时,所述电信号检测器300可为电流-电压变换器,所述电信号检测器300与热电元件200串联形成一回路,所述电信号检测器300即可检测出所述热电元件200的电压或电流的变化。在另一实施例中,所述热电元件200为热敏电阻时,热敏电阻的温度升高,电阻发生改变,这时,所述电信号检测器300包括一电源和一电流检测器,该电信号检测器300与热电元件200串联形成一回路,所述电信号检测器300通过测量得到的电流变化,用以检测热电元件200的电阻改变。请参阅图11,在另一实施例中,所述热电元件200为热电偶时,将所述红外光吸收体100设置在热电偶的一端,热电偶的两端出现温度差,即会在热电偶的两端出现电势差,这时,所述电信号检测器300可为一电压检测器,该电信号检测器300与热电元件200串联形成一回路,所述电信号检测器300即可检测出所述热电元件200的电势变化。

所述红外探测器10在工作时,当有红外光辐射至所述红外光吸收体100上时,由于所述碳纳米管阵列对红外光的完美吸收,所述碳纳米管阵列能够有效将红外光转化为热量,并传递给所述热电元件200;所述热电元件200吸收热量后温度升高,热电元件200的电阻、电流或电压等电学性能发生改变,当所述电信号检测器300与热电元件200的两端电连接形成一回路时,该电信号检测器300能够检测出热电元件200的电学信号发生改变,即检测出探测区域内存在红外光。

本发明提供的红外探测器10具有以下优点:采用碳纳米管阵列102作为红外光的吸收体,由于碳纳米管阵列102对波长在0.4微米-20微米的红外宽光谱的吸收率可达99.5%以上,碳纳米管阵列102可有效将红外光转化为热,因此,该红外探测器10可有效检测出红外光的存在;所述红外探测器10制备简单,成本低,灵敏度高。

请参阅图12,本发明第四实施例提供一种红外成像仪1,该红外成像仪1包括一红外接收器12、一红外探测器组件11、一信号处理器13及一红外像显示器14。所述红外接收器12用于接收红外辐射光谱并将红外光传递至所述红外探测器组件11;所述红外探测器组件11用于将红外辐射光谱转化为电学信号,并将电学信号传递至所述信号处理器13;所述信号处理器13用于对电学信号进行处理计算得到热场分布数据;所述红外像显示器14根据热场分布数据显示红外热像图。

所述红外接收器12用于接收物体发射的红外辐射光谱。进一步,所述红外接收器12还可汇聚所述红外辐射光谱。本实施例中,所述红外接收器12为红外镜头。具体地,物体发射的红外辐射光谱经红外镜头接收和汇聚后,直接被传递至所述红外探测器组件11。

所述红外探测器组件11包括多个红外探测器10,该多个红外探测器10呈二维阵列式均匀分布,且每个红外探测器10均可将红外辐射光谱转化为电学信号变化。可以理解,每个红外探测器10相当于一个像素点,每个红外探测器10将所在位置的红外辐射光谱转化为电学信号,从而实现所述红外探测器组件11对物体发射的红外辐射光谱的探测。任意相邻的两红外探测器10的间距可以根据热成像的分辨率要求进行选择。所述红外探测器10即本申请第三实施例所提供的红外探测器。

所述信号处理器13用于对每个红外探测器10的电学信号进行处理计算,从而得到物体的热场分布情况。具体地,所述信号处理器13根据每个红外探测器10的电学信号变化计算其对应的物体表面位置的温度数据。即,所述信号处理器13根据电学信号可计算出物体的热场分布数据。

所述红外像显示器14用于显示被测物体的红外热像图。所述红外像显示器14的红外热像图是根据物体的热场分布数据显示的,不同的温度采用不同的颜色显示。从而,所述红外像显示器14显示的红外热像图与物体的温度分布相对应,用于反映物体各个位置的温度情况。例如,当红外成像仪1用于医学领域时,可以对人体进行全身热成像,专业医生可根据热像图判断出人体不同部位的疾病性质和病变的程度,为临床诊断提供依据。

所述红外成像仪1在工作时,物体发出的红外光被所述红外接收器12接收;所述红外接收器12将红外光接收并汇聚后,再将红外光传递至所述红外探测器组件11;所述红外探测器组件11将红外光转化为电学信号,再将电学信号传递给所述信号处理器13;所述信号处理器13对电学信号进行处理计算从而得到物体的各个位置的温度数据,即物体的热场分布数据;所述红外像显示器14再根据计算得到的热场分布数据显示出物体的红外热像图。

本发明提供的红外成像仪1具有以下优点:所述红外探测器组件11采用碳纳米管阵列作为红外光的吸收体,碳纳米管阵列对波长在0.4微米-20微米的红外宽光谱的吸收率可达99.5%以上,进而使得所述红外成像仪1对红外光敏感,能够有效根据物体发出的红外光得出物体的热像图;所述红外成像仪1制备简单,成本低,灵敏度高。

另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1