具有灵敏度检测的线圈致动传感器的制作方法

文档序号:19635464发布日期:2020-01-07 11:57阅读:250来源:国知局
具有灵敏度检测的线圈致动传感器的制作方法

本公开内容涉及磁场感测,并且更具体地涉及具有感测装置的灵敏度检测的磁场感测。



背景技术:

磁场传感器通常用于检测铁磁目标。它们通常充当传感器以检测目标的运动或位置。这种传感器在包括机器人、汽车、制造等许多技术领域无处不在。例如,磁场传感器可以用于检测车轮何时锁死,从而触发车辆的控制处理器啮合防抱死制动系统。在该示例中,磁场传感器可以检测车轮的旋转。磁场传感器还可以检测到物体的距离。例如,磁场传感器可以用于检测液压活塞的位置。



技术实现要素:

在实施例中,一种磁场传感器包括:至少一个线圈,所述至少一个线圈响应于ac线圈驱动信号;至少一个磁场感测元件,所述至少一个磁场感测元件响应于感测元件驱动信号,被配置为检测由所述至少一个线圈生成的直接耦合磁场并且响应于所述直接耦合磁场生成磁场信号;处理器,所述处理器响应于所述磁场信号以计算灵敏度值,所述灵敏度值与所述直接耦合磁场的检测相关联并且基本独立于导电目标所反射的反射磁场,所述导电目标被布置成临近所述至少一个磁场感测元件;以及输出信号发生器,所述输出信号发生器被配置为生成所述磁场传感器的指示所述反射磁场的输出信号。

可以包括以下一个或多个特征。

所述至少一个线圈可以包括用于生成所述直接耦合磁场的第一线圈以及用于通过在所述导电目标中生成涡流来生成所述反射磁场的第二线圈。

所述第一线圈可以由第一电流信号驱动,并且所述第二线圈可以由第二电流信号驱动,其中,所述第一电流信号和所述第二电流信号具有基本相同的电流值或具有从相同参考生成的不同电流值。

所述输出信号发生器可以被配置为响应于所述灵敏度值来调节所述磁场传感器的所述输出信号。

响应于所述灵敏度值来调节所述感测元件驱动信号和所述ac线圈驱动信号之一或两者的大小。

响应于所述灵敏度值来调节所述感测元件驱动信号和所述ac线圈驱动信号之一或两者的大小,以便将所述灵敏度值保持在预定水平。

所述ac线圈驱动信号可以具有第一频率和第二频率,并且所述磁场传感器还可以包括分离电路,所述分离电路响应于所述磁场信号以将所述磁场信号的与所述第一频率相关联的第一部分和所述磁场信号的与所述第二频率相关联的第二部分分离,其中,所述灵敏度值包括所述磁场信号的所述第一部分。

所述ac线圈驱动信号的所述第一频率可以低于所述第二频率。

可以选择所述ac线圈驱动信号的所述第一频率,以避免在所述导电目标中生成大于预定水平的涡流。

所述分离电路可以包括混频器和滤波器。

所述ac线圈驱动信号可以在第一时间间隔期间具有所述第一频率,并且在第二时间间隔期间具有所述第二频率。

所述第一时间间隔和所述第二时间间隔可以重叠。

或者,所述第一时间间隔和所述第二时间间隔可以不重叠。

可以包括至少一个次级线圈,所述至少一个次级线圈可以响应于与所述磁场信号的所述第一部分相关联的次级线圈驱动信号以生成面内磁场,以便将所述灵敏度值保持在预定水平。

所述面内磁场可以垂直于所述直接耦合磁场和/或所述反射磁场。

所述至少一个磁场感测元件可以包括至少一个第一磁场感测元件和至少一个第二磁场感测元件,所述至少一个第一磁场感测元件响应于具有第一频率的第一感测元件驱动信号以生成与所述第一频率相关联的第一磁场信号,所述至少一个第二磁场感测元件响应于具有第二频率的第二感测元件驱动信号以生成与所述第二频率相关联的第二磁场信号。

所述至少一个磁场感测元件可以包括至少一个第一磁场感测元件和至少一个第二磁场感测元件,所述至少一个第一磁场感测元件具有与所述至少一个线圈相关的第一耦合因数并且生成第一磁场信号,所述至少一个第二磁场感测元件具有与所述至少一个线圈相关的第二耦合因数并且生成第二磁场信号,其中,所述第一耦合因数不同于所述第二耦合因数。处理器可以耦合到所述第一磁场感测元件和所述第二磁场感测元件,并且被配置为计算所述第一磁场信号与所述第二磁场信号之间的差值,其中,所述灵敏度值包括所述差值。

所述至少一个第一磁场感测元件和所述至少一个第二磁场感测元件可具有对所述反射磁场的基本相似的响应,以及对由相应的耦合因数确立的所述直接耦合磁场的相应的不同响应。

所述第一耦合因数可以具有与所述第二耦合因数的大小基本相同的大小以及与所述第二耦合因数的极性相反的极性。

所述至少一个线圈可以包括被配置为在第一方向上具有电流的第一部分以及被配置为在第二方向上具有电流的第二部分。

所述磁场传感器还可以包括衬底,其中,所述线圈由所述衬底支撑,并且至少一个第一磁场感测元件设置在所述衬底与所述至少一个线圈的所述第一部分之间,并且所述至少一个第二磁场感测元件设置在所述衬底与所述至少一个线圈的所述第二部分之间。

所述至少一个线圈的所述第一部分可以设置在所述至少一个第一磁场感测元件与所述衬底之间,并且所述至少一个线圈的所述第二部分设置在所述至少一个第二磁场感测元件与所述衬底之间。

所述ac线圈驱动信号可以具有第一频率,并且所述感测元件驱动信号可以具有第二频率。

所述第一频率和所述第二频率可以相同,并且所述ac线圈驱动信号可以相对于所述感测元件驱动信号异相。

所述输出信号的频率可以是所述第一频率和所述第二频率的两倍。

解调器电路可以被配置为对所述输出信号进行解调以生成指示所述反射磁场的直流信号。

所述ac线圈驱动信号和所述感测元件驱动信号可以由公共源提供,其中,所述ac线圈驱动信号的所述第一频率和所述感测元件驱动信号的所述第二频率可以基本相同。

所述ac线圈驱动信号和所述感测元件驱动信号可以具有基本相同的相位。

所述第一频率可以具有第一频率值和第二频率值,并且所述处理电路可以被配置为确定与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号是否基本相同,并且调节所述第一频率值和所述第二频率值,直到与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号基本相同。

所述第一频率可以具有第一频率值和第二频率值,并且所述处理电路可以被配置为确定与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号是否具有比率关系,并且调节所述第一频率值和所述第二频率值,直到与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号基本符合所述比率关系。

所述ac线圈驱动信号可以包括第一频率值、第二频率值和第三频率值。所述处理电路可以被配置为确定与所述第一频率值、所述第二频率值或所述第三频率值相关联的磁场信号是否指示干扰。

所述ac线圈驱动信号和所述感测元件驱动信号可以由独立的源提供。

所述感测元件驱动信号的所述第二频率可以近似为直流。

所述第一频率可以具有第一频率值和第二频率值。所述处理电路可以被配置为确定与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号是否基本相同,并且调节所述第一频率值和所述第二频率值,直到与所述第一频率值相关联的磁场信号和与所述第二频率值相关联的磁场信号基本相同。

所述ac线圈驱动信号可以包括第一频率值、第二频率值和第三频率值。所述处理电路可以被配置为确定与所述第一频率值、所述第二频率值或所述第三频率值相关联的磁场信号是否指示干扰。

所述输出信号发生器可以包括响应于温度传感器和材料类型选择器的温度补偿器。

所述输出信号发生器可以进一步包括线性化模块。

所述至少一个磁场感测元件可以包括霍尔效应元件、巨磁阻(mr)元件、各向异性磁阻(amr)元件、隧道磁阻(tmr)元件或磁性隧道结(mtj)元件中的一个或多个。

所述至少一个磁场感测元件可以包括以桥配置布置的两个或更多个磁场感测元件。

所述桥配置可以提供差分输出信号。

在另一实施例中,磁场传感器包括用于生成直接耦合磁场的模块;用于生成反射磁场的模块;用于响应所述直接耦合磁场而生成磁场信号的模块;用于计算灵敏度值的处理模块,所述灵敏度值与所述直接耦合磁场的检测相关联并且基本与所述反射磁场无关;以及用于生成所述磁场传感器的指示所述反射磁场的输出信号的模块。

附图说明

通过以下附图描述可以更充分地理解前述特征。附图有助于解释和理解所公开的技术。由于图示和描述每个可能的实施例通常是不切实际或不可能的,因此所提供的附图描绘了实施例的一个或多个示例。因此,附图无意限制本发明的范围。图中相同的附图标记表示相同的元件。

图1是用于感测目标的系统的框图。

图2是用于感测目标的系统的等距图。

图2a示出了图2的系统的截面视图。

图3是用于感测目标的线圈和磁阻(mr)元件的示意图。

图3a是用于感测目标的线圈和mr元件的实施例的示意图,所述mr元件包括键合焊盘。

图3b是用于感测目标的线圈和mr元件的实施例的示意图。

图4是用于感测目标的系统的截面视图。

图5是用于感测目标的线圈和mr元件的示意图。

图5a是用于感测目标的线圈和mr元件的实施例的示意图。

图5b是用于感测目标的线圈和mr元件的实施例的示意图,所述mr元件包括引线框架。

图5c是用于感测目标的线圈和mr元件的实施例的示意图。

图6是用于感测目标的线圈和mr元件的实施例的示意图。

图7是用于感测目标的线圈和mr元件的截面视图。

图8是压力传感器的等距视图。

图8a是图8的压力传感器的实施例的等距视图。

图9是包括衬底的压力传感器的实施例的截面视图。

图10是用于感测磁性目标的电路的框图。

图10a是用于感测磁性目标的电路的实施例的框图。

图11是用于感测磁性目标的电路的实施例的框图。

图11a是用于感测磁性目标的电路的实施例的框图。

图11b是用于感测磁性目标的电路的实施例的框图。

图11c是用于感测磁性目标的电路的实施例的框图。

图11d是用于感测磁性目标的电路的实施例的框图。

图11e是用于感测磁性目标的电路的实施例的框图。

图11f是用于感测磁性目标的电路的实施例的框图。

图12是表示具有灵敏度检测的系统的输出信号的图。

图12a是具有灵敏度检测的磁场检测电路的框图。

图12b是具有灵敏度检测的磁场检测电路的实施例的框图。

图12c是具有灵敏度检测的磁场检测电路的实施例的框图。

图13是具有灵敏度检测的磁场检测电路的实施例的示意图,该磁场检测电路包括线圈和mr元件。

图13a是具有补偿线圈(countercoil)和迹线之间的间隙的线圈的实施例的示意图。

图13b是具有灵敏度检测的磁场检测电路的实施例的框图。

图14是磁场传感器和具有变化厚度的材料的磁性目标的侧视图。

图14a是磁场传感器和具有变化厚度的材料的磁性目标的侧视图。

图14b是磁场传感器和具有变化厚度的材料的磁性目标的侧视图。

图15是磁场传感器和具有多种厚度的材料的磁性目标的侧视图。

图15a是磁场传感器和具有多种厚度的材料的磁性目标的侧视图。

图15b是磁场传感器和具有多种厚度的材料的磁性目标的侧视图。

图15c是磁场传感器和具有多个厚度的材料的磁性目标的侧视图。

图16是磁场传感器和具有倾斜平面的磁性目标的侧视图。

图16a是磁场传感器和具有倾斜平面的磁性目标的侧视图。

图17是通过引线连接的衬底和引线框架的侧视图。

图17a是通过焊料凸块连接的衬底和引线框架的侧视图。

图18是包括一个或多个线圈的双管芯封装的示意图。

图18a是包括一个或多个线圈的双管芯封装的示意图。

图19是包括一个或多个线圈的多管芯封装的示意图。

具体实施方式

如本文所使用的,术语“磁场感测元件”用于描述可以感测磁场的各种电子元件。磁场感测元件可以是但不限于霍尔效应元件、磁阻(mr)元件或磁晶体管。众所周知,存在不同类型的霍尔效应元件,例如,平面霍尔元件、垂直霍尔元件和圆形垂直霍尔(cvh)元件。同样众所周知,存在多种类型的磁阻元件,例如,诸如锑化铟(insb)的半导体磁阻元件、巨型磁阻(mr)元件、各向异性磁阻元件(amr)、隧穿磁阻(tmr)元件和磁性隧道结(mtj)。磁场感测元件可以是单个元件,或者替代地可以包括以各种配置(例如,半桥或全(惠斯通)桥)布置的两个或更多个磁场感测元件。根据设备类型和其他应用要求,磁场感测元件可以是由iv型半导体材料(例如硅(si)或锗(ge))或iii-v型半导体材料(例如砷化镓)(gaas)或铟化合物(例如锑化铟(insb))制成的设备。

众所周知,上述磁场感测元件中的某些磁场感测元件倾向于具有平行于支撑该磁场感测元件的衬底的最大灵敏度轴,而上述磁场感测元件中的其它磁场感测元件倾向于具有垂直于支撑磁场感测元件的衬底的最大灵敏度轴。特别地,平面霍尔元件倾向于具有垂直于衬底的灵敏度轴,而金属基或金属磁阻元件(例如,mr、tmr、amr)并且垂直霍尔元件倾向于具有平行于衬底的灵敏度轴。

如本文中所使用的,术语“磁场传感器”用于描述使用磁场感测元件的电路,该电路通常与其他电路结合。磁场传感器用于多种应用,包括但不限于感测磁场方向角的角度传感器、感测由电流承载导体承载的电流产生的磁场的电流传感器、感测铁磁性物体的接近度的磁开关、感测通过的铁磁物品(例如环形磁体或铁磁性目标(例如轮齿)的磁畴,其中磁场传感器与背偏置磁体或其他磁体结合使用)的旋转检测器、以及感测磁场的磁场密度的磁场传感器。

如本文所使用的,术语“目标”和“磁性目标”用于描述被磁场传感器或磁场感测元件感测或检测的物体。目标可以包括允许涡流在目标内流动的导电材料,例如导电的金属目标。

图1是用于检测导电目标102的系统100的框图。在各种实施例中,目标102可以是磁性的或非磁性的。系统100包括一个或多个磁阻(mr)元件104和mr驱动器电路106。mr驱动器电路可以包括向mr元件104提供电力的电源或其他电路。在实施例中,mr元件104可以用其他类型磁场感测元件代替,例如霍尔效应元件等。mr元件104可以包括单个mr元件或多个mr元件。在某些实施例中,mr元件可以以桥配置进行布置。

系统100还可以包括一个或多个线圈108和线圈驱动器电路110。线圈108可以是电线圈、绕组、引线、迹线等,其被配置为当电流流过线圈108时产生磁场。在实施例中,线圈108包括两个或多个线圈,每个线圈为诸如半导体衬底、玻璃衬底、陶瓷衬底等的衬底支撑的导电迹线。在其他实施例中,线圈108可以不由衬底支撑。例如,线圈108可以由芯片封装、框架、pcb或可以支撑线圈的迹线的任何其他类型的结构支撑。在其他实施例中,线圈108可以是免支撑的引线,即不由单独的支撑结构支撑。

线圈驱动器110是将电流提供给线圈108以产生磁场的电源电路。在实施例中,线圈驱动器110可以产生交流电流,使得线圈108产生交流磁场(即,磁矩随时间变化的磁场)。线圈驱动器110可以是全部或部分在半导体管芯上实现的电路。

系统100还可以包括处理器112,该处理器112耦合成从mr元件104接收信号104a,该信号104可以表示由mr元件104检测到的磁场。处理器100可以接收信号104a并使用它来确定位置、速度、方向或目标102的其他属性。

mr元件104和线圈108可以位于衬底114上。衬底114可以包括诸如硅衬底的半导体衬底、芯片封装、pcb或其他类型的板级衬底,或者可以支撑mr元件104和线圈108的任何类型的平台。衬底114可以包括单个衬底或多个衬底、以及单一类型的衬底或多种类型的衬底。

在操作中,mr驱动器106向mr元件104提供电力,线圈驱动器110向线圈108提供电流。作为响应,线圈108产生可以由mr元件104检测到的磁场,该磁场产生代表所检测到的磁场的信号104a。

当目标102相对于磁场移动时,其在场中的位置和移动会改变磁场。作为响应,由mr元件104产生的信号104a改变。处理器112接收信号104a并处理该信号的变化(和/或状态)以确定目标102的位置、运动或其他特性。在实施例中,系统100可以检测目标102沿轴116的运动或位置。换而言之,当目标102朝向或远离mr元件104和线圈108移动时,系统100可以检测到mr元件104附近的目标102的位置。系统102还能够检测目标102的其他类型的位置或运动。

现在参考图2,系统200可以与系统100相同或相似。衬底202可以与衬底114相同或相似,并且可以支撑线圈204、线圈206和mr元件208。尽管示出了一个mr元件,但是mr元件208可以包括两个或多个mr元件,这取决于系统200的实施例。目标203可以与目标102相同或相似。

尽管未示出,但是mr驱动器电路106可以向mr元件208提供电流,并且线圈驱动器电路110可以向线圈204和206提供电流。

线圈204和206可以被布置成使得电流沿相反的方向流过线圈204和206,如箭头208(指示线圈204中的顺时针电流)和箭头210(指示线圈206中的逆时针电流)所示。结果,如箭头212所示,线圈204可以产生在负z方向上(即,在图2中向下)具有磁矩的磁场。类似地,线圈206可以产生在相反方向(如箭头214所示的正z方向)上具有磁矩的磁场。由两个线圈产生的聚集磁场211的形状类似于磁场线211所示的形状。应该意识到,线圈204、206可以由分别缠绕的单线圈结构形成,使得流过线圈的电流沿相反方向流动。替代地,线圈204、206可以由分开的线圈结构形成。

在实施例中,可以将mr元件208放置在线圈204与206之间。在这种布置中,除了线圈204和206产生的磁场之外,没有任何其他磁场,mr元件208处的净磁场可以为零。例如,线圈204产生的磁场的负z分量可以被线圈206产生的磁场的正z分量抵消,并且衬底202上方所示的磁场的负x分量可以被衬底202下方所示的磁场的正x分量抵消。在其他实施例中,附加线圈可以被添加到衬底202并且被布置成使得mr元件208处的净磁场基本为零。

为了在mr元件208的位置处获得基本为零的磁场,可以放置线圈204和线圈206,以使得通过线圈的电流基本在同一平面上以圆形图案流动。例如,通过线圈204和206的电流以圆形图案流过线圈。如图所示,那些圆形图案彼此基本共面,并且与衬底202的顶表面216共面。

如上所述,线圈驱动器110可以产生交变场。在这种布置中,由磁力线211示出的磁场可以随时间改变方向和大小。然而,在这些改变期间,在mr元件208的位置处的磁场可以基本保持为零。

在操作中,随着目标203朝向和远离mr元件208移动(即,沿正z方向和负z方向),磁场211将导致涡流在目标203内流动。这些涡流将创建自己的磁场,该磁场将在mr元件208的平面中产生非零磁场,该非零磁场可以被感测以检测目标203的运动或位置。

参考图2a,沿y方向的线218所示的系统200的截面视图250例示了目标203内的涡流。“x”符号表示流入页面的电流,“·”符号表示流出页面的电流。如上所述,通过线圈204和206的电流可以是交流电流,这可以导致磁场211的交流强度。在实施例中,通过线圈204的交流电流的相位与通过线圈206的交流电流的相位匹配,使得磁场211是交变场或周期场。

交变磁场211可以在磁性目标203内产生反射的涡流240和242。涡流240和242的方向可以分别与流过线圈204和206的电流相反。如图所示,涡流246从页面流出,涡流248流入页面,而线圈电流251流入页面,电流252流出页面。而且,如图所示,涡流242的方向与通过线圈206的电流的方向相反。

涡流240和242形成具有与磁场211相反方向的反射磁场254。如上所述,由于磁场211,mr元件208检测到净磁场为零。但是,mr元件208将在存在反射磁场254的情况下,检测到非零磁场。如磁力线256所示,在mr元件208处,反射磁场254的值不为零。

随着目标203移动接近线圈204和206,磁场211可能会在目标203中产生更强的涡流。结果,磁场254的强度可能会改变。在图2a中,磁场211'(在图2a的右侧面板中)可以表示比磁场211更强的磁场,这是由于例如目标203更靠近线圈204和206的缘故。因此,涡流240'和242'可能比涡流240和242更强,而磁场254'可能比磁场254强。这种现象可能导致mr元件208在目标203更靠近线圈204和206时检测到更强的磁场(即磁场254')时,并且在目标203更远离线圈204和206时,检测到更弱的磁场(即磁场254)。

而且,涡流240'和242'通常在目标203的表面上或附近发生。因此,随着目标203移动接近mr元件208,由于磁场源更靠近mr元件208,因此mr元件208可能会经历来自涡流的更强磁场。

图3是包括线圈302和304以及mr元件306和308的电路300的示意图。线圈302和304可以与线圈204和206相同或相似,并且mr元件306和308可以均与mr元件208相同或相似。

在实施例中,线圈302和304以及mr元件306和308可以由衬底支撑。例如,线圈302和304可以包括由衬底支撑的导电迹线,并且mr元件306和308可以形成在衬底的表面上或衬底中。

在实施例中,线圈302和304可以包括承载电流的单个导电迹线。形成线圈302的迹线的部分可以在与形成线圈304的迹线的部分相反的方向上成环或成螺旋形,使得通过每个线圈的电流相等并且在相反的方向上流动。在其他实施例中,可以使用多条迹线。

线圈302和304对称地定位在mr元件306和308的相对侧上,而mr元件308和304位于中间。这可能导致mr元件306和308位于线圈302和304产生的磁场的中心,使得在没有任何其他刺激的情况下,由于线圈302和304产生的磁场(在本文中称为直接耦合磁场),mr元件306和308检测到的磁场基本为零。

图3a是磁场检测电路300'的实施例的示意图,其可以与图1中的系统100相同或相似。线圈302和304如上所述可以由衬底支撑。电路300'可以包括四个mr元件310、312、314和316,它们可以以桥配置318耦合。在实施例中,桥318可以产生由信号318a和318b组成的差分输出。

在某些实施例中,以桥的方式布置mr元件可以增加磁场传感器的灵敏度。在实施例中,目标相对于电路300'是可移动的,使得当目标接近电路时,它主要朝向mr元件310、312移动,但不朝向mr元件314、316移动。通过这种配置,当目标接近和离开mr元件时,mr元件310和312的电阻可以改变并且mr元件314和316的电阻可以保持相对恒定。例如,如果对准mr元件,以使得当目标靠近时,mr元件310、312的电阻减小并且mr元件314、316的电阻增加,则当目标靠近时,信号318a电压将减小而信号318b电压将增加。mr元件的相反反应(以及差分信号318a和318b)可以增加磁场检测电路的灵敏度,同时还允许接收差分信号的处理器忽略任何共模噪声。

在实施例中,以桥的方式布置mr元件310-316可以允许检测电阻器组上的目标位置的差值和/或检测桥输出之间的相位差。例如,这可以用于检测目标的倾斜或变形。

电路300'还可以包括具有多条引线322的键合焊盘320,该多条引线322可以被访问并且形成至芯片封装(未示出)外部的连接。引线或导电迹线324可以将mr元件310、312、314和316连接到外部引线或焊盘322,使得它们可以耦合到其他电路,例如mr驱动器106。

参考图3b所示,电路323包括四个线圈324-330和三行mr元件332、334和336。电路323可以用于检测目标的位置或运动。

线圈可以以交替模式产生磁场。例如,线圈324可以产生进入页面的场,线圈326可以产生从页面出来的场,线圈328可以产生进入页面的场,并且线圈330可以产生从页面出来的场。结果,作为由线圈324、326、328、330产生的磁场的结果,由行332、334和336中的mr元件检测到的磁场可以基本为零。

电路323还可以通过添加附加线圈和附加mr元件来扩展。在实施例中,如上所述,附加线圈可以被配置为创建具有交变方向的磁场,并且可以放置线圈之间的mr元件,使得它们检测到基本为零的磁场。

行332、334和336中的mr元件可以形成网格。当目标在栅格上方移动并接近mr元件时,由于线圈324-330产生的磁场,mr元件将暴露于并检测由在目标中流动的涡流产生的反射磁场。例如,如果目标在mr元件338和340上移动,则那些mr元件可以检测反射磁场并产生指示反射磁场的输出信号。接收来自mr元件的输出信号的处理器随后可以将目标的位置识别为位于mr元件338和340上方或附近。如果目标随后移至靠近mr元件342的位置,则mr元件342将检测来自目标的反射磁场并且产生指示检测到目标的输出信号。然后,接收输出信号的处理器可以将目标的位置识别为mr元件342上方或附近。

单个大目标可以放置在网格332、334和336的前面。然后,每个mr元件所经历的反射磁场的差是目标与栅格平面的平行度的映射。它也可以用来根据外部约束映射目标的变形。

参考图4,用于检测目标402的系统400可以使用单个线圈和mr元件来检测目标402。mr元件404可以放置在线圈406附近。在实施例中,mr元件404可以放置在线圈406与目标402之间。在其他实施例中,线圈406的迹线可以被放置在mr元件404与目标402之间(未示出)。

在单个线圈配置中,即使在没有磁性目标402的情况下,mr元件404也会受到磁场的影响。如果不存在磁性目标402,则将没有涡流和反射磁场。但是,由于mr元件404被放置在单个线圈406的附近,而未被放置在两个相对的线圈之间,因此它可能会受到线圈406产生的直接耦合磁场405的影响。

目标402的存在可以导致反射磁场,并且该附加场可以由mr元件404检测以指示目标402的存在。例如,通过线圈406的电流可以在目标402中产生涡流(由电流408和410所示),这可以产生反射磁场412。反射磁场412可以增加mr元件404所经历的磁场强度。因此,与没有目标402时的情况相比,当存在目标402时,mr元件404可以检测到更强的磁场。

目标402的接近度还可以增加或减小由mr元件404检测到的反射磁场的强度。随着目标402移动接近线圈406(反之亦然),涡流(由电流408'和410'所示)将增加强度,这将产生具有更大强度的反射磁场412'。因此,当目标402移动接近线圈406时,mr元件404将检测到更强的磁场。

在图4所示的实施例中,mr元件404被定位成邻近线圈406的环路。这可能导致mr元件404检测反射场412的灵敏度更高。但是,由于线圈406产生的场在mr元件404的位置处不为零,mr元件404不仅可以检测反射场,还可以检测由线圈406直接产生的磁场,即“直接耦合”的磁场。可以使用各种技术来降低mr元件404对直接耦合磁场的灵敏度。

参考图5,电路500包括线圈502和放置在线圈502的迹线上方或下方的四个mr元件1-4。mr元件可以以桥配置504方式进行连接。桥配置可以提供由信号504a和504b组成的差分输出。

在实施例中,电路500可以用作用于检测目标的单线圈电路。例如,随着目标接近mr元件1和2,输出信号504a可以改变,并且随着目标接近mr元件3和4,输出信号504b可以改变。可以对准mr元件1-4,使得当目标接近元件1-4时,输出信号504a的值增加而输出信号504b的值减小,反之亦然。例如,在这样的实施例中,与元件3和4附近的线圈所创建的场相比,元件1和2附近的线圈所创建的场符号相反。因此,反射场在相反的方向上增强了桥差分输出对反射场的灵敏度,同时抑制由于外部公共场引起的变化。

参考图5a,电路500'包括线圈506,该线圈506被布置成使得如果电流沿箭头508所示的方向流过线圈506,则电流将沿顺时针方向流过线圈部分510并且沿逆时针方向流过反环路(counter-loop)线圈部分512。因此,如上所述,线圈部分510和512可以产生具有相反方向的局部磁场。mr元件1-4可以如图所示布置,以形成在目标接近时提供差分信号的桥。反环路可以减小由线圈产生并且由mr元件检测到的直接耦合磁场。例如,线圈506产生的磁场可以由mr元件1-4直接检测(例如,直接耦合到mr元件1-4)。线圈部分510和512可以均在由线圈506所产生的磁场相反的方向上创建局部磁场。因此,局部磁场可至少在mr元件1-4周围的局部区域(至少部分地)抵消由线圈506所产生的直接耦合磁场。这可以减小或消除由mr元件1-4检测到的直接耦合场,使得由mr元件1-4检测到的磁场是来自目标的反射场。

在实施例中,反环路用于测量线圈的反射场和直接场以提供灵敏度检测。同样,在此配置中,可以放置mr元件1-4,使它们看不到主线圈创建的磁场。

在实施例中,目标可以被定位成与mr元件1和3相邻,但是不与2和4相邻(反之亦然)。如果mr元件1-4以桥形式布置,则当目标例如朝向或远离mr元件1和3移动时,桥的差分输出可以变化。

在实施例中,可以将目标定位成使得mr元件1和2在一个方向上(例如,经历反射磁场的一侧)经历反射磁场,而mr元件3和4在相反的方向上(例如,经历反射磁场的另一侧)经历反射磁场。在该实施例中,随着目标移动接近mr元件,信号504a可以增加而信号504b可以减少(或者,反之亦然)以产生差分信号。

参考图5b,电路500'包括两个mr桥。mr桥514包括mr元件1-4,并且产生由信号514a和514b组成的差分输出信号,而mr桥516包括mr元件508,并且产生由信号516a和516b组成的差分输出信号。当目标接近mr元件1-8时,mr桥514和516的输出信号可以改变以指示目标的存在和接近度。电路500”也被示出具有键合焊盘518。

在实施例中,目标可以被定位成邻近桥514(mr元件1-4),使得当目标移近或远离桥514时,桥514的差分输出受到影响。在该实施例中,当目标移动时,桥516的输出可以保持相对稳定。因此,桥516的输出可以用作参考。特别地,该布置可以在其中要检测的目标相对靠近桥514的情况下起作用,使得目标的移动对桥514具有更大的影响而对桥516具有较小或零的影响。

附加地或替代地,可以使用相同的配置来测量距离差,第一距离在大目标与mr元件1、2、3和4的锁之间,而第二距离在相应的目标与mr原件5、6、7和8之间。

附加地或替代地,图5b的相同配置可以用于精确地确定目标沿着垂直于线圈平面的平面以及沿着位于桥514和516之间的等距离处的线530与线圈平面相交的平面的中心。

参考图5c,电路501包括线圈520和多个mr元件522,多个mr元件522在线圈520周围以一定间隔布置。mr元件522可以形成网格,类似于上述和图3b所示的网格。在实施例中,mr元件522可以以桥配置方式进行连接。在其他实施例中,mr元件522可以充当不与其它mr元件共享非单个电路(或者是单个电路的一部分)。在任何一种情况下,当检测到目标(及其反射磁场)时,mr元件522都会产生信号。处理器可以接收这些信号并且计算目标的地点、位置、速度、平行度、角度或其它属性。

在实施例中,电路501可以用于相对于线圈在三个维度上检测目标的位置。因为mr元件沿着线圈520定位在平面中,所以它们可以充当网格。当目标接近一个(或多个)mr元件时,它们将产生输出信号,该输出信号可以用于确定目标沿二维网格的位置。而且,如上所述,线圈520和mr元件可以用于检测在正交于二维线圈和栅格的方向(即,进入和离开页面的方向)上与mr元件的距离。

现在参考图6,用于检测目标的电路600可以包括线圈602和一个或多个mr元件604和606。线圈602可以具有两个线圈部分608和610,由间隙612隔开。通过部分608和610的电流在相同方向上流动。例如,如果通过部分608的电流围绕线圈在顺时针方向上流动,则通过部分610的电流也可以在顺时针方向上流动。

mr元件604和606可以被放置在间隙内,使得它们不直接在线圈602的迹线上方(或下方)。将mr元件放置在间隙612内可以减少线圈602与mr元件604和606之间的电容性或电感性耦合。而且,间隙612的宽度w可以小于mr元件与目标之间的距离。由于间隙612相对较小,目标中感应出的涡流和所产生的反射磁场可能会出现(即,可以由mr元件检测到),就像没有任何部分之间的间隙的单个线圈产生磁场一样。

在实施例中,将mr元件定位在间隙612内可以降低mr元件对由间隙612产生的直接耦合磁场的灵敏度,从而使mr元件保持对反射场的灵敏度。

在其他实施例中,线圈602可以在一条或多条迹线中包括点动(jog)。mr元件604和606可以与点动对准。

图7是具有夹在线圈700的迹线之间的mr元件604和606的电路的截面视图。在实施例中,线圈700可以与线圈602相同或相似。线圈迹线602a和602b可以被定位在衬底(未示出)的表面上。mr元件604和606可以被放置在迹线602a和602b的顶部,使得迹线602a和602b被定位在mr元件604和606与衬底之间。迹线614a和614b的附加层可以被定位在mr元件604和606的顶部。迹线602a、602b、614a和614b可以是同一线圈的一部分,使得流过迹线的电流以圆形或螺旋形流动以感应磁场。将mr元件604和606放置在线圈的迹线之间可以减小由线圈产生的直接耦合磁场。

参考图8,压力传感器800包括磁场传感器802,该磁场传感器802具有支撑线圈804和mr元件806和808的衬底803。在实施例中,磁场传感器802可以与图5中的电路500、图3中的电路300或上述任何可以检测到目标的接近度的磁场检测电路相同或相似。

在实施例中,线圈804和mr元件806、808可以由相同的衬底803支撑。在其他实施例中,mr元件806、mr元件808和线圈804可以被支撑在不同的衬底上(未示出)。例如,线圈804可以由一个衬底支撑,而mr元件806和808可以由不同的衬底支撑。在另一示例中,mr元件806、mr元件808和线圈804可以均由单独的衬底支撑。支撑电路元件的衬底的任何其他组合也是可能的。

压力传感器800包括具有导电部分811和可变形部分812的腔室810。在实施例中,腔室810由细长管形成。在图8的实施例中,导电部分和可变形部分812可以包括设置在管的一端的膜片,该膜片可以起到隔膜的作用并且可以变形以朝向或远离磁场检测电路802移动。

可变形部分812可以由不锈钢、铍铜、钛合金、超合金和/或蓝宝石形成。当腔室810内部的压力大于腔室810外部的压力时,可变形部分812可以朝向磁场检测电路802延伸。如果腔室810外部的压力较大,则可变形部分812可以从磁场检测电路812缩回,并且如果腔室810内部的压力和腔室810外部的压力处于平衡,则可变形部分可以在延伸位置和缩回位置之间采用中性位置。

在圆形可变形部分的情况下,膜片的变形由下式给出:

其中,h是可变形部分的厚度,v是泊松模块,e是杨氏模块,a是可变形部分的半径,r是测量变形的点。

在实施例中,最大变形可以足够低,使得即使在高于180℃的温度下,可变形部分也总是在材料的弹性域中。为此,马氏体时效合金或钛合金等超级合金可能是合适的材料。

磁场检测电路802可以包括靠近线圈804设置的至少一个磁场感测元件806和/或808,如上所述。线圈804可以产生在导电部分812中感应出涡流和反射磁场(与上述涡流和反射场相似)的磁场。磁场检测电路802还可以包括生成指示腔室810的内部与外部之间的压力差的输出信号的电路。

在实施例中,磁场检测电路802包括两个间隔开的mr元件806和808,并且当可变形部分朝向mr元件延伸和/或远离mr元件缩回时,检测导电部分812与mr元件806和808中的一个之间的距离。在实施例中,磁场检测电路802可以被配置为检测a)导电部分812和磁场传感器808之间的距离与b)导电部分812和磁场传感器806之间的距离之间的差值。这些距离之间的差值可以用于产生磁场检测电路802的输出信号。

磁场检测电路802产生的输出信号可以表示距离,然后该距离可以由处理器接收以计算腔室810内的相关压力。mr元件806和808可以包括多个mr元件并且可以被布置在如上所述的桥配置中,以产生差分输出。

在实施例中,mr元件806与导电的可变形部分812的边缘对准,并且mr元件808与导电的可变形部分812的中心或中心区域对准。在这种布置中,当可变形部分812朝向和远离mr元件808移动时,mr元件808将起反作用,并且mr元件806将不受影响或受影响的程度远小于元件808,因此可具有相对恒定的电阻值。以这种方式定位mr元件可以用于消除由于杂散场引起的误差。它还可以帮助补偿mr元件之间的气隙公差。例如,两个传感器检测到的距离差可以用于补偿气隙随时间、温度等的小变化。

参考图8a,压力传感器818的另一实施例包括第一细长管820,该第一细长管820具有可变形侧壁821和允许流体进入细长管820内的腔室的开口823。当流体在管820内创建压力时,侧壁821可以像气球一样膨胀或延伸。管820的端部828可以是导电的。

压力传感器818还包括具有开口824的第二细长管822。细长管822可具有刚性壁826和开口824。开口824可以具有足以将管820插入开口824中的直径或尺寸。

压力传感器818可以包括磁场传感器830,磁场传感器830可以与磁场传感器802和/或上述磁场传感器中的任何一个相同或相似。

在实施例中,当管820、822被组装时,管820的导电端828可以被定位成靠近mr元件808。在管820内的压力增加和减小时,管822的刚性壁可以保持可变形的侧壁821横向扩展。然而,当管腔823内的压力改变时,端部828可以朝向mr元件808扩展和延伸,并且远离mr元件808缩回。磁场传感器830可以检测距离的变化并且产生表示端部828与mr元件808之间的距离的输出信号。在实施例中,磁场检测电路802可以被配置为检测a)导电端828和磁场传感器808之间的距离与b)导电808和磁场传感器806之间的距离的差值。这些距离之间的差值可以用于产生磁场检测电路830的输出信号。处理器电路可以接收该信号并基于该距离计算管820内的压力。

还参考图9,压力传感器900包括第一衬底902和第二衬底904,第一衬底902可以与图8的衬底803相同或相似,第二衬底904附接到第一衬底902。第二衬底904可以包括表面908和在该表面上形成的凹陷906。凹陷906可以被蚀刻到衬底中。在实施例中,可以蚀刻晶圆904,使得其足够薄以在压力下偏转,如虚线910所示。由衬底902支撑的mr元件可以检测(如上所述,通过反射磁场)晶圆904的偏转。所检测到的偏转随后可以与压力相关。

在实施例中,衬底902上的mr元件可以被定位成使得一个或多个mr元件与凹陷906的边缘(例如,非偏转部分)相邻,并且一个或多个mr元件与凹陷906的中心(例如偏转部分),类似于上面描述的并且在图8a中例示的布置。

在实施例中,衬底904可以由诸如铜的导电材料形成。因此,可以通过衬底902上的磁场传感器来检测由衬底904上的压力(和/或凹陷906内的压力)引起的衬底904的导电可变形部分的运动。

替代地,衬底904可以由像蓝宝石的晶体材料形成,该晶体材料例如被足够厚的诸如铜的导电材料涂覆。

在实施例中,在制造过程中将凹陷906抽空以确定参考压力。在实施例中,参考压力是真空或小于标准压力(例如,小于100kpa)的压力。在某些配置中,mr桥(例如,图3a中的桥318)的一个或多个输出信号可以用于生成表示参考压力的值。

参考图10,示出了磁场传感器1000的框图。磁场传感器包括产生磁场的线圈1002、向线圈提供电力的线圈驱动器1004、mr元件1006、向mr元件1006提供电力的mr驱动器电路1008。mr元件1006可以是单个mr元件或可以包括多个mr元件,其可以以桥配置方式进行布置。如上所述,线圈1002和mr元件1006可以被配置为检测导电目标的距离。在实施例中,线圈驱动器1004和/或mr驱动器1008可以产生ac输出以驱动线圈1002和mr元件1008,如上所述并且如ac电源1010所指示。ac电源1010可以是用于驱动线圈1002和mr元件1006二者的公共电源。在实施例中,信号1012可以是ac信号。

磁场传感器1000还包括放大器,以放大mr元件1006的输出信号1012。输出信号1012可以是差分信号,放大器1014可以是差分放大器。输出信号1012和放大信号1016可以是dc信号。

磁场传感器1000还可以包括低通滤波器1018,以从信号1016滤除噪声和其他伪像,以及偏移模块1024,其可以根据温度(例如,由温度传感器1020进行的温度测量)以及根据材料类型模块1022的材料类型来缩放输出信号。还可以包括分段线性化电路1026,其可以对补偿信号1028执行线性回归并且产生输出信号1030。

在实施例中,来自目标的反射磁场将具有频率f(与线圈驱动器1004相同的频率)。因为由线圈1002产生的磁场和反射磁场具有相同的频率,所以mr元件1006的输出可以包括0hz(或dc)分量,频率为f的分量以及频率为f的倍数的谐波分量。本领域技术人员将认识到,最低频率谐波分量可能出现在频率2*f处。然而,mr桥平衡的任何差异都可能生成信号中可能存在的频率分量。因此,低通滤波器1018可以被配置为去除频率f和更高的频率(即,低通滤波器1018可以包括截止频率f截止,其中f截止<f。在实施例中,滤波器可以被设计为去除可能的f信号。因此,频率f可以被选择为大于目标的运动频率范围的频率。

在实施例中,mr元件1008的灵敏度随温度变化。反射场的强度也可以随温度而变化,这取决于目标材料的类型和频率。为了补偿,模块1022可以包含用于补偿温度和/或所用材料的影响的参数。参数可以包括线性和/或二阶补偿值。

在实施例中,处理电路1032可以处理表示磁场的信号。因为使用公共源1010来驱动mr元件1006和线圈1002,所以线圈1002和mr元件1006的频率基本相同。在这种情况下,信号的后处理可以包括滤波、线性回归、增益和放大或其他信号成形技术。

mr元件1006可以检测由线圈1002直接产生的磁场,以及由通过线圈1002的电流产生的磁场感应的、由导电目标中的涡流产生的反射磁场。

参考图10a,磁场传感器1000'可以包括如上所述的线圈1002、线圈驱动器1004、公共ac电源1010、mr驱动器1008、mr元件1006、放大器1014和低通滤波器1018。

磁场传感器1000'可以与图1的传感器1000不同,因为它是闭环传感器,所以它还可以包括第二线圈1035,其可以以与线圈1002不同的ac频率工作。在该示例中,线圈1035可以与线圈1002异相180度,如由“-f”符号所示。线圈1035还可以产生可以用于检测目标的第一磁场。在实施例中,线圈1035可以相对小于线圈1002。线圈1035可以被放置成邻近mr元件1006,以产生可以被mr元件1006检测到但是不在目标中产生涡流的磁场。

在实施例中,线圈1035可以用于偏移由于mr元件的磁阻引起的误差。例如,可以改变驱动通过线圈1035的电流的大小,直到mr元件1006的输出为零伏。此时,可以测量通过线圈1035的电流(例如,通过测量与线圈1035串联的旁路电阻器两端的电压)。可以类似于mr元件1006的输出来处理所测量的电流,以去除与mr1006相关联的磁阻误差。

磁场传感器1000'还可以包括放大器1036以接收信号1038。磁场传感器1000'还可以包括如上所述的低通滤波器1019、材料类型模块1022、温度传感器1020、偏移模块1024和分段线性化模块1026。

图11-11f包括具有信号处理以减少感应耦合或其他噪声影响信号精度的磁场传感器的各种示例。图11-11f中的示例性磁场传感器还可以采用与检测来自目标的反射磁场有关的各种特征,例如跳频等。这种磁场传感器还可以包括计算灵敏度值的电路。

现在参考图11,磁场传感器1100可以包括线圈1002、线圈驱动器1004、ac驱动器1010、mr驱动器1008、mr元件1006、放大器1014、低通滤波器1018、温度传感器1020、材料类型模块1022、偏移模块1024和分段线性化模块1026。

mr元件1006可以响应于感测元件驱动信号并且被配置为检测由线圈1002生成的直接耦合磁场,以产生信号1012作为响应。处理电路可以计算与通过mr元件1006检测由线圈1002产生的直接耦合磁场相关联的灵敏度值。该灵敏度值可以基本独立于目标中的涡流所产生的反射磁场。

如所示的,ac驱动器1010耦合到线圈驱动器1004,但是不耦合到传感器1100中的mr驱动器1008。在该实施例中,mr驱动器1008可以产生dc信号(例如,具有将近零频率的信号)以驱动mr元件1006。

线圈1002可以产生可由mr元件1006检测到但不在目标中产生涡流的dc(或实质上低频ac)磁场。通过检测dc(或实质上低频ac)磁场产生的信号可以用于调节磁场传感器的灵敏度。

线圈1002还可以在较高频率下产生ac磁场,该ac磁场在目标中感应出涡流,该涡流在可以在那些较高频率下产生被mr元件1006检测到的反射磁场。

mr元件1006可以产生信号1012,该信号1012可以包括表示不引起目标中的涡流的低频磁场的dc或实质上低ac频率的频率分量(例如,“直接耦合”信号或信号分量)、和/或表示检测到的反射磁场在较高ac频率下的频率分量(例如“反射”信号或信号分量)。直接耦合的信号可以用于调节传感器的灵敏度,而反射的信号可以用于检测目标。线圈驱动器1004和/或mr驱动器1008可以使用直接耦合的信号作为灵敏度信号,以响应于灵敏度信号来调节它们相应的输出驱动信号。

在实施例中,直接耦合的信号和反射的信号可以被包括为同一信号的频率分量。在这种情况下,可以驱动线圈1002以同时产生两个频率分量。在其他实施例中,直接耦合信号和反射信号的生成可以在不同时间生成,例如使用时分复用方案。

传感器1100还可以包括解调器电路1050,解调器电路1050可以调制信号1016以从信号中去除ac分量或将信号内的ac分量移位到不同的频率。例如,解调器电路1050可以调制频率为f的信号1016。如本领域中已知的,因为信号1016包括频率为f表示所检测的磁场的信号分量,调制频率为f的信号1016可以将表示所检测的磁场的信号分量移位到为0hz或dc。信号1016内的其他频率分量可以被移位至更高的频率,使得它们可以被低通滤波器1018去除。在实施例中,信号1016的可以表示灵敏度值的dc或低频分量可以被反馈到线圈驱动器1004以响应于该信号来调节线圈1002的输出、和/或被反馈到mr驱动器1008以响应于该灵敏度值来调节驱动信号1009。dc输出信号1052可以表示目标与mr元件1006的接近度。

在其他实施例中,可以使用时分复用方案。例如,线圈驱动器1004可以在第一时间段期间以第一频率、在第二时间段期间以第二频率等来驱动线圈1002。在某些情况下,第一和第二(以及后续)时间段不重叠。在其他情况下,第一时间段和第二时间段可以重叠。在这些情况下,线圈驱动器1004可以同时以两个或更多个频率驱动线圈1002。当第一时间段和第二时间段不重叠时,解调器1050可以以与线圈驱动器1004相同的频率操作。当时间段重叠时,可以使用多个调制器,第一调制器以第一频率运行,第二调制器以第二频率运行,以便分离出每个频率的信号。

虽然减小mr元件1006检测到的直接耦合磁场以实现对反射磁场(以及因此检测到的目标)的准确读取可能是有利的,但是具有一定量的直接耦合(即,直接检测线圈1002产生的磁场)以允许计算灵敏度值是有利的。同时测量反射的磁场和由线圈产生的磁场二者允许独立于mr元件、线圈的驱动电流等的灵敏度来精确地确定物体的距离。mr元件的灵敏度可以随温度和/或mr阵列平面中不想要的dc或ac杂散场的存在而变化。反射场与线圈场之间的比率仅取决于几何设计,因此是准确确定距离的良好参数。

参考图11,可以使用跳频方案。例如,线圈驱动器1004可以以不同的频率驱动线圈1002(例如,随着时间在频率之间交替,或者产生包含多个频率的信号)。在这样的实施例中,传感器1100可以包括多个解调器电路和/或滤波器,以检测每个频率的信号。

参考图11a,磁场传感器1100'包括线圈1002、线圈驱动器1004、ac驱动器1010、mr驱动器1008、mr元件1006、放大器1014、低通滤波器1018、温度传感器1020、材料类型模块1022和偏移模块1024。

如所示的,ac驱动器1010耦合到线圈驱动器1004,以频率f1驱动线圈1002。mr驱动器1008耦合到ac驱动器1102,以频率f2驱动mr元件1006。频率f1和f2可以是不同的频率,也可以是非谐波频率(换言之,f1可以不是f2的谐波频率,反之亦然)。在实施例中,频率f1低于频率f2。在其他实施例中,频率f1和f2可以相对彼此接近,使得两个频率之间的差远低于f1和f2。频率f2可以是零值或非零值频率,但替代地可以选择大于f2的f1。然后在f2至f1处进行解调。

在实施例中,可以选择频率f1以避免在目标中产生大于预定水平的涡流和/或选择频率f1以在目标中提供全反射。根据以下公式,反射场可以与目标中的趋肤深度(skindepth)有关:

在以上公式中,σ是目标材料的电导率,μ是目标材料的磁导率,f是工作频率。如果目标材料的厚度大于趋肤深度δ的约5倍,则场可能会被完全反射。在目标的厚度等于趋肤深度的情况下,仅大约一半的场会被反射。因此,频率f被选择为足够低以使得趋肤深度变得大于目标的厚度,这可能引起低涡流和强度降低的反射场。上面给出的公式对于高导电和低磁性材料可能是有效的。对于电导率低的材料或铁磁材料,涡流的损耗(可能在复杂的趋肤深度处转换)可能导致反射场强度降低。

电路1100'还可以包括带通滤波器1104和解调器电路1106。带通滤波器1104可以具有不包括频率f1和f2,但保存频率|f1-f2|的通带。以这种方式,可以滤除从线圈和/或gmr驱动器进入磁传感器的感应噪声。电路1100'还可以包括对|f1-f2|频率进行解调的解调器电路1106、以及用于恢复以dc为中心的信号的低通滤波器,该信号可以表示磁传感器看到的频率为f1的磁场。在实施例中,频率为|f1-f2|的信号可以包括关于目标和/或直接耦合磁场的信息,但是可以具有来自感应耦合或其他噪声源的减少噪声。

现在参考图11b,磁场传感器1100”包括线圈1002、线圈驱动器1004、ac驱动器1010、mr驱动器1008、mr元件1006、放大器1014、低通滤波器1018、温度传感器1020、材料类型模块1022、偏移模块1024和分段线性化模块1026。

如所示的,ac驱动器1010被耦合到线圈驱动器1004,但未被耦合到传感器1100中的mr驱动器1008。在该实施例中,mr驱动器1008可以产生dc信号(例如,具有将近零的频率信号)以驱动mr元件1006。

线圈1002可以产生ac磁场,该ac磁场在目标中感应出涡流和反射磁场。

传感器1100”还可以包括可以对信号1016进行解调的解调电路1060。解调电路1060可以将信号1016与频率为f的信号相乘,这可以将关于信号1016中的目标的信息转移成dc,并且可以将信号中的噪声或其他信息转移到更高的频率。低通滤波器1018可以去除信号中较高频率的噪声。在实施例中,解调电路1060可以是在数字域中对信号1016进行解调的数字电路,或者是在模拟域中对信号1016进行解调的模拟信号。

传感器1100”还可以包括相位检测和补偿电路1062,其检测线圈1002中的电流的相位和/或频率及其产生的磁场。电路1062可以检测并补偿线圈1002和f中的相位差异,并产生可以用于调制信号1016的校正信号1063。

在实施例中,频率f、目标的材料类型、目标,布线和电子器件的形状、和/或其它因素可能导致到线圈1002的驱动信号1010与mr元件1008检测到的反射磁场之间的相位偏移。信号之间的相位可以被测量并且用于调节来自相位检测和补偿电路1062的信号1063的相位,从而匹配信号1016的相位。

还可以使用跳频方案。例如,线圈驱动器1004和/或mr驱动器1008可以以多个频率驱动信号。在每个频率处,相位检测和补偿模块1062可以调节信号1063的相位以匹配信号1016的相位。

现在参考图11c,磁场传感器1100”'包括线圈1002、线圈驱动器1004、ac驱动器1010、mr驱动器1008、mr元件1006、放大器1014、温度传感器1020、材料类型模块1022、偏移模块1024和分段线性化模块1026。

如所示的,ac驱动器1010耦合至线圈驱动器1004,但未被耦合至传感器1100中的mr驱动器1008。在该实施例中,mr驱动器1008可以产生dc信号(例如,具有将近零频率的信号)以驱动mr元件1006。

线圈1002可以产生ac磁场,该ac磁场在目标中感应出涡流和反射磁场。mr元件1006可以检测反射磁场,该mr元件产生表示检测到的磁场的信号1012。

传感器1100”'还可以包括可以对信号1016执行fft的快速傅立叶变换(fft)电路1070。执行fft可以识别信号1016中的一个或多个频率分量。在实施例中,fft电路1070可以识别信号1016中具有最大幅值的频率分量,其可以表示检测到的频率为f的磁场。fft电路1070可以产生输出信号1072,该输出信号1072包括频率为f的检测信号以及信号1016的任何其他频率分量。

替代地,驱动器可以同时生成不同的频率fa、fb、fc,并且fft模块可以计算fa、fb、fc处的幅值,其可以用于确定目标的不同参数,这些不同参数包括位置、材料、厚度等。另外,如果发生特定频率的干扰(例如,来自目标变形、杂散磁场、噪声源等),则系统可以检测到该干扰并忽略该频率的数据。fft模块计算出的幅值也可以用于确定是否存在任何特定频率的干扰,该干扰可以通过后续处理被忽略。在实施例中,可以在模拟和/或数字域中计算fft温度增益补偿和线性化。

现在参考图11d,磁场传感器1100d包括线圈1002、线圈驱动器1004、mr驱动器1008和mr元件1006。mr传感器1006的输出信号1007可以表示检测到的磁场。尽管未示出,传感器1100d还可以包括放大器1014、低通滤波器1018、温度传感器1020、材料类型模块1022、偏移模块1024和分段线性化模块1026。振荡器1182可以用于以频率f操作线圈驱动器1004。

如所示的,振荡器1182耦合到线圈驱动器1004,但是不耦合到传感器1100d中的mr驱动器1008。在该实施例中,mr驱动器1008可以产生dc信号(例如,具有将近零频率的信号)以驱动mr元件1006。

传感器1100d还包括正交解调电路1180。正交解调电路1180包括移位电路1188以产生驱动频率f的90°移位。振荡器1182可以产生频率为f的余弦信号。因此,1188的输出可以是频率为f的正弦信号。因此,通过在解调器1190和1192中相乘(以及随后的低通滤波),可以将mr传感器1006的检测到的信号分离为同相和异相分量(例如,信号1184a和1186a)。所得的相位和大小可以用于确定有关反射场和目标的信息。例如,相位信息可以用于确定目标中是否存在缺陷或异常,确定目标材料的磁属性,目标是否被正确对准等。振荡器1182还可以产生周期为1/f的方波,并且移位电路1188可以将方波在时间上移位1/(4f)。

参考图11e,在另一实施例中,作为提供同相和异相信息二者的替代,磁场传感器1100e可以经由两个信号路径产生正交调制信号。在电路1100e中,mr元件的一半可以由频率为f的信号驱动,而mr元件的一半可以以异相90°的频率驱动。解调链(例如,包括系统的解调功能的电路)可以与图10中的解调电路相同或相似,包括直流低通滤波器以及补偿和线性化。

在实施例中,可以使用正交调制来确定返回信号的绝对大小和相位。这可以允许对信号的不期望的相移进行自动校正,这可以提供目标属性的更准确的确定以及与材料的磁性或损耗属性有关的信息的恢复。

参考图11f,磁场传感器1100f包括以频率f1驱动线圈1002的线圈驱动器1004。mr驱动器1008可以以相同的频率f1驱动mr元件,但是相对于线圈驱动器1004异相90度。结果,由mr元件1006产生的信号1016的频率可以是f1的两倍(即,2*f1),这可能是正弦和余弦相乘的结果。传感器1100f可以包括解调器电路1195,其可以对信号进行解调以将反射场信息转换为dc附近的频率。

参考图12,信号1270可以表示由线圈驱动器1004用于驱动线圈1002的信号。当该信号为高时,线圈驱动器1004可以利用在一个方向上流动的电流来驱动线圈1002,并且当该信号为低时,线圈驱动器可以利用在相反方向上流动的电流来驱动线圈1002。在实施例中,线圈驱动器1004可以用直流电(即,dc)或足够低的频率来驱动线圈1002,使得由线圈1002产生的磁场不在目标中产生涡流。

作为示例,参考上面的趋肤深度公式,铜在r50hz时的趋肤深度约为10mm,在10khz时的趋肤深度约为600μm。因此,假定0.5mm厚的铜目标,低于5khz的频率可能会产生强度相对较低的反射磁场。

线圈驱动器1004可以以相对较低的频率或dc频率来驱动线圈1002,如信号部分1272和1274所示。频率可以足够低,因此部分1272和1274的持续时间可以足够长,使得通过切换信号1270(例如,从部分1272期间的高值切换到部分1274期间的低值)在目标中生成的任何涡流都有时间稳定下来并消散。在部分1272和1274期间示出的直接耦合信号可以从高切换到低(表示检测到的磁场的变化),以便去除由于线圈1002的直接耦合磁场而引起的任何偏移。

信号1270的部分1276可以表示mr元件1006检测到的磁场,而线圈驱动器1004以足够高的频率驱动线圈1002以在目标中感应出涡流。当部分1276是有效时,mr元件1006可以检测由线圈1002直接产生的直接耦合磁场以及由目标中的涡流产生的磁场。随后可以对检测到的信号进行处理,以将直接耦合磁场与涡流产生的磁场分开。尽管未示出,但是部分1276可以具有比部分1272更大或更小的大小,因为这些部分可以包含不同的信息。例如,部分1276可以包括反射信号以及直接耦合信号。

如信号1270中所示,不同极性的低频部分1272和1274可以在信号1270内彼此相邻。在其他实施例中,如信号1270'中所示,不同极性的低频部分1272'和1274'在信号内可以彼此不相邻。例如,它们可以被高频信号部分1276分开。

在其他实施例中,可以同时以低频(低频部分1272和1274)和高频(高频部分1276)两者来驱动线圈。然后可以使用信号处理技术来分离频率,以测量mr元件的响应。

在某些情况下,低频部分1272和1274与高频部分1276的比率可以用于确定或指示反射信号的大小。以这种方式测量比率可以降低大小测量对外部不期望的变化(例如由于温度、杂散磁场等引起的变化)的灵敏度。

现在参考图12a,磁场传感器1200可以被配置为响应于灵敏度值来调节磁场传感器的输出信号。传感器1200可以包括线圈1202和线圈驱动器1204。如上所述,mr元件1206可以检测由线圈1202产生并被目标反射的磁场。在实施例中,mr元件1206的输出信号1208可以包括第一频率和第二频率。例如,第一频率可以是线圈驱动器的频率,并且第二频率可以是0hz或dc。在这种情况下,mr元件1206可以由dc偏置电路1210驱动。在其他示例中,第二频率可以是非零频率。

在另一实施例中,线圈驱动器1204可以在第一时间段期间以一个频率驱动线圈1202,而在第二时间段期间以另一频率驱动线圈1202。时间段可以交替并且不重叠。

传感器1200还可以包括分离器电路,其可以包括一个或多个低通滤波器1214和1216,以及解调器1224和1226。传感器1200还可以包括混频器电路1212。振荡器1218和1220可提供用于驱动线圈1202的振荡信号和处理信号1208。在实施例中,振荡器1220可以提供具有比振荡器1218的频率(flow)更高的频率(fhigh)的信号。在实施例中,flow是足够低的频率,使得由于频率flow为零导致的由目标产生的任何反射场足够小而未被检测到,或者足够小使得其对输出的影响可忽略不计或在系统公差内。

混频器1212可以混合(例如相加)来自振荡器1218和1220的信号以产生信号1222,其被馈送到线圈驱动器1204。然后,线圈驱动器1204可以根据混合的信号1202来驱动线圈1202。

因为线圈1202由混合信号驱动,所以输出信号1208可以包括由mr传感器1206检测到的在fhigh和flow处的振荡。解调器1226可以对频率为fhigh的信号1208进行解调,以便将信号1208的频率为fhigh的部分与信号中的其他频率分离。本领域的技术人员可以认识到,解调过程可能导致信号中的其他频率转移到更高的频率。然后低通滤波器1214可以从信号中去除这些频率,并且产生滤波后的信号1228,该滤波后的信号1228主要包括频率为fhigh或dc处的信息。

类似地,解调器1224可以对频率为flow的信号1208进行解调,以便将信号1208的频率为flow的部分与信号中的其他频率分离。本领域的技术人员可以认识到,调制过程可能导致信号中的其他频率转移到更高的频率。然后,低通滤波器1216可以从信号中去除这些频率,并且产生滤波后的信号1230,该滤波后的信号1230主要包括频率flow或dc处的信息。处理电路1232可以处理信号1228和1230以产生表示检测到的目标的输出信号1232。

处理电路1232可以以各种方式处理信号1228和1230,这些处理方式包括采用信号的比率以提供对由杂散磁场干扰、温度漂移、封装应力或其他外部因素引起的不期望变化基本不敏感的输出。取信号的比率还可以提供对由于温度、电源电压、外部刺激的变化等引起的线圈驱动器的变化(例如,线圈驱动器提供的电流或电压的变化)基本不敏感的输出。

信号1230也可用作馈入dc偏置电路1220的灵敏度信号,如箭头1234所示。dc偏置电路1210可以基于信号1230的值来调节用于驱动mr元件1206的电压电平,以补偿由于温度、杂散磁场、封装应力等引起的系统灵敏度变化。

参考图12b,磁场传感器1200'可以类似于传感器1200,并且还可以包括附加的面内场线圈1236。dc偏置电路1236可以用dc电流驱动线圈1232以产生恒定的磁场。恒定磁场可以由mr元件1206直接检测,并且可以是偏置磁场。在其他实施例中,由面内场线圈1232产生的磁场可以用于生成与mr灵敏度成比例的信号,该信号可由mr元件1206检测并且随后反馈并用于调节电路1200'的灵敏度。在实施例中,由面内场线圈1232产生的磁场可以垂直于由线圈1202产生的磁场,并且用于增加/减小mr元件的灵敏度。dc偏置电路1236可以以补偿由闭环系统看到的灵敏度变化的方式来驱动线圈1232。换言之,dc偏置电路可以响应于反馈信号1234而改变提供给线圈1232的驱动电流的大小,以补偿直至反馈回路系统的带宽的灵敏度误差。带宽可以由滤波器1216的截止频率确定(或至少在很大程度上受到其影响)。

如所示的,dc偏置电路1236可以接收信号1230并且调节提供给面内场线圈1232的电流的量,随后可以因此调节由面内场线圈1232产生的磁场的强度。尽管在图12b中未示出,dc偏置电路1210'还可以接收信号1230,并且使用它来调节驱动mr元件1206的电流。在实施例中,dc偏置电路1210'、dc偏置电路1236或两者都可以基于信号1230调节它们的输出。

参考图12c,磁场传感器1240包括振荡器1220、振荡器1218和混频器1212。线圈驱动器1204接收由混频器1212产生的信号并且利用包括频率fhigh和flow的信号来驱动线圈1202。

传感器1240可以包括两个(或更多个)mr元件1254和1256。mr驱动器1250可以耦合到振荡器1220并且可以以频率fhigh驱动mr传感器1254,并且mr驱动器1252可以耦合到振荡器1218并可以以频率flow驱动mr传感器1256。低通滤波器1216可以对来自mr传感器1254的输出信号1258进行滤波,并且低通滤波器1264可以对来自mr传感器1256的输出信号1260进行滤波。由于驱动mr传感器1254和1256的频率,输出信号1258可以包括在fhigh处的频率分量,输出信号1260可以包括在flow处的频率分量。滤波后的信号1230可以是可以用来调节传感器1240的灵敏度的灵敏度信号。因此,信号1230可以被反馈到mr驱动器1252、mr驱动器1250和/或线圈驱动器1204,它们可以均基于信号1230的值调节它们的输出。在实施例中,信号1230可以是dc或振荡信号。

参考图13,电路1300包括线圈1302和以桥配置进行布置的mr元件1-8。线圈1302可以包括所谓的补偿线圈部分1304a、b和1306a、b。第一补偿线圈部分1304a可以在其下方的mr元件的左侧产生磁场。随后,部分1304b可以在右侧产生磁场,部分1306a可以在右侧产生磁场,而部分1306b可以在左侧产生磁场。mr元件1和3被定位成邻近补偿线圈部分1304a,并且mr元件2和4被定位成邻近补偿线圈部分1304b。mr元件5、6被定位成邻近补偿线圈部分1306a,并且mr元件7、8被定位成邻近补偿线圈部分1306b。而且,mr桥被分开,使得每个桥中的一些元件位于补偿线圈部分1304附近,并且一些元件位于补偿线圈部分1306附近。例如,mr桥1308包括mr元件1和3(定位成邻近补偿线圈部分1304)和mr元件5和6(定位成邻近补偿线圈部分1306)。提供补偿线圈部分1304和1306可能影响mr元件上的直接耦合场的大小和极性。

mr元件1、3可以具有与线圈1302相关的第一耦合因数,mr元件2、4可以具有第二耦合因数,mr元件5和6可以具有第三耦合因数,并且mr元件7、8可以具有与线圈1302相关的第四耦合因数。在实施例中,mr元件1、3、7和8的耦合因数可以等于mr元件2、4、5和6的耦合因数并且与其相反。例如,这可能是由于在相反的线圈方向上承载相等电流的线圈部分1304a、b和1306a、b,以及mr元件相对于它们的定位所导致的。

在实施例中,桥1308和1310对反射场作出相等的响应。但是,它们可能对直接耦合的场作出相反的响应。两个桥的输出的相加可以包含关于反射场的信息并且两个桥的相减可以包含关于直接耦合场的信息。然后,直接耦合场信息可以用作系统灵敏度的量度,并且可以用于标准化反射场信息。在另一实施例中,桥1308和1310对反射场作出相等的响应。但是,它们对直接耦合场可能作出不同(不一定完全相反)的响应。两个桥的相减仍然导致仅包含关于直接耦合场的信息的信号,该信息可以被用作系统灵敏度的度量。两个桥的相加可以包括一些直接耦合场的信息连同关于反射场的信息。但是,这可以通过线性化模块进行补偿,因为它显示为恒定偏移。

例如,在操作期间,以下公式可能适用:

vbridge1=(cr+c1)*i*s1

vbridge2=(cr+c2)*i*s2

在以上公式中,cr表示反射场,c1表示由第一mr桥检测到的直接耦合场,c2表示由第二mr桥检测到的直接耦合场,i是通过线圈的电流,s1表示第一mr桥的灵敏度,s2表示第二mr桥的灵敏度。假设s1=s2并求解cr:

上面的等式提供了独立于mr元件的电流和灵敏度的cr公式。在实施例中,线圈、mr元件和目标的几何形状可以提供c1=-c2。在其他实施例中,系统的几何形状可以提供c1和c2的其他比率。利用已知的比率,可以计算cr以提供反射场的值。

参考图13a,线圈1302'可以包括补偿线圈部分1304'a、b和1306'a、b以及线圈元件之间的间隙。在图13a中,仅示出了线圈1302'和mr元件1-8的中间部分。

补偿线圈部分1304'和1306'可以均放置在主线圈的迹线之间的相应间隙1350和1352中。mr元件1-8可以被放置在主线圈的间隙内。如同图6中的间隙一样,将mr元件放置在间隙1350和1350内可以减小mr元件对直接耦合磁场的灵敏度。因此,用于线圈1302'的线圈设计可以通过包括减小灵敏度的间隙1350和1352以及用于增加灵敏度的补偿线圈部分1304'和1306'来来调节mr元件对直接耦合场的灵敏度,以便在每个元件上实现所期望的直接耦合。在实施例中,直接耦合场在大小上类似于反射场。

参考图13b,磁场传感器1320可以包括如图13中布置的线圈1302、mr桥1308和mr桥1310。线圈驱动器1322可以以频率f驱动线圈1302。mr驱动器1324可以以0hz(即dc)或另一频率来驱动mr桥1308和1310中的一个或二者。

解调器1324和解调器1326可以分别以频率f解调来自mr桥1308和1310的输出信号。这可以将频率为f的信号的频率分量转移到0hz或dc,并且可以将信号中的其他频率分量转移到更高的频带。低通滤波器1328和1330可以从信号中去除高频分量,并且向处理块1332提供dc信号v1(对应于由mr桥1308检测到的磁场)和dc信号v2(对应于由mr桥1310检测到的磁场)。处理块1332可以处理信号v1和v2以产生表示检测到的目标的信号,在实施例中,处理块可以执行运算x=(v1+v2)/(v1-v2),其中x是表示所检测到的目标的信号。在该实施例中,以这样的方式选择桥1308和1310的mr的位置:第一桥看到来自线圈的负信号(直接耦合场)并且第二桥看到来自线圈的相反信号。两个桥都可以看到相同的反射信号。因此v1+v2基本可以包括反射信号,而v1-v2可以基本包括线圈信号。然后,该比率给出量x,其与例如由于温度或杂散场以及线圈电流的变化而引起的mr元件的灵敏度变化无关。在该实施例中,可以选择mr(和/或线圈)的位置,以使得每个mr都看到(例如可以检测)相同幅值范围的线圈信号和反射信号,即典型地反射场从0.1%变化到100%的直接检测场。

现在参考图14,系统1400包括磁场传感器1402和目标1404。磁场传感器1402可以与磁场传感器100和/或上述任何磁场传感器相同或相似。因此,磁场传感器1402可以包括:线圈,其用于产生磁场并在导电目标1404内产生涡流;以及一个或多个磁场感测元件,其用于从涡流中检测反射场。

可以使用目标1404的趋肤效应以通过控制反射磁信号的量并使用反射信号的量来编码目标位置来检测线性、速度和角度(在旋转目标的情况下)的测量结果。可以通过组合高电导率的材料(浅肤深度,其使用高频信号测量)和相对低电导率的材料(深肤深度,其使用中频或低频信号测量)来创建目标。可以通过将线性斜坡或数字齿形图案研磨或蚀刻到低电导率材料中来创建目标。在随后的步骤中,可以将高电导率的材料沉积在表面上,然后进行研磨或抛光以形成平坦的表面。替代地,可以省略低电导率材料。

测量技术还可以利用(例如,线圈1002的)各种频率和目标的趋肤效应。相对较高的频率和较浅的皮肤深度可以用于测量传感器与目标面部之间的气隙距离。然后,该信号可以用于校准系统的灵敏度。趋肤深度超过高电导率材料的最大厚度的中频可以用于感测由低电导率材料形成的目标的部分的位置。较低频率的信号(例如,足够低以使得其不被目标反射)可以用于测量mr传感器的整体灵敏度,并且提供反馈以补偿由于杂散场、温度或封装应力而引起的任何灵敏度变化。再次参考图14,目标1404可以包括第一材料部分1406和第二材料部分1408。第一材料部分1406可以是诸如金属的高电导率材料,第二材料部分1408可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或反之亦然。在实施例中,如图14所示,第一材料部分1406和第二材料部分1408可以是整体形成的一体结构,或者可以是彼此物理耦合的分离元件。

第一材料部分1406的厚度1410可以沿着目标1404的长度变化,使得在一端1412处,第一材料部分1406相对较厚,并且在另一端1414处,第一材料部分1406相对较薄。由磁场传感器1402在第一材料部分1406的厚端1412感应出的涡流可以与在薄端1414感应出的涡流不同。因此,在厚端1406产生的反射磁场也可以与在薄端1414所产生的反射磁场不同。由于第一材料部分1406的厚度沿目标1404的长度线性变化,因此反射磁场也可以沿目标1404的长度线性变化。因此,磁场传感器1402的磁场感测元件可以检测反射磁场中的差异以确定沿着目标1404的长度将磁场传感器1402定位在何处。在实施例中,如果使用相对较高的频率来感测气隙,则可以选择端部1414处的厚度在选定频率下大于一个趋肤深度且小于五个趋肤深度。可以选择端部1412处的厚度在相对较低的频率下大于一个趋肤深度。

在实施例中,目标1404可以相对于磁场传感器1402在线性方向(由箭头1416示出)上移动。随着目标1404移动,磁场传感器1402可以检测反射场中的变化以确定目标1404相对于磁场传感器1402的位置。当然,在其他实施例中,目标1416可以是静止的,磁场传感器1402可以相对于目标1404移动。

作为另一示例,可以使用多个频率来确定气隙并且求解目标1404的位置。例如,如果在端部1414处的第一材料部分1406的厚度在频率f1下大于一个趋肤深度,则频率f1下的响应可以仅根据目标1404与mr元件之间的气隙而变化。使用第二频率,如果在端部1414处的第一材料部分1406的厚度在频率f2处小于一个趋肤深度,则响应可以根据气隙和目标1404的位置而变化。

现在参考图14a,系统1400'可以包括磁场传感器1402和旋转目标1418,旋转目标1418可以是圆柱体、齿轮等的形状。目标1418可以包括第一材料部分1420和第二材料部分1422。第一材料部分1420可以是诸如金属的高电导率材料;第二材料部分1422可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或反之亦然。在实施例中,如图14所示,第一材料部分1420和第二材料部分1422可以是整体形成的一体结构,或者可以是彼此物理耦合的分离元件。

第一材料部分1420的厚度1423可以根据围绕目标1418的角度围绕目标1418的圆周变化,使得在点1424处,第一材料部分1420相对薄,并且在点1426处,第一材料部分1420相对较厚。在第一材料1420的较厚部分中由磁场传感器1402感应出的涡流可以与在较薄部分中感应出的涡流不同。因此,在点1424处产生的反射磁场也可以与在点1426处产生的反射磁场不同。由于第一材料部分1420的厚度根据围绕目标1418的角度围绕目标1418的圆周变化,因此反射磁场也可以围绕圆周变化。

磁场传感器1402可以放置在目标1418的半径之外,并且与目标1418的外表面相邻。因此,磁场传感器1402的磁场感测元件可以检测反射磁场的差异以确定目标1418的旋转角度。磁场传感器1402还可以检测目标1418的旋转速度和/或方向。

现在参考图14b,系统1400”可以包括磁场传感器1402和旋转目标1428。目标1428可以包括第一材料部分1430和第二材料部分1432。第一材料部分1430可以是诸如金属的高导电率材料,第二材料部分1432可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或相反亦然。在实施例中,如图14所示,第一材料部分1430和第二材料部分1432可以是整体形成的一体结构,或者可以是彼此物理耦合的分离元件。

在图14b中,第一材料部分1430的厚度可以延伸到页面中。第一材料部分1430的厚度可以根据围绕目标1428的角度围绕目标1428的圆周变化,使得在点1434处,第一材料部分1430相对较厚,并且在点1436处,第一材料部分1430相对较薄。在第一材料1430的较厚部分中由磁场传感器1402感应出的涡流可以与在较薄部分中感应出的涡流不同。因此,在点1434处产生的反射磁场也可以与在点1436处产生的反射磁场不同。因为第一材料部分1430的厚度围绕目标1428的圆周变化,因此反射磁场也可以围绕圆周变化。

磁场传感器1402可以被放置在目标1428的半径内,并且与目标1428的基本平坦的面1440相邻。换言之,如果将目标1428放置在旋转轴的端部,则磁场传感器1402可以被定位成邻近轴的一端的面。因此,磁场传感器1402的磁场感测元件可以检测反射磁场中的差异以确定目标1428的旋转角度。磁场传感器1402还可以检测目标1418的旋转速度和/或方向。

磁场传感器1402可以以梯度计模式安装,例如如图3a所示。梯度计的一半可以位于导电部分1450与目标之间的距离保持基本恒定的位置,而梯度计的另一半可以位于导电材料的斜坡1404存在的位置。两个信号之间的差可以用于抑制由于目标的振动而引起的不期望的波动。

参考图15,系统1500可以包括磁场感测元件1502和目标1504。磁场传感器1502可以与磁场传感器100和/或上述任何磁场传感器相同或相似。因此,磁场传感器1502可以包括:线圈,其用于产生磁场并且在目标1504内产生涡流;以及一个或多个磁场感测元件,其用于从涡流中检测反射场。

目标1504可以包括第一材料部分1506和第二材料部分1508。第一材料部分1506可以是诸如金属的高电导率材料,第二材料部分1508可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或相反亦然。在实施例中,如图14所示,第一材料部分1506和第二材料部分1508可以是可以整体形成的一体结构,或者可以是彼此物理耦合的分离元件。

第一材料部分1506可以包括一系列交替的井1510和谷1512。井1510的厚度1514可以比谷1512的厚度相对更大。因此,在井1510内产生的反射磁场可以与在谷1512处产生的反射磁场不同。因此,当目标1504相对于磁场传感器1502移动时,磁场传感器1502的磁场感测元件可以检测由井1510和谷1512产生的不同磁场。例如,可以使用检测到的磁场来检测磁性目标1500的速度、位置、旋转角度和/或方向。

系统1500'可以包括磁场传感器1502和目标1516。目标1516可以包括一个或多个第一材料部分1518和第二材料部分1520。第一材料部分1518可以是诸如金属的高电导率的材料,第二材料部分1522可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或相反亦然。

第一材料部分1518可以包括沿着目标1516的长度以一定间隔布置的一系列离散井。因此,当磁场传感器1502与齿1518相邻时,将产生并检测反射磁场。当磁场感测元件邻近绝缘区域(例如,区域1522)时,绝缘区域1522可以不产生反射磁场。因此,当目标1516相对于磁场传感器1502移动时,磁场传感器1502的磁场感测元件可以检测通过井1518所产生的反射磁场并且检测何时没有反射磁场产生。例如,检测到的磁场可以用于检测磁性目标1516的速度和/或方向。

参考图15a,系统1522可以包括磁场传感器1502和旋转目标1524。目标1524可以包括第一材料部分1526和第二材料部分1528。第一材料部分1526可以是诸如金属的高电导率的材料,第二材料部分1528可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或反之亦然。

第一材料部分1526可以包括一个或多个齿1530,这些齿1530围绕目标1524的圆周以不同角度围绕目标1524以一定间隔布置。尽管示出了两个齿,但是目标1524可以包括围绕目标1524的圆周以间隔关系布置的一个齿、两个齿或更多个齿。齿可以均匀地或以不均匀图案间隔。

因此,当磁场传感器1502与牙齿1530相邻时,将产生并检测反射磁场。当磁场感测元件不与齿相邻时,第一材料部分1526可以产生具有不同强度的反射磁场。因此,当目标1524相对于磁场传感器1502旋转时,磁场传感器1502的磁场感测元件可以检测由齿1530产生的反射磁场以及由没有齿的第一材料1526的区域产生的反射磁场。例如,检测到的磁场可以用于检测磁性目标1500的速度和/或方向。

参考图15b,系统1522'可以包括磁场传感器1502和旋转目标1532。目标1532可以包括一个或多个第一材料部分1534和第二材料部分1536。第一材料部分1534可以是诸如金属的高电导率的材料,第二材料部分1536可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或反之亦然。

第一材料部分1534可以包括围绕目标1532的径向圆周以一定间隔布置的一系列离散井。第一材料部分1530可均匀地间隔或根据任何类型的图案间隔。因此,当磁场传感器1502与一个第一材料部分1534相邻时,将产生并检测反射磁场。当磁场传感器1502与绝缘区域(例如区域1538)相邻时,绝缘区域1538可以不产生反射磁场。因此,当目标1532相对于磁场传感器1502旋转时,磁场传感器1502的磁场感测元件可以检测由第一材料部分1534所产生的反射磁场并且检测何时没有通过绝缘区域1538产生的反射磁场。例如,检测到的磁场可以用于检测磁性目标1532的旋转速度和/或方向。

磁场传感器1502可以被放置在目标1532的最外半径内,并且与目标1532的基本平坦的面1540相邻。换言之,如果目标1532被放置在旋转轴的端部,则磁场传感器1502可以被定位成邻近轴的一端的面。因此,随着目标1532旋转,磁场传感器1502的磁场感测元件可以在第一材料部分1534经过时检测到它们。

参考图15c,系统1522”可以包括磁场传感器1502和旋转目标1532。目标1532可以包括一个或多个第一材料部分1534'和第二材料部分1536。第一材料部分1534可以是诸如金属的高电导率的材料,第二材料部分1536可以是诸如塑料、陶瓷或其他绝缘材料的电导率较低的材料,或相反亦然。

第一材料部分1534'可以包括围绕目标1532的不同径向圆周以一定间隔布置的多个系列的离散井。第一材料部分1530可以均匀地间隔或者根据任何类型的图案间隔。因此,当磁场传感器1502与一个第一材料部分1534相邻时,将产生并检测反射磁场。当磁场传感器1502与绝缘区域(例如区域1538)相邻时,绝缘区域1538可以不产生反射磁场。因此,当目标1532相对于磁场传感器1502旋转时,磁场传感器1502的磁场感测元件可以检测通过第一材料部分1534产生的反射磁场并且何时没有通过绝缘区域1538产生的反射磁场。第二径向系列的井可以被布置成使得第二径向系列中的每个井1560都被放置成邻近第一径向系列中的井1534之间的间隙1562。当磁场传感器1502检测到每个径向系列时,在检测第一径向系列井与第二径向系列井之间可能存在90度的相移或不同间距,这可以用于通过vernier类型的方法提高角度精度。

磁场传感器1502可以被放置在目标1532的最外半径内,并且与目标1532的基本平坦的面1540相邻。换言之,如果目标1532被放置在旋转轴的端部,则磁场传感器1502可以被定位成邻近轴的一端的面。因此,随着目标1532旋转,磁场传感器1502的磁场感测元件可以在第一材料部分1534经过时检测到它们。

参考图16,系统1600可以包括第一磁场传感器1602、第二磁场传感器1604和旋转目标1606。磁场传感器1602和1604可以与磁场传感器100和/或上述任何磁场传感器相同或相似。

目标1606可以包括围绕中心轴1610定位的螺旋倾斜平面1608。在实施例中,中心轴1610可以是旋转轴。目标1606还可以包括导电参考部分1612。参考部分1612和倾斜平面1608可以由导电材料形成。

在实施例中,磁场传感器1602被定位成邻近参考部分1612。磁场传感器1602的线圈产生磁场,该磁场又在参考部分1612中产生涡流。磁场传感器1602可以检测通过涡流产生的反射磁场。

类似地,磁场传感器1604可以相对于倾斜平面1608定位。磁场传感器1608的线圈可以产生磁场,该磁场又可以在倾斜平面的与磁场传感器1604相邻的部分1614中产生涡流。磁场传感器1604可以检测由倾斜平面1608中的涡流产生的反射磁场。

当目标1606旋转时,倾斜平面1608的与磁场传感器1604相邻的部分1614将朝向和/或远离磁场传感器1604移动。部分1614与磁场传感器1604的接近度d可以通过磁场传感器1604来检测。处理电路(未示出)可以将接近度d与目标1606的旋转角度相关联,并且确定位置、旋转速度、旋转方向等。

参考图16a,系统1600'可以包括磁场传感器1616的网格和旋转目标1606。

目标1606可以包括围绕中心轴线1610定位的螺旋倾斜平面1608。在实施例中,中心轴线1610可以是旋转轴。目标1606还可以包括导电参考部分1612。参考部分1612和倾斜平面1608可以由导电材料形成。

在实施例中,网格1616的磁场传感器1602被定位成与参考部分1612相邻。磁场传感器1602的线圈产生磁场,该磁场又在参考部分1612中产生涡流。磁场传感器1602可以检测由涡流产生的反射磁场。

其他磁场传感器1618a-h可以相对于倾斜平面1608被定位在网格1616上的各个位置。磁场传感器1618a-h中的每个磁场传感器的线圈可以产生磁场,该磁场又可以在倾斜平面的与每个磁场传感器1618a-h相邻的部分中产生涡流,磁场传感器1618a-h均可以检测由倾斜平面1608中的涡流产生的局部反射磁场。

当目标1606旋转时,倾斜平面1608的与磁场传感器1618a-h相邻的部分将朝向和/或远离磁场传感器1618a-h移动。每个磁场传感器可以检测到任何部分1614与任何磁场传感器1618a-h的接近度d。处理电路(未示出)可以将接近度d与目标1606的旋转角度相关联,并且确定位置、旋转速度、旋转方向等。

参考图16a,可以使用形成网格的多个传感器1618a-h来测量不同点处的螺旋距离,使得它允许校正在垂直于旋转轴的方向上的螺旋振动,而网格的中央传感器则抑制了沿旋转轴的振动。

参考图17,衬底1700可以支撑包括线圈和磁场感测元件的上述一个或多个磁场传感器电路。可以将衬底1700定位到(并粘附到)框架1702。衬底1700可以是半导体衬底、玻璃衬底、陶瓷衬底等。键合线1704可以将衬底1700上的连接焊盘电耦合到框架1702的引线。框架1702可以是引线框架、焊盘框架或可以支撑衬底1700的任何结构。

在实施例中,衬底1700可以支撑线圈1701,该线圈可以与上述线圈相同或相似。线圈1701可以产生可以在目标中感应出涡流和反射磁场的磁场和/或可直接耦合至mr元件(例如由mr元件直接检测)的磁场。如图所示,线圈1701可以被定位成与框架1702中的间隙1703相邻(或相对)。如果框架1702是诸如金属的导电材料,则线圈1701产生的磁场可以感应出涡流和来自框架1702的反射场。将线圈1701放置在间隙1703附近可以减少或消除可能以其他方式由框架1702生成的任何不期望的反射场。

在图17a中,衬底1706可以支撑包括线圈和磁场感测元件的上述一个或多个磁场传感器电路。可以将衬底1706定位到(并粘附到)引线框架1707。衬底1706可以包括一个或多个通孔1708,其可以耦合到焊球(或焊料凸块)1710。焊球1710可以耦合到引线框架1707的引线,以在通孔1708与引线框架1707的引线之间提供电连接。该电连接可以通过引线1707将(通常由衬底1700的一个表面支撑的)传感器电路耦合到外部系统和部件。

在实施例中,衬底1706可以支撑线圈1709,线圈1709可以与上述线圈相同或相似。线圈1709可以产生可以在目标中感应出涡流和反射磁场的磁场和/或可直接耦合至mr元件(例如由mr元件直接检测)的磁场。如图所示,线圈1709可以被定位成与框架1707中的间隙1705相邻(或相对)。如果框架1707是导电材料(例如金属),则线圈1709产生的磁场可以感应出涡流和来自于框架1707的反射场。将线圈1709放置在间隙1705附近可以减小或消除可能以其他方式由框架1707生成的任何不期望的反射场。

在实施例中,图16a中的传感器1608a-h的网格可以形成在衬底1700或1706的表面上。

参考图18,磁场传感器电路1800可以由一个或多个衬底支撑。如图18所示,第一衬底1802可以支撑一个或多个线圈1804、1806,所述一个或多个线圈1804、1806可以产生磁场。第二衬底1808可以支撑一个或多个磁场感测元件1810,所述磁场感测元件1810可以如上所述检测反射磁场。半导体管芯1802、1808还可以包括以上讨论的附加电路。由衬底1802支撑的电路可以通过引线(未示出)电耦合到由衬底1808支撑的电路。被支撑的电路也可以通过引线耦合到框架1811的导线。半导体封装(未示出)可以包围衬底。

在实施例中,第二管芯1808可以胶合到第一管芯1802的顶表面。替代地,管芯1808可以被反转并且通过管芯到管芯的电连接而电连接到管芯1802。

由线圈1804和1808产生的磁场可以在线圈1804与1806之间的区域(即,mr元件1810所处的区域)中彼此抵消。因此,衬底1808可以被定位成使得mr元件1810落在磁场抵消的区域内,以最小化由mr元件1810检测到的任何杂散或直接耦合场。

在实施例中,衬底1802和1808可以是不同类型的衬底。例如,衬底1802可以是用于支撑诸如线圈1804和1806的金属迹线的廉价衬底,而衬底1808可以是用于支撑mr元件和/或其他集成电路的衬底。

参考图18a,磁场传感器电路1800'可以由多个半导体管芯支撑。如图所示,第一管芯1812可以支撑两组(或更多组)线圈。第一组线圈可以包括线圈1814和1816。第二组线圈可以包括线圈1818和1820。第二管芯1822可以支撑第一组磁场感测元件1824,并且第三管芯1826可以支撑第二组磁性感测元件1828。

在实施例中,磁场传感器电路1800'可以包括两个磁场传感器。第一传感器可以包括线圈1814和1816、管芯1822和磁场感测元件1824。第二磁场传感器可以包括线圈1818和1820、管芯1826和磁场感测元件1828。在其他实施例中,磁场传感器电路1800'可以包括附加的磁场传感器,该附加的磁场传感器包括附加的线圈、管芯和磁场感测元件。

磁场传感器电路1800'可以在上述采用两个(或多个)磁场传感器的任何系统中使用。附加地或替代地,电路1800′中的两个磁场传感器可以以不同的频率进行驱动以避免两个传感器之间的交叉串扰。

参考图19,磁场传感器电路1900可以由多个衬底支撑。第一衬底可以支撑线圈1902。四个较小的衬底1904-1910可以均支撑一个或多个磁场感测元件。如图所示,衬底1904至1910可以被定位成邻近线圈1902的迹线。在一些实施例中,衬底1904至1910可以被定位成它们所支撑的磁场感测元件被置于邻近线圈1902的迹线之间的间隙1912。

第五衬底1914可以支撑用于驱动线圈1902和磁场感测元件的电路,以及用于处理从磁场感测元件接收的信号的处理电路。各个管芯上的电路可以通过引线1916耦合在一起。

尽管未示出,但是在另一实施例中,较大的衬底1402可以支撑线圈和mr元件。较小的衬底1904-1908可以支撑用于驱动线圈和mr元件的电路和/或用于处理磁场信号的电路。

在实施例中,磁场感测元件和线圈1902可以与在上述的部分或全部磁场检测系统中描述的磁场感测元件(例如mr元件)和线圈相同或相似。

已经描述优选实施例,其用于说明各种概念、结构和技术,这是本专利的主题,对于本领域普通技术人员而言,现在显而易见的是,可以使用结合了这些概念、结构和技术的其他实施例。因此,提出专利的范围不应限于所描述的实施例,而应仅由所附权利要求的精神和范围来限定。本文引用的所有参考文献通过引用整体并入本文。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1