谐波雷达反射器的制作方法

文档序号:21279372发布日期:2020-06-26 23:29阅读:494来源:国知局
谐波雷达反射器的制作方法

本发明涉及雷达反射器,并且具体地涉及用于谐波雷达的雷达反射器。



背景技术:

谐波雷达已在世界各地的搜索和救援行动中长期使用。在典型的雪崩场景中,滑雪者在雪崩中失踪,救援队在此后不久到达,滑雪者配备有反射器。救援队配备有检测器,该检测器以发射频率发射信号,当滑雪者身上的反射器接收到该信号时,该反射器会将该信号的频率转换成其倍数并发射该信号。这意味着检测器以第一频率发射,并以第一频率的倍数接收,然后使用该信息来确定滑雪者的位置。

然而,反射器的调谐涉及调谐天线,使其以第一频率接收并以第一频率的倍数发射。此外,常规反射器使用非线性元件诸如二极管用于共振,并且天线需要与该元件匹配以便从反射器提供输出功率。谐波反射器的示例在us6456228b1中提供。本专利提供了通过传输线部分匹配谐波反射器部件的指南。

另一个示例公开于k.rasilainen、j.ilvonen和v.viikari的“antennamatchingatharmonicfrequenciestocomplexloadimpedance”,ieeeantennasandwirelesspropagationletters,第14卷,号,第535-538页,2015年,doi:10.1109/lawp.2014.2370760。

根据现有技术,诸如以上所公开的内容,技术人员主要集中于在单个频率下的反射功率方面提供良好的效率。

如果将常规反射器放置在具有不同属性的物体上,则必须做出折衷以将物体对反射器的影响最小化。常规反射器被设计用于物体的典型电磁环境。因此,常规反射器被设计成安装在具有类似属性的物体上,诸如滑雪靴或滑雪头盔上。

根据现有技术,诸如ep1035418b1,将天线封装在电介质中,这解决了反射器是安装在滑雪靴内部还是附接到滑雪靴外部的问题。

然而,由于物体与反射器的电磁相互作用,已知的解决方案表现出与尺寸和属性有较大差异的物体的检测相关的问题。

本发明旨在解决该问题。



技术实现要素:

上述问题通过谐波雷达反射器来解决,该谐波雷达反射器以发射频率反射以接收频率输入的信号,该发射频率为该接收频率的倍数,其中该谐波雷达反射器被设计用于宽带响应。

现有技术的谐波反射器提供窄带响应,这是由于以下事实:现有技术的谐波反射器主要被调谐以使特定接收频率下的回波损耗最小化,这意味着到达谐波雷达的大量输入能量被传递到非线性元件。谐波反射器可针对窄带响应进行调谐;这进一步意味着现有技术的谐波反射器对于与其附接的物体的电磁相互作用是敏感的。

现有技术的谐波反射器被设计成将其在单一恒定环境中的性能最大化。当将反射器放置在具有不同属性的环境中时,性能将会降低。这主要是由于电磁属性的变化引起不同的天线阻抗,从而导致反射器天线和非线性元件之间的阻抗匹配差。

本发明提供了一种谐波反射器电路,该谐波反射器电路包括经由匹配电路连接至非线性电路的天线,其中该谐波反射器电路被配置为以接收频率(frx)接收信号,并且被配置为以发射频率(ftx)重新发射所接收信号,其中发射频率是接收频率的倍数,其中接收频率(frx)处于从第一频率到第二频率的区间中,其中:第一频率至少为800mhz;并且第二频率比第一频率高至少34mhz;接收信号以发射频率(ftx)发射,其中输出功率(pout)至少为针对在从第一频率的倍数到第二频率的相同倍数的发射频率范围内的某个频率的最大可用输出功率(pmax)的70%。由于谐波反射器电路的宽带行为,这允许检测材料和尺寸有较大差异的物体。

根据一方面,第一频率为860.5mhz,并且第二频率为909.5mhz。

根据一方面,发射频率ftx是接收频率frx的两倍。

根据一方面,谐波反射器包括具有金属膜的柔性基板。

根据一方面,天线和匹配电路的一部分形成在金属膜中。

根据一方面,谐波反射器包括作为非线性元件的二极管。

本发明另外的特征和优点将结合附图在以下对本发明的示例性实施方案的详细描述中呈现。

附图说明

如附图所示,上述内容将在以下示例实施方案的更具体描述中变得显明显,在附图中,相似的附图标记在不同的视图中指代相同的部分。附图不一定按比例绘制,而是将重点放在说明示例性实施方案上。

图1是检测器和谐波反射器电路的示意图。

图2是示出来自现有技术的谐波反射器的反射功率的曲线图,

图3是现有技术的谐波反射器电路与它所附接到的物体相互作用的示意图。

图4是根据本发明实施方案的谐波反射器电路连同检测器的示意图。

图5是示出由根据本发明实施方案的谐波反射器提供的响应的曲线图,并且

图6是根据本发明实施方案的谐波反射器电路的实施方案。

具体实施方式

图1示出了总体标记为101的谐波反射器电路以及总体标记为102的检测器。

检测器102以频率frx发射信号s1,该信号s1由谐波反射器电路101接收,并由谐波反射器电路101转换为第二信号s2并以频率ftx发射。谐波反射器电路101通过天线103接收输入信号s1。天线103连接到匹配电路104,该匹配电路104针对频率frx和频率ftx两者在天线103和非线性电路105之间提供阻抗匹配。阻抗匹配对于从第一信号s1到第二信号s2分别在其频率frx和ftx下以低损耗进行转换至关重要。

在图2中公开了来自谐波反射器102的典型响应。第一曲线201示出了来自以频率fc发射的信号的反射功率p,曲线201的带宽取决于非线性电路105和天线103之间的阻抗匹配,当然也取决于天线103和非线性电路105本身的带宽。

在图3中,谐波反射器电路101与接地平面301一起示出。接地平面301可为物理对象,诸如汽车或人。接地平面301引起与谐波反射器电路101的介电耦合,这改变了匹配电路104的属性。这意味着频率fc处的反射功率从p减小到对应曲线202上的p'。在现有技术的谐波反射器电路101中,匹配电路被配置为对在预定距离处的预定接地平面和预定电介质环境提供匹配。例如,谐波反射器电路101的尺寸被设计用于安装在滑雪靴或头盔上,即相同数量级的接地平面和相似介电属性上。这意味着,安装在一副眼镜上或安装在容器上的常规谐波反射器电路101将在反射功率p方面提供非常不同的响应,部分原因是接地平面和周围环境的介电属性差异很大。

本发明人已经认识到,接地平面和介电属性的变化属性的问题是与从各种属性的物体检测谐波雷达反射的问题有关的主要因素。

本发明人已经认识到,通过增加谐波反射器电路101的带宽,提供了与来自各种属性的物体的谐波雷达反射相关的上述问题的解决方案。通过研究图4可以理解这一点,在图4中,将反射的谐波功率p表示为频率f的函数。第一曲线401示出了在中心频率fc附近的反射谐波功率,与现有技术曲线201相比,该第一曲线提供了更大的带宽。假设放置接地平面301,使得从接地平面到谐波反射器电路101的电容耦合引起第一曲线401向中心频率为fc'的第二曲线402移动。图4的y轴公开了在频率frx的倍数即频率ftx下的反射功率。x轴示出接收频率frx。反射功率p减小至p',其远小于图2所示的减小。这意味着反射功率p不会受到接地平面301的显著影响。

在图5中,在发射频率ftx下的反射功率p被示为来自根据本发明的谐波反射器电路101的接收频率frx的函数。接收频率(frx)处于从第一频率f1到第二频率f2的区间中,其中第一频率f1至少为800mhz。第二频率f2比第一频率大至少34mhz。接收信号以发射频率(ftx)发射,其中输出功率(pout)至少为针对限定电磁环境的最大可用输出功率(pmax)的70%。

在一个实施方案中,第一频率为860.5mhz,并且第二频率为909.5mhz。

在图6中,以顶视图按比例绘制了谐波反射器电路(总体标记为601)的实施方案。该谐波反射器电路601包括非线性电路,在该实施方案中该非线性电路是焊接到基板的金属膜603的表面安装的二极管602。天线和匹配电路一体形成在基板的金属膜603中。谐波反射器电路601是按比例绘制的,这意味着通过测量和按比例绘制附图,可以实现宽带谐波反射器电路601。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1