移动感测的装置及方法与流程

文档序号:18185037发布日期:2019-07-17 05:20阅读:245来源:国知局
移动感测的装置及方法与流程

本发明是关于侦测在预定空间或房间中移动的一种方法,尤指一种更准确地感测存在于预定空间或房间中的人体并且有效避免误判的方法。



背景技术:

现今应用移动侦测来控制照明或其他设备甚为普遍。以这种方式,可以减少用户在离开房间时未能关灯而导致的浪费功率消耗。多普勒雷达感测(dopplerradarsensing)是一种移动侦测的方式,使用这种方法可以侦测在一预定空间中人体是否存在并根据侦测结果来控制光源开关。

多普勒雷达传感器(dopplerradarsensor)能在可侦测范围内发射射频电波,例如毫米波,接收对应的反射波,组合反射波的信号和与其对应的一信号,从所获得的信号中借由多普勒效应(dopplereffect)得到与人体的移动速度对应的频带的分量,将其与一预设的阈值进行比较,多普勒雷达传感器便可以判定人体是否存在于可侦测范围内。

传统多普勒雷达移动侦测所伴随着一个明显的问题是容易误判,把无人的状态误判成有人的状态,或是当人体在预定空间中没有明显移动时将有人的状态误判成无人的状态。



技术实现要素:

本实施例提供一种移动感测方法,包括经由第一天线并根据第一移动侦测参数感测第一区域中的第一移动,当第一移动没有经由第一天线而被感测到时,经由第二天线并根据第二移动侦测参数感测第二区域中的第二移动及当第二移动没有经由第二天线而被感测到时,定义包含第二区域的空间为未占用。第一区域和第二区域彼此重叠,并且第一移动侦测参数与第二移动侦测参数不同。

本实施例另提供一种移动感测方法,包括经由第一天线并根据第一移动侦测参数感测第一区域中的第一移动,当第一移动没有经由第一天线而被感测到时,经由第二天线并根据第二移动侦测参数感测第二区域中的第二移动,当第二移动没有经由第二天线而被感测到时,经由第一天线并根据第三移动侦测参数感测第一区域中的第三移动及当第三移动没有经由第一天线而被感测到时,定义包含第一区域的空间为未占用。第二天线的波束宽度大于第一天线的波束宽度,第一区域和第二区域彼此重叠,第一移动侦测参数与第三移动侦测参数不同,第二移动侦测参数与第三移动侦测参数不同。

本实施例更提供一种装置,包括开关,第一天线,可通信地耦接至开关的第一输出端;第二天线,可通信地耦接至开关的第二输出端;发射器,可通信地耦接至开关的输入端,开关是以交替的方式从发射器向第一天线及第二天线提供至少一射频能量;及处理单元,用以分析对应于至少一射频能量并由第一天线和第二天线交替接收的射频信号来侦测移动。

附图说明

图1是在预定空间内的人体移动的示意图。

图2a是在预定空间内的人体移动的示意图。

图2b是第一区域的示意图。

图2c是第二区域的示意图。

图3a是一实施例中的侦测示意图。

图3b是一实施例中的侦测示意图。

图4是一实施例中使用单个天线的移动传感器的示意图。

图5是一实施例中使用单一天线并使用不同功率位准或不同触发位准的多普勒雷达移动传感器来侦测房间中人体移动的示意图。

图6是另一实施例中使用多个天线和两个耦合器的移动传感器的示意图。

图7是另一实施例中使用多个天线和一个耦合器的移动传感器的示意图。

图8是一实施例中使用多个天线而无耦合器的移动传感器的示意图。

图9是另一实施例中使用多个天线及无耦合器的移动传感器的示意图。

图10是一实施例中动态功率调整的移动侦测的示意图。

图11是一实施例中动态功率调整的移动侦测的示意图。

图12是一预定空间中移动侦测误判的示意图。

图13是一实施例中使用多个天线的移动侦测的示意图。

图14是移动侦测可能无法正确侦测到房间中的较小的人体移动的示意图。

图15是一实施例中使用多个天线的移动侦测的示意图。

图16是移动侦测难以区分第一区域中的较大的人体移动和第二区域中的较小的人体移动的示意图。

图17是一实施例中使用多个天线的移动侦测的示意图。

图18至图23是实施例的状态机的操作流程图。

【符号说明】

100、1000、1100、1200、1300、

1400、1500、1600、1700房间

110墙壁

120天花板

150、151、152、

1230、1330、1440、1540人体

210、1010、1110、1210、1310、

1410、1510、1610、1710第一区域

220、1020、1120、1220、1320、

1420、1520、1620、1720第二区域

1315、1415、1515、1615、1715第三区域

310、410、530、680、690、

780、790、830、880、890、930、980、990、

1080、1180、1280、1380、1480、1580、1680、1780

1090、1190、1290、1390、1490、1590、1690、1790天线

400、600、700、800、900移动传感器

420、681、691、781耦合器

450、610、710控制器

452计算单元

454射频接收器

456射频发射器

458发射功率控制单元

620低噪声放大器

622混频器

624振荡器

62590度移相器

630可编程增益放大器

640模拟数字转换器

650处理单元

652放大器控制信号

658、758、858、958逻辑单元

660功率放大器

670、770、870、970开关

1205障碍物

1250、1781、1783反射波

1252、1485、1585、1681、1682、1683、1782电波

1802至2308状态

具体实施方式

图1是是在预定空间内的人体移动的示意图,人体在预定空间或房间100中及在此空间或房间100外的邻近区域。房间100被墙壁110和天花板120包围。在这里需要侦测房间100内是否有人体150或151,因此不要侦测在房间100外的人体152,然而移动感测信号可以穿过墙壁110,所以可能会侦测到人体152。

图2a与图1类似,另包括第一区域210(图2b)和与房间100重叠的第二区域220(图2c),第一区域210的范围包括房间100和相邻的区域,第二区域220的范围实质上仅在房间100内。移动感测,例如是多普勒雷达移动感测(dopplerradarmotionsensing),可以实质上被指定仅在第一区域210和第二区域220运作。在两个不同区域中使用两个不同的功率位准感测,便可以准确地判定预定的房间是否为占用。

图3a是实施例中的侦测示意图,包括发射较宽波束宽度的第一天线310,例如,单极天线(monopoleantenna),用以感测第一区域210中人体的移动。换言之,天线310用以从传输信号和反射信号感测第一区域210中人体的移动。

图3b是实施例中的侦测示意图,包括发射较窄波束宽度的第二天线320,例如,多元件贴片天线(multi-elementpatchantenna),用以感测第二区域220中的移动。换言之,天线320用传输信号和反射信号感测第二区域220中人体的移动。第二区域220的范围实质上仅在房间100内。第一天线310的波束宽度大于第二天线320的波束宽度。

图4是实施例中使用单个天线的移动传感器,例如是射频移动传感器或多普勒雷达移动传感器(dopplerradarmotionsensor)的示意图。移动传感器400包括与耦合器420通信的天线410及控制器450。控制器450包括计算单元452,射频接收器454耦接到耦合器420的一埠,射频发射器456耦接到耦合器420的另一埠,及发射功率控制单元458与发射器456通信。控制器450用以控制射频传输(例如是经由发射功率控制单元458控制发射功率)与控制射频传输(例如是经由计算单元452控制由天线410接收的信号所对应的触发位准)。如果由天线410接收到的结果信号(例如是多普勒信号)所对应高于一预定的触发位准,则一移动被计算单元452所侦测到。天线410可以是单极天线或多元件贴片天线,如图3a及图3b所示。

图5是实施例中使用单一天线并使用不同功率位准或不同触发位准的移动传感器来侦测房间中移动的示意图。如图5所示,通过控制天线530的发射功率及控制侦测触发位准来侦测对应于较长距离d1的较宽范围的人体移动侦测区域510和对应于较短距离d2的较窄范围的人体移动侦测区域520。一般而言,对应于较长距离d1的较宽范围的人体移动侦测区域510可以使用高发射(tx)功率以得到较强的结果信号,若使用固定的发射功率,则可在计算单元452中使用低触发位准。对应于较短距离d2的较窄范围的人体移动侦测区域520可使用低发射功率以得到较弱的结果信号,若使用固定的发射功率,则可以在计算单元452中使用高触发位准。总而言之,用于侦测对应于长距离d1的移动:高发射功率→较强的结果信号→较容易侦测对应于长距离d1的人体移动;低触发位准→较容易侦测对应于长距离d1的人体移动。用于侦测对应于短距离d2的人体移动:低发射功率→较弱的结果信号→仅侦测对应于较短距离d2的人体移动;高触发位准→仅侦测对应于较短距离d2的人体移动。通常,发射功率值或触发位准值可定义为移动侦测参数。换言之,移动侦测参数包括但不限于发射功率值和触发位准值。

图6是另一实施例中使用多个天线和两个耦合器的移动传感器,例如是射频移动传感器或多普勒雷达移动传感器的示意图。移动传感器600包括多个天线680及690及两个耦合器681及691。移动传感器600另包括控制器610,其包括低噪声放大器(例如,射频接收器)620,混频器622,可编程增益放大器(programmablegainamplifier,pga)630耦接到混频器622的输出端及振荡器624直接或经过90度移相器625耦接到混频器622的输入端。控制器610另包含模拟数字转换器640,用以接收可编程增益放大器630的输出信号及将对应的数字i/q信号提供给处理单元650。振荡器624另用以向功率放大器660(例如,射频发射器)提供射频信号。功率放大器660的输出端将放大的射频信号提供给开关670的输入端。开关670具有两个输出端。第一输出端耦接到耦合器681以将放大的射频信号提供给天线680;第二输出端耦接到耦合器691以将放大的射频信号提供给天线690。提供给天线680及天线690的放大信号的功率可以根据放大器控制信号652调控而有所不同,如下面进一步的解释。参照图4和图5,耦合器681及691让射频信号被传送到对应的天线680及690,并且使天线680及690在不发送信号时接收信号,并且将接收的信号传送到低噪声放大器620。开关670和放大器控制信号652可由逻辑单元658所控制,逻辑单元658可设置在处理单元650中并由处理单元650执行。

如以下所述,逻辑单元658可以控制放大功率位准,触发位准及/或开关670,用以更准确地侦测预定空间或房间100中人体的移动。功率放大器660以可调节的功率的方式将射频信号(例如是雷达信号)发送到开关670,并且低噪声放大器620通过耦合器681及691由第一天线680及第二天线690接收反射的射频信号(也就是前述的结果信号)。本实施例可使第一天线680及第二天线690以交替的方式发射射频信号,并且同时经由第一天线680及第二天线690接收反射的射频信号。

图7是另一实施例中使用多个天线和一个耦合器的移动传感器700,例如是射频移动传感器或多普勒雷达移动传感器的示意图。图7的实施例与图6的实施例实质上类似。相较于图6的实施例,开关770更靠近天线780及790(例如,开关不一定在控制器710内),并且仅使用一个耦合器781。在本实施例中,功率放大器660经由耦合器781将射频信号(例如,具有可调节功率位准的射频信号)传送到开关770,并且低噪声放大器620经由耦合器781从开关770接收反射的射频信号。开关770可以切换第一天线780及第二天线790以交替的方式发送和接收射频信号。逻辑单元758可用以控制适当的功率位准和切换时间。

图8是一实施例中使用多个天线而无耦合器的移动传感器800,例如是射频移动传感器或多普勒雷达移动传感器的示意图。图8的实施例与图7的实施例实质上类似。图8的实施例包括三个天线,没有耦合器,其中包括第一天线880和第二天线890作为接收天线耦接于开关870,而天线830耦接至功率放大器660。功率放大器660的功率位准例如是可调节。低噪声放大器620经由天线880及890接收射频信号,功率放大器660传送射频信号至天线830。以此方式,开关870可以切换第一天线880及第二天线890以交替的方式接收反射的射频信号。逻辑单元858可用以控制适当的功率位准和切换时间。

图9是另一实施例中使用多个天线及无耦合器的移动传感器900,例如是射频移动传感器或多普勒雷达移动传感器的示意图。图9的实施例与图8的实施例类似。图9的实施例包括三个天线,没有耦合器。如图9所示,第一天线980及第二天线990作为发射天线耦接于开关970,第三天线930耦接至低噪声放大器620。因此,在本实施例中,低噪声放大器620直接接收所有的反射射频信号,并且由功率放大器660通过开关970传送射频信号(例如,具有可调节功率位准的射频信号)至天线980及990。如此,开关970即可切换第一天线980及第二天线990以交替的方式发射射频信号,并且低噪声放大器620由第三天线930接收反射射频信号。逻辑单元958可用以控制适当的功率位准和切换时间。

图10是实施例中动态功率调整的移动侦测的示意图。在此实施例中配置两个天线:第一天线1080及第二天线1090。图10中定义了两个区域:包含房间1000和相邻区域的第一区域1010,以及仅包含房间1000的第二区域1020。实施例可以通过天线1080及1090发射低功率电波侦测房间1000中较窄的移动侦测区域1030中的人体移动。此低功率便可能无法侦测到房间1000中所有的人体移动。

图11是实施例中动态功率调整的移动侦测的示意图。在此实施例中配置两个天线:第一天线1180和第二天线1190。图11中定义了两个区域:包括房间1100和相邻区域的第一区域1110,以及仅包括房间1100的第二区域1120。实施例可以通过天线1180及1190发射高功率电波侦测房间中大部分区域(如第二区域1120)的人体移动。然而,高功率电波可能导致错误的侦测,如图12所示。

图12是预定空间中移动侦测误判的示意图。在此实施例中配置两个天线:第一天线1280及第二天线1290,并且任一天线都可能受到影响。图12中定义了两个区域:包括一房间1200和相邻区域的第一区域1210,及仅包括房间1200的第二区域1220。若发射功率够高,则第一区域1210中并在房间外面的人体1230的移动可能被第一天线1280经由反射波1250错误地侦测为在房间1200内。同样的,被第二天线1290发射的电波1252可能被障碍物1205偏转而射向人体1230。换言之,第二天线1290可能接收到房间1200外的人体移动所产生的反射波。因为两个天线都可以接收由人体1230所反射的反射波,所以很容易在侦测上发生误判。

图13是实施例中使用多个天线的移动侦测的示意图。本实施例可克服侦测上误判的问题。此实施例中配置两个天线:第一天线1380及第二天线1390。图13中定义了两个区域:包括一房间1300和相邻区域的第一区域1310,及仅包括房间1300的第二区域1320。此外,第三区域1315是为实质上仅包括与房间1300相邻的区域。根据实施例并结合以下所述的图示进一步解释。在第二区域1320的人体移动可以由第一天线1380及第二天线1390侦测。换言之,两个天线都可以接收反射波。然而,在相邻的第三区域1315中,通过将第二天线1390的发射功率降低(或提高触发位准),就可以使人体1330的移动仅经由第一天线1380被侦测到而非经由第二天线1390被侦测到。

图14是移动侦测可能无法正确侦测到房间中的较小的移动的示意图。此实施例中配置两个天线:第一天线1480及第二天线1490。图14中定义了三个区域:包括房间1400和相邻区域的第一区域1410;仅包括房间1400的第二区域1420;及实质上仅包括与房间1400相邻的区域的第三区域1415。当第二天线1490发射低功率电波时,发射电波1485仅能行进至特定距离的区域1430,或者没有足够的功率以产生反射波。此情形可能使得无法经由天线侦测到人体1440的较小移动,例如在笔记本电脑或其他手持设备上打字。换言之,第二天线1490的低发射功率可能无法提供足够的信号强度来侦测第二区域1420中的较小的人体移动,并且由于第一天线1480(例如,单极天线)的增益也可能很小,可能也无法侦测到此区域中的较小的人体移动。

图15是实施例中使用多个天线的移动侦测的示意图。此方法可克服可能无法侦测到房间中较小的人体移动的问题。图15中定义了三个区域:包括房间1500和相邻区域的第一区域1510;仅包括房间1500的第二区域1520;及实质上仅包括与房间1500相邻的区域的第三区域1515。为了克服在第二区域1520中可能无法侦测到较小的人体移动的问题,在房间1500中,第二天线1590可以发送更高功率的电波1585提供足够的信号强度以侦测第二区域1520中的较小的人体移动。由于第一天线1580(例如,单极天线)的增益较小,因此可能无法经由第一天线1580侦测到房间1500内的较小的人体移动。

图16是移动侦测难以区分第一区域中的较大的人体移动和第二区域中的较小的人体移动的示意图。与类似的实施例一样,图16中定义了三个区域:包括房间1600和相邻区域的第一区域1610;仅包括房间1600的第二区域1620;及实质上仅包括与房间1600相邻的区域的第三区域1615。如图16所示,通过第二天线1690发射高功率电波,可以经由第二天线1690侦测到第三区域1615中较大的人体移动和第二区域1620中较小的人体移动。换言之,第一天线1680可以发射和接收电波1681并且第二天线1690可以发射和接收电波1682及电波1683。当电波1683被障碍物或人体偏转时也可以由第二天线1690接收。简而言之,以上所述场景的问题是难以区分第三区域1615中的较大的人体移动与第二区域1620中的较小的人体移动。

图17是实施例中使用多个天线的移动侦测的示意图。此方法可克服难以区分第一区域中较大的人体移动与第二区域中较小的人体移动的问题。图17中定义了三个区域:包括房间1700和相邻区域的第一区域1710;仅包括房间1700的一第二区域1720;及实质上仅包括与房间1700相邻的区域的第三区域1715。如图17所示,为了确保仅在第二区域1720中侦测到较小的人体移动,装置只有在确认第一区域1710中未侦测到任何人体移动之后才以高功率电波侦测第二区域1720。当确定第一天线1780没有接收任何反射波1781并第二天线1790没有接收到任何反射波1783后,就表示在第三区域1715中没有人体移动。因此,第二天线1790所接收的电波1782则为与房间1700中较小的人体移动相关的电波。

以下状态图(图18至第23图),可以实施于图6至图9所示的任何移动传感器装置,即具有至少两个天线,以及可以控制发射功率及控制反射电波的触发准位的逻辑的移动传感器。

图18是实施例用于确认房间是否有被占用的状态机(statemachine)的操作流程图。在状态1802,预定空间或房间的状态为未占用,并且光源为关闭(或者其他设备为关闭或开启状态)。在状态1804,第一天线(例如,单极天线)用于检测第一区域中的较大的人体移动,第一区域包括房间(或预定空间)和与其相邻的区域。若没有侦测到较大的人体移动,则返回到状态1802。若通过第一区域中的第一天线侦测到较大的人体移动,则进入到状态1806。在状态1806,若经由第二天线(例如,多元件贴片天线)使用低发射功率(或高触发位准)在实质上仅包括房间的第二区域中侦测到较大的人体移动,则进入到状态1808,将房间定义为被占用并且开启光源(或另一个设备可以从其先前关闭或开启状态切换)。若在状态1806中第二天线没有侦测到较大的人体移动,则返回到状态1804。可用一装置代替光源或设备,并且当没有感测到第一移动(例如,第一区域中较大的人体移动)并且没有感测到第二移动(例如,第二区域中较大的人体移动)时,则改变与预定空间相关联的装置的操作状态。根据本发明的实施例,第一天线具有较宽的波束宽度,而第二天线具有较窄的波束宽度。

图19是实施例用于确认房间是否有被占用的另一状态机的操作流程图。在状态1902,预定空间或房间的状态为未占用,并且光源关闭(或者其他设备为关闭或开启状态)。在状态1904,经由第二天线(例如,多元件贴片天线)使用低发射功率(或高触发位准),在第二区域中侦测到较大的人体移动。第二区域实质上仅包括房间。若在状态1904,第二天线没有侦测到较大的人体移动,则返回状态1902。若第二天线侦测到较大的人体移动,则进入到状态1906,将房间定义为被占用并且开启光源(或另一个设备可以从其先前关闭或开启状态切换)。

图20是实施例用于确认房间是否不再被占用的状态机的操作流程图。在状态2002,预定空间或房间的状态为被占用,并且光源开启(或其他设备为关闭或开启状态)。在状态2004,经由第二天线(例如,多元件贴片天线)使用低发射功率(或高触发位准),在第二区域中侦测较大的人体移动。第二区域实质上仅包括房间。若在状态2004,第二天线有侦测到较大的人体移动,则返回状态2002。若第二天线没有侦测到较大的人体移动,则进入状态2006。在状态2006,经由第一天线(例如,单极天线)侦测第一区域中较大的人体移动,第一区域包含房间(或预定空间)及其相邻区域。若第一天线在第一区域中侦测到较大的人体移动,则返回到状态2004。若第一天线在第一区域中侦测没有侦测到较大的人体移动,则移动到状态2008。在状态2008,经由第二天线使用高发射功率(或低触发位准),侦测第二区域中的较小的人体移动。若第二天线侦测到较小的人体移动,则返回状态2006。如果若第二天线没有侦测到较小的人体移动,则进入状态2010,房间被定义为未被占用,并且光源被关闭(或其他设备可能从其先前关闭或打开的状态切换)。光源或设备可以用另一装置代替,并且当没有感测到第二移动(例如,第二区域中较大的人体移动),第一移动(例如,第一区域中较大的人体移动)及第三移动(例如,第二区域中的较小的人体移动)时,改变与预定空间相关联的装置的操作状态。

图21是实施例用于确认房间是否不再被占用的另一状态机的操作流程图。在状态2102,预定空间或房间的状态为占用,并且光源开启(或者其他设备被设置为关闭或开启状态)。在状态2104,经由第一天线(例如,单极天线)侦测第一区域中的较大的人体移动,第一区域包括房间(或预定空间)和与其相邻的区域。若第一天线在第一区域中检测到较大的人体移动,则返回到状态2102。若第一天线没有在第一区域中检测到较大的人体移动,则进入到状态2106。在状态2106,经由第二天线(例如,多元件贴片天线)使用高发射功率(或低触发位准)在第二区域侦测较小的人体移动,第二区域实质上仅包括房间。若第二天线没有侦测到较小的人体移动,则进入状态2108,房间被定义为未占用并且光源被关闭(或者另一个设备可以从其先前关闭或开启的状态切换)。光源或设备可以用另一装置代替,并且当没有感测到第一移动(例如,第一区域中较大的人体移动)及第三移动(例如,第二区域中的较小的人体移动)时,改变与预定空间相关联的装置的操作状态。

图22是实施例用于确认房间是否不再被占用的另一状态机的操作流程图。在状态2202,预定空间或房间的状态为占用,并且光源开启(或其他设备被设置为关闭或开启的状态)。在状态2204,经由第二天线(例如,多元件贴片天线)使用高发射功率(或低触发位准),侦测第二区域中较小的人体移动,第二区域实质上仅包括房间。若第二天线侦测到较小的人体移动,则返回到状态2202。若在状态2204中,第二天线未能侦测较小的人体移动,则进入状态2206,房间被定义为未占用,并且光源被关闭(或者另一个设备可以从其先前关闭或开启的状态切换)。

第23图是实施例用于确认房间是否不再被占用的另一状态机的操作流程图。此实施例是为使用多个天线并以粗略感测和精细感测以更精确侦测房间中的人体移动的方法。在状态2302,预定空间或房间的状态为占用,并且光源开启(或其他设备被设置为关闭或开启的状态)。在状态2304,经由第一天线(例如,单极天线)以粗略感测的方式侦测在第一区域中较大的人体移动,第一区域在包括房间(或预定空间)及与其相邻的区域。如果在第一区域中检测到较大的人体移动,则返回状态2302。若在第一区域中未能侦测到较大的人体移动,则进入状态2306。在状态2306,经由第二天线(例如,多元件贴片天线)以精细感测的方式侦测在第二区域中较小的人体移动,第二区域实质上仅包括房间。若在第二区域中未能侦测到较小的人体移动,则进入状态2308,房间被定义为未占用,并且光源被关闭(或者另一个设备可以从其先前关闭或开启状态切换)。根据实施例,第一天线的波束宽度大于第二天线的波束宽度。经由第一天线使用第一移动侦测参数在第一区域中感测第一移动(较大的人体移动),经由第二天线使用第二移动侦测参数在第二区域中感测第二移动(较小的人体移动)。在一实施例中,第一天线是使用第一移动侦测参数的第一功率发射第一射频能量,第二天线是使用第二移动侦测参数的第二功率发射第二射频能量,并且第二功率大于第一功率。在另一实施例中,第一移动侦测参数使用第一触发位准判断是否感测到第一移动,并且第二移动侦测参数使用第二触发位准判断是否感测到第二移动,其中第一触发位准高于第二触发位准。

总而言之,此些实施例提供了使用单个天线或多个天线的射频或多普勒雷达移动侦测的装置和方法以改进移动侦测的准确度。实施例中的装置可以独立地控制每个天线的发射功率,并且可以调整接收反射波时的触发位准,以实现更精确的移动侦测,以控制房间中的光源或任何对应于移动侦测的其他设备(例如是相机)。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的等同变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1