一种距离测量方法和系统与流程

文档序号:17531297发布日期:2019-04-29 13:32阅读:327来源:国知局
一种距离测量方法和系统与流程

本发明涉及长度测量和传感领域领域,尤其是一种距离测量方法和系统。



背景技术:

长度是一个基本物理量。大尺度远程长度的遥测在大尺度结构制造,飞行器长基线测量等领域有重要应用。目前在这些领域中的测量方法主要有微波和光学的方法,包括渡越时间法,光学相移法,飞秒光频率梳法等方法目前常用微波来测量距离和位移,其中采用直接数字频率合成器更是得到广泛应用。但这些测量方法存在频率低、带宽窄的缺点,受气候环境限制大,适应性和精度不够,无法满足人们的需要。



技术实现要素:

本发明提供一种高频、大带宽的距离测量方法和系统。

为实现上述目的,本发明的技术方案如下:

一种距离测量系统,包括窄线宽激光器、保偏光纤耦合器、第一相位调制器、偏振态控制器、第二相位调制器、声光移频器、单模光纤耦合器、第一光电探测器、第一微波滤波器、微波环形器、微波功率放大器、天线、第一微波信号发生器、第二微波信号发生器、第三微波信号发生器、第二光电探测器、第二微波滤波器、混频器、数据采集卡、计算机;窄线宽激光器用于输出频率为f的连续波,保偏光纤耦合器连接窄线宽激光器,用于将连续波分成光路1、光路2两路光信号,第一相位调制器用于对光路1的光施加频率为fm的调制信号,第二相位调制器用于对光路2的光施加频率为fm+δf的调制信号,声光移频器连接第二相位调制器,用于对第二相位调制器输出的光进行移频,声光移频器上加载的调制信号的频率为faom,单模光纤耦合器连接偏振态控制器与声光移频器,用以使光路1和光路2产生拍频信号而形成频率间隔为δf的光频率梳,并通过单模光纤耦合器再次分为两束光,第一微波信号发生器、第二微波信号发生器、第三微波信号发生器分别为第一相位调制器、第二相位调制器、声光移频器的调制信号源,第一光电探测器、第二光电探测器用于接收单模光纤耦合器输出的两束光并转换成射频梳,生成两路微波信号而出现两个微波通道,即发射通道和接收通道,第一微波滤波器连接第一光电探测器,用于对该射频梳进行滤波,输出起始频率为f0,频率间隔为δf,射频梳个数为n的一串射频梳,微波环形器连接第一微波滤波器,微波功率放大器连接微波环形器,天线连接微波功率放大器,用于将该串射频梳发射到待测物体表面,第二微波滤波器连接第二光电探测器,用于对该射频梳进行滤波,输出起始频率为f0,频率间隔为δf,射频梳个数为n的一串射频梳,混频器连接第二微波滤波器、微波环形器,用以将第二微波滤波器输出的射频梳进入混频器的射频输入端,将经待测物体反射后被天线接收并经微波放大器放大后通过微波环形器的微波信号进入混频器的射频输入端,输出包含了待测物体距离和位移信息的信号,数据采集卡连接混频器,用于采集混频器输出的信号并得到待测物体的距离,计算机连接数据采集卡,用于进行信号处理和结果显示。

其中,第一相位调制器与单模光纤耦合器之间可以串联一偏振态控制器。

一种距离测量方法,采用如上所述的系统,包括:频率为f的窄线宽激光器输出的连续波通过保偏光纤耦合器分成光路1、光路2两路光信号,光路1的光经过第一相位调制器,光路2的光经过第二相位调制器,第二相位调制器输出的光再经过声光移频器,经过声光移频器后,光路2光载波的频率为f+faom,光路1和光路2经过单模光纤耦合器后将产生拍频信号而形成光频率梳,光频率梳的频率间隔为δf,产生的频率梳经过单模光纤耦合器后分为两束光,两束光分别被第一光电探测器和第二光电探测器接收并转换成射频梳,从而生成两路微波信号而出现两个微波通道,即发射通道和接收通道。在发射通道,第一光电探测器输出的射频梳通过第一微波滤波器生成一串射频梳,该串频率梳通过微波环形器并经微波放大器放大后通过天线发射到待测物体表面,微波信号经过待测物体的反射后被天线接收并经微波放大器放大后通过微波环形器进入接收通道中混频器的射频输入端,在接收通道,第二光电探测器输出的射频信号经过第二微波滤波器生成射频梳,从接收通道中第二微波滤波器输出的射频梳进入混频器的射频输入端,混频器输出包含了待测物体距离和位移信息的信号,该信号通过数据采集卡采集并得到待测物体的距离,通过计算机实现信号处理和结果显示。

其中,光频率梳产生步进频率连续波信号,并通过第一微波滤波器进行带宽和起始频率的选通。

本发明的有益效果是:本发明距离测量方法和系统通过基于光学的方法产生步进频率连续波,能灵活设置距离测量的量程和灵敏度,并且可以设置不同的输出微波频段,满足各种气候环境下的测量需求,从而保证了整个测试系统的性能。

附图说明

图1为本发明实施例距离测量系统的框图。

图2为本发明实施例中射频梳的形成过程示意图。

具体实施方式

下面结合附图及实例,对本发明做进一步说明。

本发明是利用光生微波频率梳并通过经典的步进频率连续波雷达原理来实现绝对距离的测量。本发明提出的绝对距离测量系统能灵活设置距离测量的量程和灵敏度,并且可以设置不同的输出微波频段,满足各种气候环境下的测量需求,从而保证了整个测试系统的性能。

如图1所示,频率为f的窄线宽激光器101输出的连续波通过保偏光纤耦合器102分成两路光信号。光路1的光经过第一相位调制器103,该第一相位调制器103上施加的调制信号的频率为fm,则该第一相位调制器103输出光谱将出现以调制频率fm为整数倍的一系列边带。同样的,光路2的光经过第二相位调制器105,该第二相位调制器105上施加的调制信号的频率为fm+δf,则该第二相位调制器105输出光谱将出现以调制频率fm+δf为整数倍的一系列边带。第二相位调制器105输出的光再经过声光移频器106,移频器上加载的调制信号的频率为faom,则经过声光移频器后,光路2光载波的频率为f+faom。光路1和光路2经过单模光纤耦合器107后将产生拍频信号而形成光频率梳,光频率梳的频率间隔为δf。如果该光频率梳经过高速光电探测器直接探测,在频谱仪上观察到的就是射频频率梳。光路1中的偏振态控制器104的作用是调节光路1的偏振态使光路1和光路2产生的干涉对比度最佳而提高两路信号拍频的效果。测量系统中第一相位调制器103和第二相位调制器105的调制信号源分别为第一微波信号发生器205和第二微波信号发生器206,声光移频器的调制信号源为第三微波信号发生器207。射频梳的形成过程如图2所示。

产生的频率梳经过单模光纤耦合器107后分为两束光,两束光分别被第一光电探测器108和第二光电探测器208接收并转换成射频梳,从而生成两路微波信号而出现两个微波通道,即发射通道和接收通道。对发射通道而言,第一光电探测器108输出的射频梳通过一个具有一定带宽的第一微波滤波器109,该第一微波滤波器109输出起始频率为f0,频率间隔为δf,射频梳个数为n的一串射频梳。该串频率梳通过微波环形器201并经微波放大器202放大后通过天线203发射到待测物体204表面。光频率梳产生步进频率连续波信号,并通过第一微波滤波器109进行带宽和起始频率的选通。微波信号经过待测物体204的反射后被同一天线203接收并经微波放大器202放大后通过环形器201进入接收通道中混频器301的射频输入端。在接收通道,第二光电探测器208输出的射频信号经过第二微波滤波器209,该第二微波滤波器209和发射通道中的第一微波滤波器109完全一样,输出和发射通道完全相同的射频梳。从接收通道中第二微波滤波器209输出的射频梳进入混频器301的射频输入端,混频器输出包含了待测物体距离和位移信息的信号,该信号通过数据采集卡采集并通过正交iq解调得到待测物体的距离,通过计算机实现信号处理和结果显示。

本发明的测量原理是基于步进频率连续波测距雷达的原理,通过光学的方法来产生一定重复间隔为δf的射频梳,通过微波滤波器可以选择任意波段的起始频率为f0,一定带宽的射频梳。如果该带宽内的射频信号数量为n,则滤波器选通的射频梳带宽为(n-1)δf,微波滤波器输出的射频梳即为步进频率连续波,步进频率间隔为δf。根据步进频率连续波雷达测距原理可知,本发明提出的距离传感器的距离测量范围为:

传感器的测量分辨率可表示为:

由上式可知,传感器的距离测量范围和分辨率取决于频率梳的频率间隔和滤波器的带宽。在微波滤波器带宽一定的情况下,频率梳的间隔越小,测量距离越大,但测量分辨率越差。因此可以通过提高滤波器带宽的方法来实现大的测量范围和分辨率。本发明提出的基于光学的方法产生步进频率连续波具有以下几个独特的优势:

1、频率步进间隔可任意调节,通过调节相位调制器105就可以很容易实现频率间隔的调节,而且由于采用电光相位调制器,该频率间隔的调节范围可达几十ghz,能很容易实现大带宽的步进频率连续波信号的产生。从而提高测量距离。

2、可实现任意波段的步进频率连续波信号的生成。本传感器的频率梳的带宽由相位调制器和光电探测器决定,而这两种器件的带宽能达到40ghz以上,因此本传感器的光学部分能产生高达40ghz的射频梳,通过不同频段的微波滤波器,能实现任意频段的步进频率连续波信号的产生,从而满足各种气候环境下的测量需求。

3、传感器产生的步进频率连续波的带宽只需要通过选择不同带宽的滤波器就可实现,从而保证了传感器的测量分辨率。

多波段,高频,大带宽等上述优点是传统的采用直接数字频率合成器很难实现。本发明提出的距离传感测量系统的信号处理可以完全利用成熟的步进频率连续波测距雷达的方法就可实现待测物体距离和位移的解调。假设本系统产生的射频梳的频率间隔为1khz,根据式1可得到系统的测量距离可达150km。若选择滤波器的带宽为100mhz,则距离测量分辨率为0.15m。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1