基于最小可检测速度最小化的机载雷达协同探测工作方法与流程

文档序号:18794273发布日期:2019-09-29 19:21阅读:777来源:国知局
基于最小可检测速度最小化的机载雷达协同探测工作方法与流程

本发明涉及雷达技术领域,具体涉及一种基于最小可检测速度最小化的机载雷达协同探测工作方法,适用于多部机载雷达协同探测时充分发挥每部雷达的潜力,使整个系统的最小可检测速度最小,提高对慢速目标的探测性能。



背景技术:

机载预警雷达对敌方的探测距离能达到数百公里且能灵活部署,已成为现代战场不可或缺的一种重要装备,也是敌方首批打击对象。大型预警机造价昂贵,难以大批量生产,一旦被敌方摧毁,往往会使军队立刻丧失远程警戒能力,且其覆盖区域多为圆形,有时不能适应复杂的作战环境。因此,采用若干架中小型预警机协同工作代替大型预警机具有一系列好处,且协同探测的效果与协同工作的方式密切相关。

2000年,美国国防预先研究计划局(darpa)借助蚂蚁信息素交互行为,开展过无人机集群的空战仿真研究。2004年,美国进行了名为“前瞻”的军事演习,试验了“影子”、“捕食者”和“扫描鹰”三种无人机的协同探测能力。同年,波音公司完成了“联合无人空中作战系统”计划的试飞实验,该实验实现了有人驾驶的t-33教练机与无人机的协同飞行并进行了相互通信。2012年,法国成功研制了“神经元”无人机,并在2014年与阵风战斗机和猎鹰公务机实现了有人/无人机协同编队飞行。2015年,美国海军公布了低成本无人机集群技术项目进行的一系列集群无人机技术验证工作。2016年,美国darpa的进攻性集群使能战术项目,开发并演示验证100多个作战相关的集群战术,应用于无人机和地面无人车辆集群。

现有的多部雷达在空域协同工作时,不能充分发挥每部雷达的潜力,且对慢速目标的探测性能较低,无法满足实际应用。



技术实现要素:

针对现有技术中存在的问题,本发明的目的在于提供一种基于最小可检测速度最小化的机载雷达协同探测工作方法,能够在多部雷达在空域协同工作时,充分发挥每部雷达的潜力,探测区域内各点处的最小可检测速度都是最小的,有利于对检测巡航弹和低空慢速小目标的检测。

为了达到上述目的,本发明采用以下技术方案予以实现。

一种基于最小可检测速度最小化的机载雷达协同探测工作方法,包括以下步骤:

步骤1,确定多部机载雷达,每部所述机载雷达检测覆盖区域内的杂波散射体波束p时,求解杂波散射体波束p对应杂波的多普勒频率投影到覆盖区域径向上的分量的范围f(p);

步骤2,所述机载雷达在各自的工作方式下,求得杂波散射体波束p所对应的多普勒频率变化量△f(p);

步骤3,比较机载雷达在各自的工作方式下,位于同一点处的多普勒频率变化量△f(p),将多普勒频率变化量△f(p)中的最小值对应的雷达作为协同探测工作的雷达k(p)。

优选的,步骤1中,设置多部机载雷达中的两部雷达分别为雷达t/r1、雷达t/r2;其中,雷达t/r1接收雷达t/r1发射信号反射的回波表示为t1r1,雷达t/r2接收雷达t/r2发射信号反射的回波表示为t2r2;雷达t/r1发射信号、雷达t/r2接收信号表示为t1r2,雷达t/r2发射信号、雷达t/r1接收信号表示为t2r1。

优选的,步骤1中包含以下子步骤:

子步骤1.1,杂波散射体波束p的主瓣中心处的径向速度vc为:

vc=vpcosφdcosφa

其中,vp为载机速度,φd为设波束的下视角,φa为波束主瓣中心与载机速度方向夹角。

子步骤1.2,对于机载单基雷达正侧阵,杂波散射体波束p对应的可检测径向速度范围vcr为:

vcr∈[vc1,vc2]

其中,θa为发射波束半功率宽度;

子步骤1.3,杂波散射体波束p主瓣中心方向的杂波多普勒频率fc为:

其中,λ为波长;

子步骤1.4,杂波散射体波束p对应的多普勒频率范围fdc为:

其中,fdmin为波束对应的最小多普勒频率,fdmax为波束对应的最大多普勒频率;

子步骤1.4,杂波散射体波束p对应杂波的多普勒频率投影到覆盖区域径向上的分量的范围f(p)为:

其中,将覆盖点p与覆盖区域中心连线,θr为该连线和波束中心的夹角。

优选的,步骤3中,杂波散射体波束p所对应的多普勒频率变化量△f(p)的表达式为:

△f(p)=min[△ft1r1(p),△ft1r2(p),△ft2r1(p),△ft2r2(p)]

其中,△ft1r1(p)表示雷达t/r1自发自收时对应的多普勒频率变化量,△ft2r2(p)表示雷达t/r2自发自收时对应的多普勒频率变化量,△ft1r2(p)表示雷达t/r1发射、雷达t/r2接收时对应的多普勒频率变化量,△ft2r1(p)表示雷达t/r2发射、雷达t/r1接收时对应的多普勒频率变化量。

优选的,步骤3中,协同探测工作的雷达k(p)的表达式为:

k(p)={t/r1,t/r2}。

与现有技术相比,本发明的有益效果为:

本发明的基于最小可检测速度最小化的机载雷达协同探测工作方法,能够在多部雷达在空域协同工作时,充分发挥每部雷达的潜力,探测区域内各点处的最小可检测速度都是最小的,有利于对慢速小目标的检测。

附图说明

下面结合附图和具体实施例对本发明做进一步详细说明。

图1为本发明的基于最小可检测速度最小化的机载雷达协同探测工作方法的流程图;

图2为最小可检测速度图;

图3为机载雷达协同探测示意图;

图4为雷达协同探测范围内各点的工作方式情况。

具体实施方式

下面将结合实施例对本发明的实施方案进行详细描述,但是本领域的技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。

参考图1中的基于最小可检测速度最小化的机载雷达协同探测工作方法的流程,本发明的基于最小可检测速度最小化的机载雷达协同探测工作方法,包括以下步骤:

步骤1,确定多部机载雷达,每部所述机载雷达检测覆盖区域内的杂波散射体波束p时,求解杂波散射体波束p对应杂波的多普勒频率投影到覆盖区域径向上的分量的范围f(p)。其中,设置多部机载雷达中的两部雷达分别为雷达t/r1、雷达t/r2;其中,雷达t/r1接收雷达t/r1发射信号反射的回波表示为t1r1,雷达t/r2接收雷达t/r2发射信号反射的回波表示为t2r2;雷达t/r1发射信号、雷达t/r2接收信号表示为t1r2,雷达t/r2发射信号、雷达t/r1接收信号表示为t2r1。

具体的,步骤1中包含以下子步骤:

子步骤1.1,参考图2,载机速度为vp,设波束的下视角为φd,波束主瓣中心与载机速度方向夹角为φa,发射波束半功率宽度θa,则杂波散射体波束p的主瓣中心处的径向速度vc为:

vc=vpcosφdcosφa

子步骤1.2,杂波散射体波束p对应的可检测径向速度范围vcr为:

vcr∈[vc1,vc2]

对于机载单基雷达正侧阵来说:

子步骤1.3,杂波散射体波束p主瓣中心方向的杂波多普勒频率fc为:

其中,λ为波长。

子步骤1.4,对于机载雷达来说,杂波散射体波束p对应的多普勒频率范围fdc为:

其中,fdmin为波束对应的最小多普勒频率,fdmax为波束对应的最大多普勒频率。

子步骤1.4,图3为机载雷达协同探测示意图,将探测区域近似为一个圆形区域;两部雷达t/r1、t/r2分别位于探测区域内任意位置,天线阵面为三面阵。杂波散射体波束p对应杂波的多普勒频率投影到覆盖区域径向上的分量的范围f(p)为:

其中,将覆盖点p与覆盖区域中心连线,θr为该连线和波束中心的夹角。

步骤2,所述机载雷达在各自的工作方式下,求得杂波散射体波束p所对应的多普勒频率变化量△f(p);

步骤3,比较机载雷达在各自的工作方式下,位于同一点处的多普勒频率变化量△f(p),将多普勒频率变化量△f(p)中的最小值对应的雷达的工作方式作为协同探测工作的雷达k(p)的工作方式。

具体的,步骤3中,对于曲线上任意一点杂波散射体波束p所对应的多普勒频率变化量△f(p)的表达式为:

△f(p)=min[△ft1r1(p),△ft1r2(p),△ft2r1(p),△ft2r2(p)]

其中,△ft1r1(p)表示雷达t/r1自发自收时对应的多普勒频率变化量,△ft2r2(p)表示雷达t/r2自发自收时对应的多普勒频率变化量,△ft1r2(p)表示雷达t/r1发射、雷达t/r2接收时对应的多普勒频率变化量,△ft2r1(p)表示雷达t/r2发射、雷达t/r1接收时对应的多普勒频率变化量。

协同探测工作的雷达k(p)的表达式为:

k(p)={t/r1,t/r2}。

通过以下仿真实验对本发明效果作进一步验证说明。

1)仿真条件

为了验证本发明方法的准确性,通过仿真实验予以证明;雷达配置仿真实验参数如表1所示,仿真情景四雷达位置参数如表2所示:

表1雷达配置仿真实验参数

表2仿真情景四雷达位置参数

2)仿真结果及分析

对应于每一个方向,都可将不同雷达不同工作方式的多普勒频率变化量进行对比,从而通过最小的多普勒频率变化量确定雷达和工作方式。

仿真结果如图4所示,图4为雷达协同探测范围内各点的工作方式情况,其中横、纵坐标都为距离。

从图4中可以清晰地看出各点的工作方式,探测区域内各点处的最小可检测速度均为四种工作方式下的最小值,为机载雷达协同探测时工作方式的配置提供依据。该种机载雷达协同探测工作方式优化方法能够有效地对慢速目标进行检测。

综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。

虽然,本说明书中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1