一种隧道初期支护与围岩间挤压应力相对大小的监测方法与流程

文档序号:18731301发布日期:2019-09-21 00:33阅读:429来源:国知局
一种隧道初期支护与围岩间挤压应力相对大小的监测方法与流程

本发明涉及隧道与地下工程技术领域,具体为一种隧道初期支护与围岩间挤压应力(围岩压力)相对大小的监测方法。



背景技术:

随着铁路、公路建设的不断推进,在地质环境恶劣、高地应力软弱围岩地区建设长大隧道已不可避免。在高地应力软弱围岩中修建隧道,往往出现围岩大变形问题。南昆铁路家竹箐隧道、兰新复线乌鞘岭隧道、奥地利陶恩隧道、日本中屋隧道施工中都出现过隧道大变形问题。在高地应力地区修建地下工程,最大的难题就是隧道大变形控制问题。究其原因,大变形是在复杂地质条件下,隧道开挖后围岩变形过大,致使初期支护与围岩间产生过大的挤压应力(围岩压力),引起初期支护大变形、甚至破坏而造成的。所以要很好的解决大变形控制问题,就必须解决隧道施工过程中初期支护与围岩间挤压应力(围岩压力)的大范围动态监测问题,以便及时为隧道工程施工和支护结构设计提供反馈和指导。

目前,对初期支护与围岩间挤压应力(围岩压力)的监测主要采用预埋土压力盒或其它土压力监测设备来进行(发明专利CN201510154723.1和CN201710358421.5均属此类),这些方法能监测出初期支护与围岩间挤压应力(围岩压力)的绝对值,监测结果主要用于指导隧道支护结构设计,在隧道设计和施工中发挥的作用不可或缺,但其存在监测成本较高,安装流程复杂、要求高,对施工干扰大的不足,因此,在施工过程中往往只能选取少量断面进行监测,无法大范围使用,这在很大程度上限制了隧道施工中对支护参数、施工参数及工艺的动态优化设计,以及对初期支护与围岩间挤压应力(围岩压力)变化规律和分布规律的研究。另外,施工过程中对初期支护与围岩间挤压应力(围岩压力)进行监测,除了掌握挤压应力的大小外,掌握围岩与初期支护间挤压应力的分布规律也是监测的主要目的之一。因此,为降低成本并减小对施工的干扰,发明能够达到相当效果,且成本低、操作简单、可实现大范围采用的初期支护与围岩间挤压应力的监测方法具有非常重要的现实意义。



技术实现要素:

本发明的目的在于提供一种隧道初期支护与围岩间挤压应力(围岩压力)相对大小的监测方法,以解决上述背景技术中提到的传统的通过土压力盒进行监测的方法成本高,安装不便、要求高,无法大范围采用的问题。

为实现上述目的,本发明提供如下技术方案:一种隧道初期支护与围岩间挤压应力(围岩压力)相对大小的监测方法,包括以下步骤:

步骤S1:施工过程中,对需掌握初期支护与围岩间挤压应力(围岩压力)相对大小及其分布规律的区段(包括初期支护未成环段和初期支护已成环段),以一定间距循环间隔设置电磁辐射监测断面,在各断面上具有代表性的位置布置电磁辐射监测点;

步骤S2:在各监测点处的隧道支护结构表面,监测不同监测时段的电磁辐射强度;

步骤S3:根据监测结果,以监测所得的电磁辐射强度相对高低代表初期支护与围岩间挤压应力(围岩压力)相对大小为原则,采用对比分析法,对监测结果进行对比分析,为施工过程中及时掌握隧道不同区段、同一断面不同部位及不同工序下初期支护与围岩间挤压应力相对大小及分布特点提供可靠的数据支撑。

优选的,S1中,电磁辐射监测断面间距一般设置为5m,电磁辐射监测点一般布置在拱顶、拱腰、边墙和底板处。

优选的,S2中,通过便携式电磁辐射仪对监测点进行电磁辐射监测;为保证监测结果准确性,每个监测点的监测时长相同、且不少于2 min;监测时段是指从支护结构施作到监测作业进行时的时间差,一般以“天”计。

优选的,施工过程中,在相同初期支护条件下,支护结构混凝土和围岩受载所发出的电磁辐射强度随着围岩情况、支护结构类型的改变会存在一定差异,因此,施工过程中对监测结果的对比分析只能在地质条件相似、支护结构类型相同的前提下进行;施工过程中的监测方案(包括对监测断面、测点布置和监测间隔时长的调整)也应根据围岩情况和支护结构类型的变化进行相应部署。

本发明提供了一种隧道初期支护与围岩间挤压应力(围岩压力)相对大小的监测方法,具备以下有益效果:

(1)本发明的监测方法简单,无需预埋任何设备,对施工干扰小,易于现场施工技术人员掌握,成本低,可大范围采用,能很好地适应复杂地质条件下围岩及地质条件多变的特点。

(2)本发明的基于电磁辐射原理的隧道初期支护与围岩间挤压应力(围岩压力)相对大小的监测方法,是在隧道施工工程中进行的,主要为施工服务,对现有的通过土压力盒进行围岩压力绝对值监测的方法(主要为隧道动态设计服务)提供有益补充。

附图说明

图1为本发明水平向挤压应力大于竖向的典型测试段电磁辐射监测结果。

图2 为本发明水平向挤压应力小于竖向的典型测试段电磁辐射监测结果。

图3为本发明仰拱回填前全断面监测时电磁辐射监测点布置图。

图4为本发明仰拱回填后全断面监测时电磁辐射监测点布置图。

图中:1、拱顶;2、左拱腰;3、右拱腰;4、左边墙;5、右边墙;6、左拱脚;7、右拱脚;8、仰拱中部;9、底板中部。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。

实施例1:

施工过程中,对需掌握初期支护与围岩间挤压应力(围岩压力)相对大小及其分布规律的区段(包括初期支护未成环段和初期支护已成环段),以一定间距循环间隔设置电磁辐射监测断面,电磁辐射监测断面间距一般设置为5m,在各断面上具有代表性的位置布置电磁辐射监测点,如图3和图4所示,其中仰拱回填前,电磁辐射监测点一般布置在拱顶1、左拱腰2、右拱腰3、左边墙4、右边墙5、左拱脚6、右边脚7和仰拱中部8;仰拱回填后,电磁辐射监测点一般布置在拱顶1、左拱腰2、右拱腰3、左边墙4、右边墙5、左拱脚6、右边脚7和底板中部9;在各监测点处的隧道支护结构表面,通过便携式电磁辐射仪对监测点进行电磁辐射监测,监测不同监测时段的电磁辐射强度,为保证监测结果准确性,每个监测点的监测时长相同、且不少于2 min,其中,监测时段是指从支护结构施作到监测作业进行时的时间差,一般以“天”计;根据监测结果,以监测所得电磁辐射强度相对高低代表初期支护与围岩间挤压应力(围岩压力)相对大小为原则,采用对比分析法,对监测结果进行对比分析,为施工过程中及时掌握隧道不同区段、同一断面不同部位及不同工序下初期支护与围岩间挤压应力(围岩压力)相对大小及分布特点提供可靠的数据支撑,实现在隧道施工过程中对初期支护与围岩间挤压应力的相对大小进行大范围、低成本监测的目的;施工过程中,在相同初期支护条件下,支护结构混凝土和围岩受载所发出的电磁辐射强度随着围岩情况和支护结构类型的改变会存在一定差异,因此,施工过程中对监测结果的对比分析只能在地质条件相似、支护结构类型相同的前提下进行;施工过程中的监测方案(包括对监测断面、测点布置和监测间隔时长的调整)也应根据围岩情况和支护结构类型的变化进行相应部署。

国内外的研究表明:岩体和混凝土受载变形、破裂过程中会向外释放电磁辐射,电磁辐射强度、能量及脉冲与岩体和混凝土受载状况及变形破裂过程密切相关。其中,电磁辐射强度主要反映岩体和混凝土的受载程度及变形破裂强度,且电磁辐射强度与岩体受载程度有很好的正相关关系。围岩和初期支护混凝土变形、破裂过程中产生的电磁辐射信号可采用便携式仪器进行非接触式监测。

围岩与初期支护互相挤压,就相当于初期支护与围岩进行相互加载,围岩和初期支护喷射混凝土均会发生一定程度的变形破裂,初期支护与围岩间挤压应力增大的过程,实质上也是围岩和支护结构混凝土发生变形、破裂逐渐扩展和损伤演化的过程,必然向外辐射电磁波。因此,基于岩石和混凝土在受载、变形过程中会向外释放电磁辐射,且电磁辐射强度与岩体和混凝土受载程度呈正相关关系的特性(即:载荷越大,电磁辐射强度越强,反之亦然),采用便携式电磁辐射监测仪监测围岩与初期支护间因相互挤压受载而产生的电磁辐射强度,以监测到的电磁辐射强度来间接反映初期支护与围岩间挤压应力(围岩压力)的相对大小,是切实可行的方法。

实施例2:

某铁路隧道,长14755m,最大埋深1240m,围岩以片理化玄武岩为主,受大规模地质构造的强烈挤压,隧址区残余构造应力大,围岩破碎、变质作用强烈,片理、劈理发育,稳定性差。隧道施工中出现严重的大变形,最大单侧收敛变形量达87cm,围岩变形基本都要到70天左右才达到稳定。严重的大变形造成初期支护侵限,部分区段还进行了二次换拱。由于隧址区地应力高,地质条件复杂多变,初期支护与围岩间挤压应力(围岩压力)的分布规律也随之复杂多变,给隧道施工及支护参数动态调整带来了诸多困难。

为验证本发明所涉及的隧道初期支护与围岩间挤压应力相对大小监测方法的可行性,在该工程施工过程中,应用本专利发明的方法,在该隧道的典型区段选取监测断面,进行电磁辐射强度监测。其监测结果如下:

(1)水平向挤压应力大于竖向的典型测试段

水平向挤压应力大于竖向的典型测试段,在2号横洞工区正洞大里程端DK42+400-DK42+490,该区段的DK42+400-DK42+450段初期支护施工期间因水平收敛过大、侵限进行了换拱,经预埋土压力盒测试,DK42+470断面处,初期支护破坏前,边墙处初期支护与围岩间挤压应力(围岩压力)与拱顶处的相对比值随支护后时间增长在1—1.2范围内波动,初期支护与围岩间挤压应力分布具有明显的水平向大于竖向的特点。该里程段电磁辐射强度测试结果如图1。

图1监测结果分析:水平向挤压应力大于竖向的典型测试段电磁辐射监测结果表明,该区段边墙处电磁辐射强度与仰拱处的相对比值为1.0—1.25,电磁辐射强度相对高低分布与初期支护与围岩间挤压应力相对大小分布基本一致。

(2)水平向挤压应力小于竖向的典型测试段

水平向挤压应力小于竖向的典型测试段,在平行导洞底板发生严重隆起而边墙变形破坏相对较轻的DK49+710—+760段,该段因严重底板隆起,最后不得不换拱,初期支护与围岩间挤压应力(围岩压力)分布具有边墙明显小于仰拱的特点。该段电磁辐射强度监测结果如图2。

图2监测结果分析:水平向挤压应力小于竖向的典型测试段的电磁辐射监测结果表明,仰拱处电磁辐射强度与边墙处电磁辐射强度的相对比值为1.35—1.85,与初期支护与围岩间挤压应力水平向小于竖向的分布特点是一致的。

通过上述实施例中对该隧道初期支护与围岩间不同挤压应力分布情况下的几个典型区段的监测验证发现,在隧道施工过程中,在支护结构表面监测的电磁辐射强度大小与其初期支护与围岩间挤压应力大小有明确的正相关关系,证明了本发明采用便携式电磁辐射监测仪监测围岩与支护结构之间因相互挤压受载而产生的电磁辐射强度,以监测所得的电磁辐射强度来间接反映初期支护与围岩间挤压应力(围岩压力)的相对大小,是切实可行的方法。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1