基于考虑内外特性的锂离子电池剩余使用寿命预测方法与流程

文档序号:19415698发布日期:2019-12-14 00:54阅读:323来源:国知局
基于考虑内外特性的锂离子电池剩余使用寿命预测方法与流程

本发明属于电池技术领域,涉及一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法。



背景技术:

随着能源危机和环境污染问题日趋严峻,新能源电动汽车在汽车行业里无疑是一种新的革命。锂离子电池凭借其能量密度高,自放电率低和长循环寿命等方面的优势,成为电动汽车的主要动力源之一。随着锂离子电池不断地充放电循环,其性能也随之退化。当容量值退化至失效阈值为初始容量的70%-80%时,即可视为电池寿命到达终结状态。故对锂离子电池剩余使用寿命预测进行研究,对电动汽车安全运行提供了保障,及时对电池进行维修和更换,预防事故的发生,具有重要的研究意义。

锂离子电池剩余使用寿命预测主要分为两类:基于模型方法和数据驱动方法。基于模型方法从锂离子电池的电化学机制的角度分析电池的运行机制,从而建立电池等效电路模型,并且预测的精度取决于所建模型的准确性,然而在实际应用中很难建立精确的电池模型。数据驱动方法不需要考虑电化学机制,其从历史退化数据中挖掘隐藏信息。数据驱动方法主要包括人工神经网络(ann),支持向量机(svm)和相关向量机(rvm)。ann方法的训练需要较大的数据样本;svm很好地处理小样本,非线性等问题,能较好的预测剩余使用寿命,但其只能提供点的预测值;rvm是一种基于稀疏概率的算法模型,不仅提供输出预测结果的概率信息,而且还能输出预测结果的置信区间。

目前,锂离子电池剩余使用寿命预测方法大多数考虑的是锂离子电池的外特性,如电压、电流和阻抗等。只根据锂离子电池的外特性评估,不能有效的表征锂离子电池的剩余使用寿命。



技术实现要素:

本发明的目的是,克服现有技术的不足,提供一种科学合理,适用性强,预测准确性高的基于考虑内外特性的锂离子电池剩余使用寿命预测方法。

本发明的目的是由以下技术方案来实现的:一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法,其特征是,它包括的步骤有:

1.数据的提取

利用电池测试仪得到电池充放电循环的充电能量、放电能量和容量值c,利用中子衍射技术获得锂离子电池极片截面li+浓度cli,利用俄歇电子能谱法aes获得sei膜的厚度;

提取数据集,在电池充电过程中取等时间间隔的充电能量wc作为第一个健康因子f1,其定义为:

式中t1和t2为时间间隔的两个时间点,uc(t)和ic(t)分别表示充电过程中等时间间隔内所监测到的实时电压和电流值;

充放电效率η作为第二个健康因子f2,其表示为:

式中td为放电所需要的时间,ud(τ)表示放电过程中所监测到的实时电压值,id(τ)表示放电过程中所监测到的实时电流值,tcharge表示第二次充满电所需要的时间,ucharge(τ)表示充电过程中所监测到的实时电压值,icharge(τ)表示充电过程中所监测到的实时电流值;

由于电池在充放电过程中,极片截面li+浓度cli不断发生变化,很好的反应了电池的内特性,因此作为第三个健康因子f3;sei膜的厚度tsei也随着电池充放电循环不断的发生变化,很好的表征电池的内特性,因此作为第四个健康因子f4,将数据集{f1,f2,f3,f4}作为输入量,所对应的容量值c作为输出量;

2.数据集的预处理:将数据集{f1,f2,f3,f4}分为训练样本和测试样本;

3.构建iwoa-mrvm模型

rvm是tipping提出的一种稀疏概率模型,是一种基于贝叶斯学习理论的机器学习方法,能很好地处理小样本、非线性和时间序列问题;

若给定训练样本集d={(xi,yi)|i=1,2,...,n},其中xi∈rn是样本的输入量,yi∈r是样本的输出量,n为样本数量,则rvm模型定义为:

式中w=(w0,w1,...,wn)t为权值向量,k(xi,xj)为核函数,w0为初始权值;

1)建立混合核相关向量机mrvm方法

rvm学习训练就是求解给定样本所对应权值向量w的后验概率分布,与svm相比,rvm能提供后验概率,而且不受梅西定理的约束;

建立一种基于线性核函数、多项式核函数和高斯核函数的混合核相关向量机mrvm方法,其中线性核函数具有捕捉电池退化过程中的单调性特征,多项式核函数则考虑电池退化过程中的全局性特征,高斯核函数具有捕捉电池退化过程中的局部非线性变化趋势,然而多个核函数混合,综合了各个核函数的表达能力,更好的捕捉电池退化特性;

其中,线性核函数表达式为:

kline(xi,xj)=xi·xj(6)

多项式核函数表达式为:

kpoly(xi,xj)=((xi·xj)+1)d(7)

高斯核函数表达式为:

krbf(xi,xj)=exp(-||xi-xj||/(2σ2))(8)

三个核函数混合的数学表达式如式(5)所示:

khun(xi,xj)=λ1·kline(xi,xj)+λ2·kpoly(xi,xj)+λ3·krbf(xi,xj)(9)

式中λ1为线性核函数的权重系数,λ2为多项式核函数的权重系数,λ3为高斯核函数的权重系数;

2)构建改进的鲸鱼优化算法(iwoa)

利用改进的鲸鱼优化算法(iwoa)对mrvm模型参数进行优化;

woa算法是一种元启发式优化算法,主要模拟座头鲸狩猎行为,即泡泡网狩猎方法,

①包围收缩:由于座头鲸能识别并包围猎物,假设在当前种群中有最优的位置为猎物,其他座头鲸个体均向其包围,则位置更新的数学表达式为:

式中t为当前迭代次数,为目前所得到的最佳鲸鱼位置,为当前鲸鱼位置,a和c为系数变量,定义为:

a=(2r1-1)a(12)

c=2r2(13)

式中a为迭代过程中从2线性递减到0,r1和r2为0和1之间的随机值;

②发泡网攻击:鲸鱼在一个收缩的圆圈内,通过螺旋收缩机制和位置更新,以模拟鲸鱼狩猎行为,数学模型表示为:

式中每个鲸鱼与当前最佳鲸鱼位置之间的距离,b是常数,l表示-1和1之间的随机数,p表示0和1之间的随机数;

③搜索猎物:当|a|≥1时,鲸鱼选择随机搜索策略,数学模型表示为:

式中表示随机选择的鲸鱼位置;

在woa算法中引入自适应惯性权重,使得鲸鱼在搜索猎物过程中更加多样化,提高了算法的优化精度,该模型表示为:

w1=-0.5·α·cos[(π/2)·exp(t/t)+β](18)

w2=0.5·α·sin[(π/2)·exp(t/t)-β](19)

式中w1为当前最佳鲸鱼位置的自适应系数,w2为当前鲸鱼位置的自适应系数,α和β均为[0,1]的随机数;

通过以上步骤即构建完iwoa-mrvm模型;

4.利用训练样本来训练iwoa-mrvm模型,利用iwoa算法为mrvm模型得参数进行寻优,从而获得更恰当的参数;

5.实现锂离子电池剩余使用寿命预测

利用测试集来分析iwoa-mrvm模型的可行性,输出预测结果并绘制95%的置信区间。

本发明提出一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法科学合理,适用性强,能够根据电池内特性和外特性的健康因子很好地表征电池的剩余使用寿命。本发明提取等时间间隔的充电能量wc,充放电效率η,极片截面li+浓度cli和sei膜的厚度tsei四个健康因子,构建基于线性核函数、多项式核函数和高斯核函数的mrvm,并利用iwoa算法为mrvm方法提供合适的参数。将四个健康因子作为iwoa-mrvm方法的输入,输出带有95%置信区间的预测结果,有效准确地预测锂离子电池剩余使用寿命。

附图说明

图1为一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法流程图。

具体实施方式

下面参照附图对本发明的一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法作进一步说明。

参照图1,一种基于考虑内外特性的锂离子电池剩余使用寿命预测方法,包括的步骤有:

1.数据的提取

利用电池测试仪得到电池充放电循环的充电能量、放电能量和容量值c,利用中子衍射技术获得锂离子电池极片截面li+浓度cli,利用俄歇电子能谱法aes获得sei膜的厚度;

提取数据集,在电池充电过程中取等时间间隔的充电能量wc作为第一个健康因子f1,其定义为:

式中t1和t2为时间间隔的两个时间点,uc(t)和ic(t)分别表示充电过程中等时间间隔内所监测到的实时电压和电流值;

充放电效率η作为第二个健康因子f2,其表示为:

式中td为放电所需要的时间,ud(τ)表示放电过程中所监测到的实时电压值,id(τ)表示放电过程中所监测到的实时电流值,tcharge表示第二次充满电所需要的时间,ucharge(τ)表示充电过程中所监测到的实时电压值,icharge(τ)表示充电过程中所监测到的实时电流值;

由于电池在充放电过程中,极片截面li+浓度cli不断发生变化,很好的反应了电池的内特性,因此作为第三个健康因子f3;sei膜的厚度tsei也随着电池充放电循环不断的发生变化,很好的表征电池的内特性,因此作为第四个健康因子f4,将数据集{f1,f2,f3,f4}作为输入量,所对应的容量值c作为输出量。

2.数据集的预处理:将数据集{f1,f2,f3,f4}分为训练样本和测试样本。

3.构建iwoa-mrvm模型

rvm是tipping提出的一种稀疏概率模型,是一种基于贝叶斯学习理论的机器学习方法,能很好地处理小样本、非线性和时间序列问题;

若给定训练样本集d={(xi,yi)|i=1,2,...,n},其中xi∈rn是样本的输入量,yi∈r是样本的输出量,n为样本数量,则rvm模型定义为:

式中w=(w0,w1,...,wn)t为权值向量,k(xi,xj)为核函数,w0为初始权值;

1)建立混合核相关向量机mrvm方法

rvm学习训练就是求解给定样本所对应权值向量w的后验概率分布,与svm相比,rvm能提供后验概率,而且不受梅西定理的约束;

建立一种基于线性核函数、多项式核函数和高斯核函数的混合核相关向量机mrvm方法,其中线性核函数具有捕捉电池退化过程中的单调性特征,多项式核函数则考虑电池退化过程中的全局性特征,高斯核函数具有捕捉电池退化过程中的局部非线性变化趋势,然而多个核函数混合,综合了各个核函数的表达能力,更好的捕捉电池退化特性;

其中,线性核函数表达式为:

kline(xi,xj)=xi·xj(6)

多项式核函数表达式为:

kpoly(xi,xj)=((xi·xj)+1)d(7)

高斯核函数表达式为:

krbf(xi,xj)=exp(-||xi-xj||/(2σ2))(8)

三个核函数混合的数学表达式如式(5)所示:

khun(xi,xj)=λ1·kline(xi,xj)+λ2·kpoly(xi,xj)+λ3·krbf(xi,xj)(9)

式中λ1为线性核函数的权重系数,λ2为多项式核函数的权重系数,λ3为高斯核函数的权重系数;

2)构建改进的鲸鱼优化算法(iwoa)

利用改进的鲸鱼优化算法(iwoa)对mrvm模型参数进行优化;

woa算法是一种元启发式优化算法,主要模拟座头鲸狩猎行为,即泡泡网狩猎方法,

①包围收缩:由于座头鲸能识别并包围猎物,假设在当前种群中有最优的位置为猎物,其他座头鲸个体均向其包围,则位置更新的数学表达式为:

式中t为当前迭代次数,为目前所得到的最佳鲸鱼位置,为当前鲸鱼位置,a和c为系数变量,定义为:

a=(2r1-1)a(12)

c=2r2(13)

式中a为迭代过程中从2线性递减到0,r1和r2为0和1之间的随机值;

②发泡网攻击:鲸鱼在一个收缩的圆圈内,通过螺旋收缩机制和位置更新,以模拟鲸鱼狩猎行为,数学模型表示为:

式中每个鲸鱼与当前最佳鲸鱼位置之间的距离,b是常数,l表示-1和1之间的随机数,p表示0和1之间的随机数;

③搜索猎物:当|a|≥1时,鲸鱼选择随机搜索策略,数学模型表示为:

式中表示随机选择的鲸鱼位置;

在woa算法中引入自适应惯性权重,使得鲸鱼在搜索猎物过程中更加多样化,提高了算法的优化精度,该模型表示为:

w1=-0.5·α·cos[(π/2)·exp(t/t)+β](18)

w2=0.5·α·sin[(π/2)·exp(t/t)-β](19)

式中w1为当前最佳鲸鱼位置的自适应系数,w2为当前鲸鱼位置的自适应系数,α和β均为[0,1]的随机数;

通过以上步骤即构建完iwoa-mrvm模型。

4.利用训练样本来训练iwoa-mrvm模型,利用iwoa算法为mrvm模型得参数

进行寻优,从而获得更恰当的参数。

5.实现锂离子电池剩余使用寿命预测

利用测试集来分析iwoa-mrvm模型的可行性,输出预测结果并绘制95%的置信区间。

本发明具体实施方式并非穷举,并不构成对权利要求保护范围的限定,本领域技术人员根据本发明实施例获得的启示,不经过创造性劳动就能够想到其它实质上等同的替代,均在本发明保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1