一种基于伪超声的室内定位系统及定位方法与流程

文档序号:19608287发布日期:2020-01-03 13:48阅读:525来源:国知局
一种基于伪超声的室内定位系统及定位方法与流程

本发明涉及室内定位领域,具体是一种基于伪超声的室内定位系统及定位方法。



背景技术:

随着科技的发展及智能手机的普及,人们对位置服务(locationbasedservices,lbs)的需求愈发强烈,lbs已经在各个方面影响着人们的工作、生活。目前,lbs主要由全球卫星导航系统(globalnavigationsatellitesystem,gnss)提供。但在室内环境中,gnss技术尚不能提供可靠的位置服务。所以,室内定位一度成为lbs的盲区。

近年来,室内定位技术已成为lbs领域研究的重点,各种手段的室内定位技术层出不穷,为室内lbs提供了丰富的技术支持。其中具有代表性的室内定位技术主要有:可见光室内定位技术、rfid室内定位技术、无线传感器网络(wirelesssensornetwork,wsn)室内定位技术、惯性导航室内定位技术以及uwb室内定位技术。

对于可见光室内定位技术,虽然有效的利用了室内环境下的已有基础设置,但其需要对大量的照明设施进行改造,成本不菲。

对于惯性导航室内定位技术,累计误差带来的影响无法忽略,对用户来讲,其定位精度不满足日常所需。

对于uwb室内定位技术,因其具有ghz量级的带宽,可通过发送和接收纳秒级的极窄脉冲来测距,时间分辨率高,因此十分适用于室内高精度定位的应用,但由于其设备造价成本昂贵,难以大面积普及。



技术实现要素:

本发明目的在于解决室内定位成本高,精度低的问题,提出一种基于伪超声的室内定位系统及定位方法。伪超声是指频率在16khz至20khz范围内普通麦克风可接收但人耳不可闻的音频。利用伪超声波长短、测距精度高、环境干扰声少等多方面优势,可有效构造一套较高精度的室内定位系统。同时,由于使用音频作为定位信号,其实现过程较为简单、覆盖范围较广,可有效降低定位成本,便于大范围推广。

实现本发明目的的技术方案是:

一种基于伪超声的室内定位系统,采用被动式定位方案,系统包括锚点端、接收端以及信号处理端,锚点端与接收端无线连接,采用伪超声信号测距并传输信息;接收端与信号处理端级联,属电连接;

锚点端用于发射伪超声音频信号,包括时钟同步模块、发声模块;

接收端用于接收伪超声音频信号,包括音频拾取模块、音频放大模块、带通滤波器模块;

信号处理端用于处理接收到的伪超声音频信号,包括音频量化模块、信号到达检测模块,位置解算模块。

所述时钟同步模块,用于对齐各锚点间的时钟;

所述发声模块,用于锚点端发出伪超声音频信号;

所述音频拾取模块,用于将声信号转换为电信号;

所述音频放大模块,用于低失真的放大输入信号;

所述带通滤波器模块,用于目标频段(伪超声)信号的选通;

所述音频量化模块,用于对处理后的电信号进行模数转换;

所述信号到达检测模块,用于获取当前定位信号的到达时间;

所述位置解算模块,用于解算位置,并呈现。

基于伪超声的室内定位系统的定位方法,包括如下步骤:

(1)锚点端先经时钟同步模块对齐各锚点间时钟后,再利用发声模块时分发送相异的伪超声音频信号;

(2)接收端接收到各个锚点发射的信号,进行处理后送至信号处理端;

(3)信号处理端利用信号到达检测模块分析各个锚点发来的信号到达的时间差及相关信息,并由位置解算模块计算出接收端的位置坐标,最终实现准确定位。

进一步地,所述时钟同步模块,是利用无线模块,参照网络测量和控制系统的精密时钟同步协议标准(ieee1588),设计了一种可应用于本系统的时钟同步模块。其目的用于对齐各个锚点的时钟,其步骤包括:

1)将主锚点a作为基准时钟,向从锚点bi发送对时信号,并标记时间戳其中i=1,2,3…;

2)从锚点bi接收对时信号,并校验,标记时间戳

3)从锚点bi接收完成后立即向主锚点a发送对时信号,并标记时间戳

4)主锚点a接收对时信号,并校验,标记时间戳

5)计算传输时延,

6)计算两锚点的时间偏差,

7)主锚点a将τ、δ发送至从锚点bi;

8)从锚点bi接收后更新内部时钟;

9)主锚点a与从锚点b2、b3…bn时钟同步过程同上述。

进一步地,所述发声模块用于锚点端发出伪超声音频信号,其步骤包括:

1)输入伪超声信号;

2)使用音频功放将输入的伪超声信号低失真的放大;

3)使用高音扬声器将伪超声信号输出。

进一步地,所述锚点端用于发射伪超声定位信号,其步骤包括:

1)n个锚点间时钟同步;

2)以t为周期,n个锚点时分发送伪超声音频信号;

3)在一个周期内,主锚点a发送时长为ta=t/n,参数为ea的伪超声定位信号,其中:ta=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔;

4)在一个周期内,主锚点a发送完毕后,从锚点b1发射时长为tb1=t/n,参数为eb1的伪超声定位信号,其中:tb1=talc+tdata+tnull,talc为功率上升保护信号,tdat□为伪超声定位信号,tnull为保护间隔;

5)在一个周期内,从锚点bi-1发送完毕后,从锚点bi发射时长为tbi=t/n,参数为ebi的伪超声定位信号,其中:tbi=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔,i=2,3…n。

进一步地,所述接收端接收锚点端发出的伪超声定位信号,并进行处理,方便后级信号处理端处理,其步骤包括:

1)使用咪头搭建音频拾取模块,将声信号转化为电信号;

2)将电信号送入音频放大模块,低失真的放大n倍;

3)将放大后的信号送入带通滤波器,方便选择位于伪超声频段的信号。

进一步地,所述信号处理端是将前级输入的电信号进行量化、利用信号到达检测模块计算达到时间差、再通过位置解算模块解算得出本次定位过程的估计位置,其步骤包括:

1)语音量化模块依据奈奎斯特采样定理设置采样频率,对接收端输出的电信号进行采样;

2)每采集到n个数据,立即送入信号到达检测模块;

3)判断采集的信号是否为锚点端发出的伪超声信号,并记录信号到达时间;

4)通过到达时间以及相关信息解算出接收端的估计位置。

进一步地,所述位置解算模块用于解算接收端的估计位置,其步骤为包括:

1)以主锚点a到达时间ta为基准,计算从锚点bi与主锚点a的到达时间的差值,记为:i=1,2,3…;

2)获取主锚点a与从锚点bi间系统设定的时分时间差i=1,2,3…;

3)根据到达时间差,系统设定的时分时间差以及确定的锚点位置坐标,可由tdoa双曲线定位算法获取接收端的位置坐标;

tdoa双曲线定位算法包括如下公式:

i=1,2,3…,r0为接收对象与主锚点a之间的距离,ri为目标对象与从锚点bi之间的距离,δri为接收对象到主锚点a与到从锚点bi之间的距离差,(x,y,z)为接收对象位置坐标,(xi,yi,zi)为从锚点bi的位置坐标,为从锚点bi与主锚点a的到达时间的差值,为系统设定的时分时间差值;

通过上述公式,计算出接收端的位置坐标,即可准确定位。

本发明的有益效果:适用于隐私场景下的基于伪超声的室内定位系统,可满足中小型室内场景下的定位需求。同时,由于使用音频作为定位信号,可较大程度上保护用户隐私。系统可以根据不同的室内环境,合理布置发声锚点的位置,锚点结构简单,易于安装。本系统提出的基于伪超声的室内定位系统体积小,成本低,定位精度高,大大减小了系统的复杂度。

附图说明

图1是本发明基于伪超声的室内定位系统结构框图;

图2是本发明系统中锚点端的结构示意图;

图3是本发明系统中锚点端的时钟同步过程的示意图;

图4是本发明系统中锚点端的发声模块的结构示意图;

图5是本发明系统中锚点端发送伪超声信号的时序图;

图6是本发明系统中接收端的结构示意图;

图7是本发明系统中信号处理端的结构示意图。

图中,1.锚点端2.接收端3.信号处理端伪超声音频信号。

具体实施方式

下面结合实施例和附图对本发明内容作进一步的说明,但不是对本发明的限定。

实施例

参照图1,一种基于伪超声的室内定位系统,包括锚点端、接收端以及信号处理端,锚点端与接收端无线连接,采用伪超声信号测距并传输信息;接收端与信号处理端级联,属电连接。

参照图2,锚点端包括时钟同步模块、发声模块。

参照图6,接收端包括音频拾取模块、音频放大模块、带通滤波器模块。

参照图7,信号处理端包括音频量化模块、信号到达检测模块、位置解算模块。

参照图1-6,基于伪超声的室内定位系统的定位方法,包括如下步骤:

(1)锚点端先经时钟同步模块对齐各锚点间时钟后,再利用发声模块时分发送相异的伪超声音频信号;

(2)接收端接收到各个锚点发射的信号,进行处理后送至信号处理端;

(3)信号处理端利用信号到达检测模块分析各个锚点发来的信号到达的时间差及相关信息,并由位置解算模块计算出接收端的位置坐标,最终实现准确定位。

参照图1、3,所述时钟同步模块,是利用无线模块,参照网络测量和控制系统的精密时钟同步协议标准(ieee1588),设计了一种可应用于本系统的时钟同步模块。其目的用于对齐各个锚点(以主锚点a,从锚点b1时钟同步过程举例说明)的时钟,其步骤包括:

1)将主锚点a作为基准时钟,向从锚点b1发送对时信号,并标记时间戳其中i=1,2,3…;

2)从锚点b1接收对时信号,并校验,标记时间戳

3)从锚点b1接收完成后立即向主锚点a发送对时信号,并标记时间戳

4)主锚点a接收对时信号,并校验,标记时间戳

5)计算传输时延,

6)计算两锚点的时间偏差,

7)主锚点a将τ、δ发送至从锚点b1;

8)从锚点b1接收后更新内部时钟。

主锚点a与从锚点b2、b3时钟同步过程同上述。

参照图4,所述发声模块用于锚点端发出伪超声音频信号,其步骤包括:

1)输入伪超声信号;

2)使用音频功放将输入的伪超声信号低失真的放大;

3)使用高音扬声器将伪超声信号输出。

参照图3-5,所述锚点端用于发射伪超声定位信号,其步骤包括:

1)n个锚点间时钟同步,在本实例中,n可取值n=4;

2)以t为周期,n个锚点时分发送伪超声音频信号;

3)在一个周期内,主锚点a发送时隙为t3=t/n,起始频率为16khz、终止频率为20khz的伪超声定位信号,其中:ta=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔。本实例中,可取值:talc=0.1s,tdata=0.4s,tnull=0.1s;

4)在一个周期内,主锚点发送完毕后,从锚点b1发射时隙为tb1=t/n,起始频率为20khz、终止频率为16khz的伪超声定位信号,其中:tb1=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔。本实例中,可取值:talc=0.1s,tdata=0.4s,tnull=0.1s;

5)在一个周期内,从锚点b1发送完毕后,从锚点b2发射时隙为tb2=t/n,起始频率为20khz、终止频率为16khz的伪超声定位信号,其中:tb2=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔。本实例中,可取值:talc=0.1s,tdata=0.4s,tnull=0.1s;

6)在一个周期内,从锚点b2发送完毕后,从锚点b3发射时隙为tb3=t/n,起始频率为20khz、终止频率为16khz的伪超声定位信号,其中:tb3=talc+tdata+tnull,talc为功率上升保护信号,tdata为伪超声定位信号,tnull为保护间隔。本实例中,可取值:talc=0.1s,tdata=0.4s,tnull=0.1s。

参照图6,所述接收端接收锚点端发出的伪超声定位信号,并进行处理,方便后级信号处理端处理,其步骤包括:

1)使用咪头搭建音频拾取模块,将声信号转化为电信号;

2)将电信号送入音频放大模块,低失真的放大n倍;

3)将放大后的信号送入带通滤波器,方便选择位于伪超声频段的信号。

参照图7,所述信号处理端是将前级输入的电信号进行量化、利用信号到达检测模块计算达到时间差、再通过位置解算模块解算得出本次定位过程的估计位置,其步骤包括:

1)语音量化模块依据奈奎斯特采样定理设置采样频率,对接收端输出的电信号进行采样;

2)每采集到n个数据,立即送入信号到达检测模块;

3)判断采集的信号是否为锚点端发出的伪超声信号,并记录信号到达时间;

4)通过到达时间以及相关信息解算出接收端的估计位置。

参照图7,所述位置解算模块用于解算接收端的估计位置,其步骤为包括:

1)以主锚点a到达时间ta为基准,计算从锚点bi与主锚点a的到达时间的差值,记为:i=1,2,3…;

2)获取主锚点a与从锚点bi间系统设定的时分时间差i=1,2,3…;

3)根据到达时间差,系统设定的时分时间差以及确定的锚点位置坐标,可由tdoa双曲线定位算法获取接收端的位置坐标;

tdoa双曲线定位算法包括如下公式:

i=1,2,3…,r0为接收对象与主锚点a之间的距离,ri为目标对象与从锚点bi之间的距离,δri为接收对象到主锚点a与到从锚点bi之间的距离差,(x,y,z)为接收对象位置坐标,(xi,yi,zi)为从锚点bi的位置坐标,为从锚点bi与主锚点a的到达时间的差值,为系统设定的时分时间差值;

通过上述公式,计算出接收端的位置坐标,即可准确定位。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1