基于数据驱动的锂电池SOH估计方法及系统与流程

文档序号:20044459发布日期:2020-02-28 12:42阅读:503来源:国知局
基于数据驱动的锂电池SOH估计方法及系统与流程

本发明涉及电池管理系统领域,具体地,涉及基于数据驱动的锂电池soh估计方法及系统。



背景技术:

在当今社会能源问题和环境问题日益严重的背景下,混合动力汽车和纯电动汽车等新能源汽车正在逐渐成为汽车行业的行业主流。锂离子电池是电动汽车重要的核心组件。电池管理系统(bms)的作用就是为了保障电池的安全稳定运行。由于电池的状态量,如电池的容量、内阻等,并不能由车载传感器直接测得。所以,bms为了实现对电池的管理和监控,就只能通过车载传感器能够直接测量的信号,如电池的端电压、电池的负载电流以及电池表面的温度,对电池的状态进行间接估计。另外,我国即将迎来车载锂离子动力电池退役高峰,届时将有大量的锂离子电池被梯次利用。锂离子电池容量损失量不同,其被二次利用的场合也不同。所以,在对退役锂电池进行梯度利用前,需要对电池进行容量测试和内阻测试。国内外估算电池soh的方法主要有实验分析法和基于电池模型的方法。实验分析法通过对电池进行标准的测试实验来估计soh。基于模型的方法会建立一个锂离子电池的动态模型,基于这个模型进行参数辨识和状态辨识。锂电池动态模型有等效电路模型和电化学模型。锂电池的等效电路参数多使用最小二乘法进行辨识。而电化学模型的参数辨识多使用粒子群算法和遗传算法等适合于优化高度非线性目标函数的优化算法。

使用实验分析法来估计soh,相对直接,精度较高,但需要化学工作站等专业实验设备价格昂贵,且测试所需时间较长。在即将有大量锂电池退役,有待进行测试的背景下,会极大影响锂离子电池梯次利用的效率。等效电路模型较为简单,计算效率高,但其是对电池动态特性的近似刻画,模型精度相对较低。电化学模型能对电池的动态响应特性进行精确的描述,但其计算涉及多个偏微分方程,计算量较大,在车载bms系统上难以实现。

专利文献110095732a公开了一种考虑环境湿度对内阻影响的锂电池soh估计方法,(1)用控制变量的方法,测试得到电池在不同环境湿度下,以相同倍率、荷电状态、温度放电时电池内阻的变化曲线,拟合出环境湿度与电池内阻的变化公式;(2)在当前电池内阻的测定中加入自放电内阻影响因素,当环境中水分子密度变化时,根据电池自放电内阻和环境湿度的拟合关系,电池自放电内阻也相应增大或减小,使得电池内阻根据环境湿度的变化更新,从而得到锂电池soh的估计公式。该方法针对基于数据驱动的锂电池soh估计仍有待完善的空间。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提供一种基于数据驱动的锂电池soh估计方法及系统。

根据本发明提供的一种基于数据驱动的锂电池soh估计方法,包括:

步骤1:采集bms单元记录的锂离子电池近期数据包序列,获取近期数据包信息;

步骤2:根据近期数据包信息,将采集到的数据进行数据清洗,去除数据异常点,补齐数据缺失点,并对数据进行归一化处理,获取归一化处理结果信息;

步骤3:根据归一化处理结果信息,将锂离子电池的负载电流、温度、soc数据作为模糊神经网络的输入,将锂电池的端电压响应值作为网络的输出,将数据集划分为训练集和测试集两部分,获取输入输出特性信息;

步骤4:根据输入输出特性输入输出特性信息,建立模糊神经网络结构,确定各层节点的个数;

步骤5:将预处理过的电池负载电流、温度、soc数据输入到随机初始化参数后的模糊神经网络结构中,正向传递得到网络的输出误差;调整网络参数以最小化网络输出误差;

步骤6:将测试集样本输入到训练好的模糊神经网路中,计算网络预测误差,评估网络刻画电池动态特性的准确程度;

步骤7:将标准的测试负载输入到训练好的模糊神经网络中,进行虚拟电池容量测试,得到电池的虚拟电压响应曲线,进而计算出电池的容量,获取锂电池soh值刻画结果信息;

所述近期数据包包括:负载电流数据、端电压数据、温度数据以及soc数据。

优选地,所述步骤2包括:

步骤2.1:进行数据清洗,将数据序列中严重偏离的数据点删除,该点处数据值由前后两个时刻的数据值进行线性差值得到;

步骤2.2:删除重复的冗余数据,对于冗余数据和缺失数据,均使用前一时刻和后一时刻的数据值的线性差值结果进行补齐;

步骤2.3:将数据集进行归一化处理,采用最大最小归一化进行计算:

式中,x指当前样本某一状态分量的取值,xmin是所有样本的该状态分量的最小值,xmax是所有样本的该状态分量的最大值。

优选地,所述步骤4包括:

步骤4.1:构造模糊神经网络第一层,将输入变量进行模糊化,记xi,i=1,2,3为网络第i个输入分量;i=1时,x1=t(k)为温度这一输入分量,i=2时,x2=i(k)为电流这一输入分量,i=3时,x3=soc(k)为soc这一输入分量;第i个输入分量xi,i=1,2,3对应的网络第一层第ki个节点的输出的计算公式为:

式中,i=1,2,3,其中p为对温度这一输入x1=t(k)划分的模糊子集个数,q为对电流这一输入x2=i(k)划分的模糊子集个数,r为对soc这一输入x3=soc(k)划分的模糊子集个数;式中表示网络第一层第ki个节点的节点输出,该输出值等于表示第i个输入分量xi隶属于模糊集合的隶属度;本发明中隶属度函数用一般钟形隶属度函数刻画,其中为属于模糊集合的一般钟形隶属度函数的隶属度中心,为属于模糊集合的一般钟形隶属度函数的标准差,参数用于控制一般钟形隶属度函数曲线的宽度;

步骤4.2:构造模糊神经网络第二层,采用一阶sugeno模糊规则,共有p·q·r条模糊规则;模糊规则如下:

网络第二层第i个节点的输出的计算公式为:

式中将记为表示网络第二层第i个节点的输出,其值等于表示当前的网络输入x=(x1,x2,x3)对于规则的契合程度;a1,a2,…,ai,…,ap表示对温度这一输入x1=t(k)划分的所有模糊子集,表示对温度这一输入划分的第k1个(k1=1,2,…,p)模糊子集;表示对电流这一输入x2=i(k)划分的所有模糊子集,bk2表示对电流这一输入划分的第k2个(k2=1,2,…,q)模糊子集;表示对soc这一输入x3=soc(k)划分的所有模糊子集,表示对soc这一输入划分的第k3个(k3=1,2,…,r)模糊子集;为网络第一层第ki个节点的输出;

步骤4.3:构造模糊神经网络第三层,网络第三层第i个节点的输出的计算公式为:

步骤4.4:构造模糊神经网络第四层,网络第四层第i个节点的输出的计算公式为:

步骤4.5:构造模糊神经网络第五层,网络第五层第i个节点的输出的计算公式为:

模糊神经网络的输入和输出关系为:

其中,g(θ,x)表示网络的输入x和输出y之间的函数关系,θ表示网络中待训练的参数。

优选地,所述步骤5包括:

步骤5.1:对于给定的n个样本(xi,yi),将输入xi向量输入到网络中;当输入正向传递到网络第四层时暂停计算,得到每一条模糊规则对应的经过网络第三层归一化之后的适用度

步骤5.2:固定网络的条件参数其中,

网络的结论参数为:

其中,

网络的输出可以改写为:

矩阵a,θc,y的形状分别为:n×m,m×1,n×1,其中m=p+q+r;

另外,为一行向量,i表示第i个样本,j表示对应第j条模糊规则,表示第i个样本作为单元输入时,归一化后的第j条模糊规则对应的适用度;表示第j条模糊规则对应的结论参数向量,设第j条模糊规则的条件(前件)为:则此时和前文中的表示的是同一个量;另外n为样本(xi,yi),i=1,2,…,n的总数,m=p+q+r为模糊规则的总数;

得到使均方差最小,即min||aθc-y||,y=(y1,y2,…,yn)t意义下的结论参数向量θc的最佳估计即:

获取结论参数向量计算结果信息;

步骤5.3:根据结论参数向量计算结果信息,将计算出的结论参数向量固定,输入从网络第四层开始继续正向传递,直至传递到输出层(即网络第五层),得到网络的输出按照均方误差准则(mse)计算网络输出的误差:

步骤5.4:根据s53中计算出的网络输出的误差,使用误差反传算法更新网络的条件参数θp;

步骤5.5:重复步骤5.1至步骤5.4,直到网络的误差低于预设值或达到限定训练轮次数。

优选地,包括:所述步骤7包括:

步骤7.1:采用恒流放电的方式,放电电流为0.3c,电池温度恒定为25℃,序列采样周期为1s,网络的输入序列为:

其中,soc序列由安时积分法得到,即:

其中,socinit表示电池的soc初值,设定为100%,η表示电池的充放电库伦效率,其值一般通过实验确定,认为其值为电池出厂时的值不变,可以取其值为电池制造商所提供的值,或者为bms单元中所设定的电池充放电库伦效率值;cmax是电池的最大可用容量,设定为最近一次对电池进行soh估计后得到的电池容量;

将的输入序列持续输入给模糊神经网络,直至网络的输出即估计的电池端电压响应值达到设定的截止电压;对电流进行积分,得到总的电池放电库仑数,以此值作为对电池容量的估计,并以此值定义电池的soh,获取锂电池soh值刻画结果信息。

根据本发明提供的一种基于数据驱动的锂电池soh估计系统,包括:

模块1:采集bms单元记录的锂离子电池近期数据包序列,获取近期数据包信息;

模块2:根据近期数据包信息,将采集到的数据进行数据清洗,去除数据异常点,补齐数据缺失点,并对数据进行归一化处理,获取归一化处理结果信息;

模块3:根据归一化处理结果信息,将锂离子电池的负载电流、温度、soc数据作为模糊神经网络的输入,将锂电池的端电压响应值作为网络的输出,将数据集划分为训练集和测试集两部分,获取输入输出特性信息;

模块4:根据输入输出特性输入输出特性信息,建立模糊神经网络结构,确定各层节点的个数;

模块5:将预处理过的电池负载电流、温度、soc数据输入到随机初始化参数后的模糊神经网络结构中,正向传递得到网络的输出误差;调整网络参数以最小化网络输出误差;

模块6:将测试集样本输入到训练好的模糊神经网路中,计算网络预测误差,评估网络刻画电池动态特性的准确程度;

模块7:将标准的测试负载输入到训练好的模糊神经网络中,进行虚拟电池容量测试,得到电池的虚拟电压响应曲线,进而计算出电池的容量,获取锂电池soh值刻画结果信息;

所述近期数据包包括:负载电流数据、端电压数据、温度数据以及soc数据。

优选地,所述模块2包括:

模块2.1:进行数据清洗,将数据序列中严重偏离的数据点删除,该点处数据值由前后两个时刻的数据值进行线性差值得到;

模块2.2:删除重复的冗余数据,对于冗余数据和缺失数据,均使用前一时刻和后一时刻的数据值的线性差值结果进行补齐;

模块2.3:将数据集进行归一化处理,采用最大最小归一化进行计算:

式中,x指当前样本某一状态分量的取值,xmin是所有样本的该状态分量的最小值,xmax是所有样本的该状态分量的最大值。

优选地,所述模块4包括:

模块4.1:构造模糊神经网络第一层,将输入变量进行模糊化,记xi,i=1,2,3为网络第i个输入分量;i=1时,x1=t(k)为温度这一输入分量,i=2时,x2=i(k)为电流这一输入分量,i=3时,x3=soc(k)为soc这一输入分量;第i个输入分量xi,i=1,2,3对应的网络第一层第ki个节点的输出的计算公式为:

式中,i=1,2,3,其中p为对温度这一输入x1=t(k)划分的模糊子集个数,q为对电流这一输入x2=i(k)划分的模糊子集个数,r为对soc这一输入x3=soc(k)划分的模糊子集个数;式中表示网络第一层第ki个节点的节点输出,该输出值等于表示第i个输入分量xi隶属于模糊集合的隶属度;本发明中隶属度函数用一般钟形隶属度函数刻画,其中为属于模糊集合的一般钟形隶属度函数的隶属度中心,为属于模糊集合的一般钟形隶属度函数的标准差,参数用于控制一般钟形隶属度函数曲线的宽度;

模块4.2:构造模糊神经网络第二层,采用一阶sugeno模糊规则,共有p·q·r条模糊规则;模糊规则如下:

网络第二层第i个节点的输出的计算公式为:

式中将记为表示网络第二层第i个节点的输出,其值等于表示当前的网络输入x=(x1,x2,x3)对于规则的契合程度;a1,a2,…,ai,…,ap表示对温度这一输入x1=t(k)划分的所有模糊子集,表示对温度这一输入划分的第k1个(k1=1,2,…,p)模糊子集;表示对电流这一输入x2=i(k)划分的所有模糊子集,表示对电流这一输入划分的第k2个(k2=1,2,…,q)模糊子集;表示对soc这一输入x3=soc(k)划分的所有模糊子集,ck3表示对soc这一输入划分的第k3个(k3=1,2,…,r)模糊子集;为网络第一层第ki个节点的输出;

模块4.3:构造模糊神经网络第三层,网络第三层第i个节点的输出的计算公式为:

模块4.4:构造模糊神经网络第四层,网络第四层第i个节点的输出的计算公式为:

模块4.5:构造模糊神经网络第五层,网络第五层第i个节点的输出的计算公式为:

模糊神经网络的输入和输出关系为:

其中,g(θ,x)表示网络的输入x和输出y之间的函数关系,θ表示网络中待训练的参数。

优选地,所述模块5包括:

模块5.1:对于给定的n个样本(xi,yi),将输入xi向量输入到网络中;当输入正向传递到网络第四层时暂停计算,得到每一条模糊规则对应的经过网络第三层归一化之后的适用度

模块5.2:固定网络的条件参数其中,

网络的结论参数为:

其中,

网络的输出可以改写为:

矩阵a,θc,y的形状分别为:n×m,m×1,n×1,其中m=p+q+r;

另外,为一行向量,i表示第i个样本,j表示对应第j条模糊规则,表示第i个样本作为单元输入时,归一化后的第j条模糊规则对应的适用度;表示第j条模糊规则对应的结论参数向量,设第j条模糊规则的条件(前件)为:则此时和前文中的表示的是同一个量;另外n为样本(xi,yi),i=1,2,…,n的总数,m=p+q+r为模糊规则的总数;

得到使均方差最小,即min||aθc-y||,y=(y1,y2,…,yn)t意义下的结论参数向量θc的最佳估计即:

获取结论参数向量计算结果信息;

模块5.3:根据结论参数向量计算结果信息,将计算出的结论参数向量固定,输入从网络第四层开始继续正向传递,直至传递到输出层(即网络第五层),得到网络的输出按照均方误差准则(mse)计算网络输出的误差:

模块5.4:根据s53中计算出的网络输出的误差,使用误差反传算法更新网络的条件参数θp;

模块5.5:重复模块5.1至模块5.4,直到网络的误差低于预设值或达到限定训练轮次数。

优选地,包括:所述模块7包括:

模块7.1:采用恒流放电的方式,放电电流为0.3c,电池温度恒定为25℃,序列采样周期为1s,网络的输入序列为:

其中,soc序列由安时积分法得到,即:

其中,socinit表示电池的soc初值,设定为100%,η表示电池的充放电库伦效率,其值一般通过实验确定,认为其值为电池出厂时的值不变,可以取其值为电池制造商所提供的值,或者为bms单元中所设定的电池充放电库伦效率值;cmax是电池的最大可用容量,设定为最近一次对电池进行soh估计后得到的电池容量;

将的输入序列持续输入给模糊神经网络,直至网络的输出即估计的电池端电压响应值达到设定的截止电压;对电流进行积分,得到总的电池放电库仑数,以此值作为对电池容量的估计,并以此值定义电池的soh,获取锂电池soh值刻画结果信息。

与现有技术相比,本发明具有如下的有益效果:

1、本发明不需要使用化学工作站等专业实验设备,所需时间相对较短,成本相对较低;

2、本发明不需要基于具体的物理模型,而是基于数据建模,可以缩短建模时间;

3、本发明的计算时间适中,计算精度相对较高,在不牺牲精度的前提下,能够以相对较快的速度完成对电池soh的估计

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为本发明实施例中数据获取流程示意图。

图2为本发明实施例中的获得电池容量和内阻的算法流程示意图。

图3为本发明实施例中的模糊神经网络节点示意图。

图4为本发明实施例中的模糊神经网络结构示意图。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。

根据本发明提供的一种基于数据驱动的锂电池soh估计方法,包括:

步骤1:采集bms单元记录的锂离子电池近期数据包序列,获取近期数据包信息;

步骤2:根据近期数据包信息,将采集到的数据进行数据清洗,去除数据异常点,补齐数据缺失点,并对数据进行归一化处理,获取归一化处理结果信息;

步骤3:根据归一化处理结果信息,将锂离子电池的负载电流、温度、soc数据作为模糊神经网络的输入,将锂电池的端电压响应值作为网络的输出,将数据集划分为训练集和测试集两部分,获取输入输出特性信息;

步骤4:根据输入输出特性输入输出特性信息,建立模糊神经网络结构,确定各层节点的个数;

步骤5:将预处理过的电池负载电流、温度、soc数据输入到随机初始化参数后的模糊神经网络结构中,正向传递得到网络的输出误差;调整网络参数以最小化网络输出误差;

步骤6:将测试集样本输入到训练好的模糊神经网路中,计算网络预测误差,评估网络刻画电池动态特性的准确程度;

步骤7:将标准的测试负载输入到训练好的模糊神经网络中,进行虚拟电池容量测试,得到电池的虚拟电压响应曲线,进而计算出电池的容量,获取锂电池soh值刻画结果信息;

所述近期数据包包括:负载电流数据、端电压数据、温度数据以及soc数据。

优选地,所述步骤2包括:

步骤2.1:进行数据清洗,将数据序列中严重偏离的数据点删除,该点处数据值由前后两个时刻的数据值进行线性差值得到;

步骤2.2:删除重复的冗余数据,对于冗余数据和缺失数据,均使用前一时刻和后一时刻的数据值的线性差值结果进行补齐;

步骤2.3:将数据集进行归一化处理,采用最大最小归一化进行计算:

式中,x指当前样本某一状态分量的取值,xmin是所有样本的该状态分量的最小值,xmax是所有样本的该状态分量的最大值。

优选地,所述步骤4包括:

步骤4.1:构造模糊神经网络第一层,将输入变量进行模糊化,记xi,i=1,2,3为网络第i个输入分量;i=1时,x1=t(k)为温度这一输入分量,i=2时,x2=i(k)为电流这一输入分量,i=3时,x3=soc(k)为soc这一输入分量;第i个输入分量xi,i=1,2,3对应的网络第一层第ki个节点的输出的计算公式为:

式中,i=1,2,3,其中p为对温度这一输入x1=t(k)划分的模糊子集个数,q为对电流这一输入x2=i(k)划分的模糊子集个数,r为对soc这一输入x3=soc(k)划分的模糊子集个数;式中表示网络第一层第ki个节点的节点输出,该输出值等于表示第i个输入分量xi隶属于模糊集合的隶属度;本发明中隶属度函数用一般钟形隶属度函数刻画,其中为属于模糊集合的一般钟形隶属度函数的隶属度中心,为属于模糊集合的一般钟形隶属度函数的标准差,参数用于控制一般钟形隶属度函数曲线的宽度;

步骤4.2:构造模糊神经网络第二层,采用一阶sugeno模糊规则,共有p·q·r条模糊规则;模糊规则如下:

网络第二层第i个节点的输出的计算公式为:

式中将记为表示网络第二层第i个节点的输出,其值等于表示当前的网络输入x=(x1,x2,x3)对于规则的契合程度;a1,a2,…,ai,…,ap表示对温度这一输入x1=t(k)划分的所有模糊子集,表示对温度这一输入划分的第k1个(k1=1,2,…,p)模糊子集;表示对电流这一输入x2=i(k)划分的所有模糊子集,表示对电流这一输入划分的第k2个(k2=1,2,…,q)模糊子集;表示对soc这一输入x3=soc(k)划分的所有模糊子集,表示对soc这一输入划分的第k3个(k3=1,2,…,r)模糊子集;为网络第一层第ki个节点的输出;

步骤4.3:构造模糊神经网络第三层,网络第三层第i个节点的输出的计算公式为:

步骤4.4:构造模糊神经网络第四层,网络第四层第i个节点的输出的计算公式为:

步骤4.5:构造模糊神经网络第五层,网络第五层第i个节点的输出的计算公式为:

模糊神经网络的输入和输出关系为:

其中,g(θ,x)表示网络的输入x和输出y之间的函数关系,θ表示网络中待训练的参数。

优选地,所述步骤5包括:

步骤5.1:对于给定的n个样本(xi,yi),将输入xi向量输入到网络中;当输入正向传递到网络第四层时暂停计算,得到每一条模糊规则对应的经过网络第三层归一化之后的适用度

步骤5.2:固定网络的条件参数其中,

网络的结论参数为:

其中,

网络的输出可以改写为:

矩阵a,θc,y的形状分别为:n×m,m×1,n×1,其中m=p+q+r;

另外,为一行向量,i表示第i个样本,j表示对应第j条模糊规则,表示第i个样本作为单元输入时,归一化后的第j条模糊规则对应的适用度;表示第j条模糊规则对应的结论参数向量,设第j条模糊规则的条件(前件)为:则此时和前文中的表示的是同一个量;另外n为样本(xi,yi),i=1,2,…,n的总数,m=p+q+r为模糊规则的总数;

得到使均方差最小,即min||aθc-y||,y=(y1,y2,…,yn)t意义下的结论参数向量θc的最佳估计即:

获取结论参数向量计算结果信息;

步骤5.3:根据结论参数向量计算结果信息,将计算出的结论参数向量固定,输入从网络第四层开始继续正向传递,直至传递到输出层(即网络第五层),得到网络的输出按照均方误差准则(mse)计算网络输出的误差:

步骤5.4:根据s53中计算出的网络输出的误差,使用误差反传算法更新网络的条件参数θp;

步骤5.5:重复步骤5.1至步骤5.4,直到网络的误差低于预设值或达到限定训练轮次数。

优选地,包括:所述步骤7包括:

步骤7.1:采用恒流放电的方式,放电电流为0.3c,电池温度恒定为25℃,序列采样周期为1s,网络的输入序列为:

其中,soc序列由安时积分法得到,即:

其中,socinit表示电池的soc初值,设定为100%,η表示电池的充放电库伦效率,其值一般通过实验确定,认为其值为电池出厂时的值不变,可以取其值为电池制造商所提供的值,或者为bms单元中所设定的电池充放电库伦效率值;cmax是电池的最大可用容量,设定为最近一次对电池进行soh估计后得到的电池容量;

将的输入序列持续输入给模糊神经网络,直至网络的输出即估计的电池端电压响应值达到设定的截止电压;对电流进行积分,得到总的电池放电库仑数,以此值作为对电池容量的估计,并以此值定义电池的soh,获取锂电池soh值刻画结果信息。

根据本发明提供的一种基于数据驱动的锂电池soh估计系统,包括:

模块1:采集bms单元记录的锂离子电池近期数据包序列,获取近期数据包信息;

模块2:根据近期数据包信息,将采集到的数据进行数据清洗,去除数据异常点,补齐数据缺失点,并对数据进行归一化处理,获取归一化处理结果信息;

模块3:根据归一化处理结果信息,将锂离子电池的负载电流、温度、soc数据作为模糊神经网络的输入,将锂电池的端电压响应值作为网络的输出,将数据集划分为训练集和测试集两部分,获取输入输出特性信息;

模块4:根据输入输出特性输入输出特性信息,建立模糊神经网络结构,确定各层节点的个数;

模块5:将预处理过的电池负载电流、温度、soc数据输入到随机初始化参数后的模糊神经网络结构中,正向传递得到网络的输出误差;调整网络参数以最小化网络输出误差;

模块6:将测试集样本输入到训练好的模糊神经网路中,计算网络预测误差,评估网络刻画电池动态特性的准确程度;

模块7:将标准的测试负载输入到训练好的模糊神经网络中,进行虚拟电池容量测试,得到电池的虚拟电压响应曲线,进而计算出电池的容量,获取锂电池soh值刻画结果信息;

所述近期数据包包括:负载电流数据、端电压数据、温度数据以及soc数据。

优选地,所述模块2包括:

模块2.1:进行数据清洗,将数据序列中严重偏离的数据点删除,该点处数据值由前后两个时刻的数据值进行线性差值得到;

模块2.2:删除重复的冗余数据,对于冗余数据和缺失数据,均使用前一时刻和后一时刻的数据值的线性差值结果进行补齐;

模块2.3:将数据集进行归一化处理,采用最大最小归一化进行计算:

式中,x指当前样本某一状态分量的取值,xmin是所有样本的该状态分量的最小值,xmax是所有样本的该状态分量的最大值。

优选地,所述模块4包括:

模块4.1:构造模糊神经网络第一层,将输入变量进行模糊化,记xi,i=1,2,3为网络第i个输入分量;i=1时,x1=t(k)为温度这一输入分量,i=2时,x2=i(k)为电流这一输入分量,i=3时,x3=soc(k)为soc这一输入分量;第i个输入分量xi,i=1,2,3对应的网络第一层第ki个节点的输出的计算公式为:

式中,i=1,2,3,其中p为对温度这一输入x1=t(k)划分的模糊子集个数,q为对电流这一输入x2=i(k)划分的模糊子集个数,r为对soc这一输入x3=soc(k)划分的模糊子集个数;式中表示网络第一层第ki个节点的节点输出,该输出值等于表示第i个输入分量xi隶属于模糊集合的隶属度;本发明中隶属度函数用一般钟形隶属度函数刻画,其中为属于模糊集合的一般钟形隶属度函数的隶属度中心,为属于模糊集合的一般钟形隶属度函数的标准差,参数用于控制一般钟形隶属度函数曲线的宽度;

模块4.2:构造模糊神经网络第二层,采用一阶sugeno模糊规则,共有p·q·r条模糊规则;模糊规则如下:

网络第二层第i个节点的输出的计算公式为:

式中将记为表示网络第二层第i个节点的输出,其值等于表示当前的网络输入x=(x1,x2,x3)对于规则的契合程度;a1,a2,…,ai,…,ap表示对温度这一输入x1=t(k)划分的所有模糊子集,表示对温度这一输入划分的第k1个(k1=1,2,…,p)模糊子集;表示对电流这一输入x2=i(k)划分的所有模糊子集,表示对电流这一输入划分的第k2个(k2=1,2,…,q)模糊子集;表示对soc这一输入x3=soc(k)划分的所有模糊子集,表示对soc这一输入划分的第k3个(k3=1,2,…,r)模糊子集;为网络第一层第ki个节点的输出;

模块4.3:构造模糊神经网络第三层,网络第三层第i个节点的输出的计算公式为:

模块4.4:构造模糊神经网络第四层,网络第四层第i个节点的输出的计算公式为:

模块4.5:构造模糊神经网络第五层,网络第五层第i个节点的输出的计算公式为:

模糊神经网络的输入和输出关系为:

其中,g(θ,x)表示网络的输入x和输出y之间的函数关系,θ表示网络中待训练的参数。

优选地,所述模块5包括:

模块5.1:对于给定的n个样本(xi,yi),将输入xi向量输入到网络中;当输入正向传递到网络第四层时暂停计算,得到每一条模糊规则对应的经过网络第三层归一化之后的适用度

模块5.2:固定网络的条件参数其中,

网络的结论参数为:

其中,

网络的输出可以改写为:

矩阵a,θc,y的形状分别为:n×m,m×1,n×1,其中m=p+q+r;

另外,为一行向量,i表示第i个样本,j表示对应第j条模糊规则,表示第i个样本作为单元输入时,归一化后的第j条模糊规则对应的适用度;表示第j条模糊规则对应的结论参数向量,设第j条模糊规则的条件(前件)为:则此时和前文中的表示的是同一个量;另外n为样本(xi,yi),i=1,2,…,n的总数,m=p+q+r为模糊规则的总数;

得到使均方差最小,即min||aθc-y||,y=(y1,y2,…,yn)t意义下的结论参数向量θc的最佳估计即:

获取结论参数向量计算结果信息;

模块5.3:根据结论参数向量计算结果信息,将计算出的结论参数向量固定,输入从网络第四层开始继续正向传递,直至传递到输出层(即网络第五层),得到网络的输出按照均方误差准则(mse)计算网络输出的误差:

模块5.4:根据s53中计算出的网络输出的误差,使用误差反传算法更新网络的条件参数θp;

模块5.5:重复模块5.1至模块5.4,直到网络的误差低于预设值或达到限定训练轮次数。

优选地,包括:所述模块7包括:

模块7.1:采用恒流放电的方式,放电电流为0.3c,电池温度恒定为25℃,序列采样周期为1s,网络的输入序列为:

其中,soc序列由安时积分法得到,即:

其中,socinit表示电池的soc初值,设定为100%,η表示电池的充放电库伦效率,其值一般通过实验确定,认为其值为电池出厂时的值不变,可以取其值为电池制造商所提供的值,或者为bms单元中所设定的电池充放电库伦效率值;cmax是电池的最大可用容量,设定为最近一次对电池进行soh估计后得到的电池容量;

将的输入序列持续输入给模糊神经网络,直至网络的输出即估计的电池端电压响应值达到设定的截止电压;对电流进行积分,得到总的电池放电库仑数,以此值作为对电池容量的估计,并以此值定义电池的soh,获取锂电池soh值刻画结果信息。

具体地,在一个实施例中,首先从车载bms中提取出所需要的电池数据。之后对提取出的数据进行清洗、整理和预处理。之后进行模糊神经网络模型的搭建,对模糊神经网络的结构进行设计。再之后使用整理好的数据对模糊神经网络中的参数进行训练。最后将人为设定的输入输送给已经训练好的模糊神经网络,进行虚拟容量实验,最终得到电池容量的估计值并以此来表征电池的soh。具体步骤如下:

电池数据获取流程如图1所示。电动汽车电池组上相应位置布置有电流、电压和温度传感器,传感器数据通过can有线网络传输给车载电池管理系统(bms),bms对响应电压、电流和温度数据进行记录,并对电池soc进行估计。电池管理系统将电池运行数据上传至t-box,t-box通过4g无线网络将数据传输至云端大数据中心进行进一步的分析和处理;

进行数据清洗,将数据序列中严重偏离的数据点删除。当该点处数值与其前一时刻值的差值大于前一时刻值的1.5倍,则认定当前时间的数据点是异常数据点,此时该点处数据值由前后两个时刻的数据值进行线性差值得到。对于缺失数据,也使用前一时刻和后一时刻的数据值的线性差值结果进行补齐。之后将数据集进行归一化处理,采用最大最小归一化方法。最后进行数据集的划分,按照数据集样本数量的70%、0%和20%,将数据集分别分成训练集、验证集和测试集。最大最小归一化方法的计算公式如下,其中x指当前样本某一状态分量的取值,xmin是所有样本的该状态分量的最小值,xmax是所有样本的该状态分量的最大值:

进行模糊神经网络的结构设计。所使用的模糊神经网路的结构如图4所示。网络的输入选定为第k时刻的电池的温度、负载电流和soc值,网络的输出选择为对第k+1时刻电池端电压的预测值。网络的行为满足以下函数:

网络的第一层是模糊化层,该层将输入变量进行模糊化,网络第一层第i个节点的输出的计算公式为:

式中i=1,2,3,其中p为对温度这一输入x1=t(k)划分的模糊子集个数,q为对电流这一输入x2=i(k)划分的模糊子集个数,r为对soc这一输入x3=soc(k)划分的模糊子集个数。这里p=q=r=5,将三个网络输入分量;

网络第二层实现了对模糊逻辑“if…then…”中条件部分的计算,采用一阶sugeno模糊规则,共有p·q·r=125条模糊规则。模糊规则如下:

网络第二层i个节点的输出的计算公式为:

第三层是对网络第二层的输出的归一化处理,网络第三层第i个节点的输出的计算公式为:

第四层是模糊推理层,网络第四层第i个节点的输出的计算公式为:

第五层是输出层或去模糊化层,网络第五层第i个节点的输出的计算公式为:

模糊神经网络的输入和输出关系为:

使用混合训练算法对模糊神经网络的参数进行训练。将模糊神经网络的参数分为条件参数θp和结论参数θc两组,两组参数分别使用不同的方法进行训练。混合训练算法包含以下步骤:

首先,对于给定的n个样本(xi,yi),将输入xi向量输入到网络中。当输入正向传递到网络第四层时暂停计算,得到每一条模糊规则对应的经过网络第三层归一化之后的适用度

之后固定网络的条件参数:

其中

使用最小二乘算法对结论参数进行调整。网络的结论参数记为:

其中

可以将网络的输出可以改写为:

其中矩阵a,θc,y的形状分别为:n×m,m×1,n×1,其中m=p+q+r。另外为一行向量,i表示第i个样本,j表示对应第j条模糊规则,表示第i个样本作为系统输入时,归一化后的第j条模糊规则对应的适用度。表示第j条模糊规则对应的结论参数向量,设第j条模糊规则的条件(前件)为:则此时和前文中的表示的是同一个量。另外n为样本(xi,yi),i=1,2,…,n的总数,m=p+q+r为模糊规则的总数;

使用最小二乘法,可以得到使均方差最小,即min||aθc-y||,y=(y1,y2,…,yn)t意义下的结论参数向量θc的最佳估计即:

将计算出的结论参数向量固定,输入从网络第四层开始继续正向传递,直至传递到输出层(即网络第五层),得到网络的输出按照均方误差准则(mse)计算网络输出的误差:

根据上式中计算出的网络输出的误差,使用误差反传算法更新网络的条件参数θp。

重复前面四个步骤,直到网络的误差低于预设值或达到限定训练轮次数;

网络训练完成以后,网络的动态特性应近似等于实际电池的动态特性,可以认为基于模糊神经网络的电池模型与实际电池模型相互等价。之后可以通过给基于模糊神经网络的电池模型施加人为定义的输入量,进行虚拟容量测试,就相当于对实际电池进行了容量测试,就可以得到电池的容量估计值。虚拟容量测试采用恒流放电的方式,放电电流为0.3c,电池温度恒定为25℃,序列采样周期为1s。网络的输入序列为:

其中soc序列由安时积分法得到,即:

其中socinit表示电池的soc初值,设定为100%,η表示电池的充放电库伦效率,其值一般通过实验确定,认为其值为电池出厂时的值不变,可以取其值为电池制造商所提供的值,或者为bms系统中所设定的电池充放电库伦效率值;cmax是电池的最大可用容量,设定为最近一次对电池进行soh估计后得到的电池容量;

将上述的输入序列持续输入给模糊神经网络,直至网络的输出即估计的电池端电压响应值达到设定的截止电压(取2.5v)。这时使用安时积分法,对电流进行积分,得到总的电池放电库仑数,以此值作为对电池容量的估计,并以此值定义电池的soh。

本发明不需要使用化学工作站等专业实验设备,所需时间相对较短,成本相对较低;本发明不需要基于具体的物理模型,而是基于数据建模,可以缩短建模时间;本发明的计算时间适中,计算精度相对较高,在不牺牲精度的前提下,能够以相对较快的速度完成对电池soh的估计。

本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1