一种复杂地形条件下S波段与X波段雷达重叠区域组网测雨方法与流程

文档序号:19946145发布日期:2020-02-18 09:24阅读:351来源:国知局
一种复杂地形条件下S波段与X波段雷达重叠区域组网测雨方法与流程
本发明申请为申请日2018年06月20日,申请号为:201810635318.5,名称为“一种复杂地形条件下s波段与x波段雷达组网测雨方法”的发明专利申请的分案申请。本发明涉及一种复杂地形条件下s波段与x波段雷达重叠区域组网测雨方法,属于雷达探测领域,主要用于气象与水利部门开展降雨监测、暴雨洪水预警预报工作。
背景技术
:我国山丘区面积约占国土面积的2/3,地形条件复杂。由于山丘区坡高谷深,遇到强降雨时,产汇流快,洪水多呈现暴涨暴落的特点,致使山洪灾害频发。加之山丘区目前的降雨监测站网覆盖率低,给暴雨山洪灾害的预警预报带来很大困难,严重威胁人民生命财产安全。提升山丘区的降雨监测水平,对于提高暴雨山洪灾害预警预报能力有非常重要的作用和意义。但目前在山丘区大范围建设雨量站成本较高,且运行维护困难,实用性不强,而雷达相比雨量站的单点观测具有一定的优势:(1)雷达测雨覆盖范围广,可实现降雨的空间观测;(2)测雨数据时空分辨率高;(3)运行维护与管理更加集中方便。因此近年来雷达成为雨量观测的重要手段之一。然而,不同类型的雷达特点不同,目前国内布设的s波段多普勒天气雷达探测距离远,空间分辨率相对较低,且山丘区容易受地物遮挡,存在较大的观测盲区;x波段测雨雷达探测距离短,空间分辨率高,布设位置较灵活。2种类型雷达独立进行雨量观测已较为普遍,但不同类型雷达在复杂地形条件下的组网观测还不多见,如何充分发挥2种雷达的降雨观测优势,实现不同类型雷达的组网观测,提高复杂地形条件下的降雨观测精度,还需要进一步深入研究。技术实现要素:本发明提出了一种复杂地形条件下s波段与x波段雷达重叠区域组网测雨方法,其解决的技术问题是充分利用s波段与x波段雷达的探测优势,实现复杂地形条件下的雷达组网测雨,在降低或消除观测盲区的前提下,提高测雨的精度。为了解决上述存在的技术问题,本发明采用了以下方案:一种复杂地形条件下s波段与x波段雷达重叠区域组网测雨方法,包括以下步骤:步骤1、雷达反射率空间栅格化处理;步骤2、天气形势的判断;步骤3、复杂地形条件下重叠区域权重判定;步骤4、复杂地形条件下非重叠区域数据确定;步骤5、降雨量反演。进一步,步骤1中的反射率数据来源于s波段和x波段雷达,反射率数据为雷达不同仰角下的空间扫描结果。进一步,步骤1中的s波段多普勒天气雷达的覆盖半径一般不超过230km,雷达数据的径向分辨率约为1km,观测数据能够较好的反映局地天气形势及发展;x波段测雨雷达的覆盖半径一般不超过60km,雷达数据的径向分辨率一般为45-150m,布设选址相对灵活,小范围的测雨精度较高。进一步,步骤1中雷达反射率空间栅格化处理是将球坐标系下的雷达反射率处理成笛卡尔坐标系下栅格数据,并统一两种雷达反射率的分辨率为1km×1km。进一步,步骤2中天气形势的判断依据为s波段雷达的反射率与径向风,以及x波段雷达的反射率。通过不同时刻的s波段雷达反射率图,能够判别对流风暴的类型以及典型灾害性对流天气;由于分辨率较高,通过不同时刻的x波段雷达反射率图,能够有效判断出小尺度的天气系统,对于对流的发生、发展有重要意义;充分利用s波段雷达对中尺度天气系统的观测优势与x波段雷达对小尺度天气系统的观测优势,能够有效监测暴雨的发生与发展。通过不同时刻的径向风,能够有效获得当前的风场信息,同时可借助径向风信息分析大气的辐合、辐散、旋转等,以及定量估算气旋的散度和涡度等大气动力特征。不同天气形势下,s波段与x波段雷达扫描重叠区域的天气形势系数不同。天气形势越复杂,为突出x波段雷达精度高的特点,其对应的天气形势系数越大,而s波段雷达的天气形势系数越小;天气形势越趋于稳定,为突出s波段雷达对中尺度天气形势及其发展的判断优势,其对应的天气形势系数越大,而x波段雷达的天气形势系数越小。按照天气形势的复杂程度,将其分为四个类型:普通单体风暴、多单体风暴、飑线、超级单体风暴,而各类型的天气形势会随着时间的推移而互相转化,对应天气形势系数区间见下表:天气形式s波段系数x波段系数普通单体风暴1.20-1.350.70-0.80多单体风暴1.10-1.200.80-0.90飑线0.90-1.001.10-1.15超级单体风暴0.80-0.901.15-1.25进一步,步骤3中s波段与x波段雷达覆盖范围的重叠区域采取定权重的方法,即某一栅格的反射率由s波段和x波段雷达的观测数据共同决定,权重分别为α和β(α+β=1)。权重值受雷达站与观测位置间的距离、雷达覆盖范围内的平均地形坡度、空间分辨率、观测误差的影响,并综合考虑天气形势。某一栅格的反射率权重与距离成反比、与地形坡度成反比、与空间分辨率成正比、与观测误差成反比,为权重的静态判定;天气形势是不断变化的,因此该权重为动态判定。进一步,步骤3中相同波段雷达之间的重叠区域也采取定权重的方法,但权重值仅受雷达站与观测位置间的距离、雷达覆盖范围内的平均地形坡度的影响。某一栅格的反射率权重与距离成反比、与地形坡度成反比。进一步,步骤4中非重叠区域包括:(1)由于山丘区地物的遮挡,s波段雷达无法扫描的区域;(2)由于扫描半径小,x波段雷达无法覆盖的区域。对于非重叠区域(1),反射率数据完全由x波段雷达获取,对于非重叠区域(2),反射率数据完全由s波段雷达获取。该反射率均为步骤1中,已处理好的笛卡尔坐标系下的栅格数据。进一步,步骤5利用雷达反射率与雨强的关系式,进行雷达降雨反演,从而获得降雨数据。本发明复杂地形条件下s波段与x波段雷达组网测雨方法具有以下有益效果:(1)本发明能减少山丘区降雨观测盲区的范围,条件好的地区能够实现雷达的全覆盖,对于提升山丘区,特别是无资料山丘区的暴雨洪水监测、预警、预报能力有重要意义。(2)本发明能充分利用两种雷达的测雨优势,通过对不同雷达重叠区域和非重叠区域的反射率处理,一定程度上提高雷达组网测雨的精度。附图说明图1:本发明中s波段与x波段雷达组网测雨示意图。图2:本发明中垂向网格插值示意图。图3:本发明中径向网格插值示意图。图4:本发明中x波段雷达径向分辨率处理。1—地形遮挡;2—s波段雷达扫描盲区边界;3—s波段雷达位置;4—s波段雷达覆盖范围;5—x波段雷达覆盖范围;6—重叠区域;7—非重叠区域。具体实施方式本发明所采用的技术方案是对s波段、x波段反射率数据在空间上进行插补、融合,形成覆盖目标区域的完整的、高质量的反射率空间数据,并经过降雨量反演,获得覆盖目标区域的雨量观测结果。该方法将一定程度上弥补复杂地形条件下雨量观测条件差、降雨数据缺失等问题,减少或消除山丘区降雨观测盲区,提升复杂地形条件下的雷达测雨精度。步骤1、雷达反射率空间栅格化处理;步骤2、天气形势的判断;步骤3、复杂地形条件下重叠区域权重判定;步骤4、复杂地形条件下非重叠区域数据确定;步骤5、降雨量反演。按照以下步骤实施:(1)雷达反射率空间栅格化处理:设笛卡尔坐标系下网格单元的坐标为(αd,βd,hd),雷达站点所在位置的坐标为(αr,βr,hr),α为纬度,β为经度,h为海拔高度。在球坐标下,网格单元相对于雷达站点的位置为(r,p,γ),r为斜距,p为方位角,γ为仰角,根据几何学理论,可得出:sinp=cos(αd)sin(βd-βr)/sins/rs=rcos-1(sin(αr)sin(αd)+cos(αr)cos(αd)cos(βd-βr))式中,s为雷达站点距离任意网格单元的距离,r为地球实际半径。若b=sinp,则:γ可由下式计算:式中,rm为等效地球半径,斜距r可表示为:r=sin(s/rm)(rm+hd-hr)/cos(γ)。实现了栅格点的坐标转换后,进行垂直与水平线性插值相结合的方式进行栅格转换,如图2所示。γ位于相邻两个仰角γ1与γ2之间。因此栅格点(r,p,γ)处的值f可由(r,p,γ1)和(r,p,γ2)两点处的值f1和f2表示:f=af1+bf2式中,f1为(r,p,γ1)处的雷达反射率的值,f2为(r,p,γ2)处的雷达反射率的值,a和b分别为计算f值时f1与f2的权重系数。进一步进行径向插值,考虑到雷达发射的波束宽度,其插值情况见图3。两条虚线为波束半功率线,ri、ri-1、ri+1为相邻距离库,pi、pi-1、pi+1为相邻方位角,由半功率线和半距离库形成的梯形区域是ri的影响区域,因此,在径向和方位方向落在梯形区域的点都用(ri,pi)表示。其中,s波段雷达的径向分辨率为1km,x波段雷达的径向分辨率高于1km,因此,为了统一s波段和x波段雷达数据的径向分辨率,先将x波段雷达1km以内的反射率值,按照下式统一成相同的反射率值:n=[1/δ];式中,xi为x波段雷达在不同位置i处的反射率值,δ是x波段雷达的径向分辨率(单位为km),z1km为经过统一分辨率后的x波段雷达反射率。进一步,进行高斯平面坐标系与大地坐标系的转换,将经纬度坐标转换为水平尺度为1km×1km的栅格数据。(2)天气形势的判断:不同天气形势下,s波段与x波段雷达扫描重叠区域天气形势系数区间见下表:(3)复杂地形条件下重叠区域权重判定:权重判定包括两种情况,一是s波段与x波段雷达重叠区域的权重判定,二是相同波段雷达之间重叠区域的权重判定。一是s波段与x波段雷达重叠区域的权重α1和β1计算公式如下:其中,m1为s波段雷达特性综合系数,n1为x波段雷达特性综合系数,τ和τ′分别为s波段雷达和x波段雷达的天气形势系数,l和l′分别为s波段雷达和x波段雷达与栅格点的距离,δ和δ′分别为s波段雷达和x波段雷达的空间分辨率,θ和θ′分别为s波段雷达和x波段雷达覆盖范围的平均地形坡度,ε和ε′分别为s波段雷达和x波段雷达的一般观测误差;在计算m1、n1时,除天气形势系数不做归一化处理外,其余各项指标均需进行归一化处理,再计算m1、n1值;二是相同波段雷达之间重叠区域的权重α2和β2计算公式如下:其中,l1和l2分别为不同雷达与栅格点的距离,θ1和θ2分别为不同雷达覆盖范围的平均地形坡度;(4)复杂地形条件下非重叠区域数据确定:非重叠区域包括两种情况,一是由于山丘区地物的遮挡,s波段雷达无法扫描的区域,二是由于扫描半径小,x波段雷达无法覆盖的区域。对于s波段雷达无法覆盖的区域,反射率数据均由x波段雷达提供,对于x波段无法覆盖的区域,反射率数据均由s波段雷达提供。所采用的反射率数据为步骤1中已处理好的笛卡尔坐标系下的栅格数据。(5)降雨量反演:采用雷达反射率与雨强的关系式,进行雷达降雨反演,获得降雨数据,由于雷达反射率的分辨率为1km×1km,因此降雨数据也为1km×1km,计算公式如下:z=arb其中,a和b为参数,r为雨强,z为反射率。上面结合附图对本发明进行了的描述,显然本发明的实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1