一种基于差压的双喷嘴天然气流量测量装置和系统的制作方法

文档序号:22396440发布日期:2020-09-29 18:05阅读:127来源:国知局
一种基于差压的双喷嘴天然气流量测量装置和系统的制作方法

本发明涉及油气智能化计量技术领域,尤其涉及一种基于差压的双喷嘴天然气流量测量装置。



背景技术:

在油气的开采过程中,为了了解油气含量变化,需要对油井产出液中各组份的含率计流量进行连续地计量,以提供实时的计量数据。油气主要包括了常规天然气天井口产出气、煤层气、湿饱和蒸汽、页岩气、原油等。随着工业技术的发展,对油气不分离计量的要求越来越高。在气体或液体单独流动时,他们的流动规律基本相同,均满足质量守恒和能量守恒方程。但是当两者共同存在且流动时,由于两相流体的介质特性存在诸多差异,主要表现在流体密度、粘度和摩阻系数等物理参数,受到压力和流速等工况的影响,使得湿气气液两相流的流动更复杂。由于气液两相流固有的复杂性、多样性和测量手段的局限性,这类研究还处于发展阶段。

油气计量方法主要包括人工计量和在线计量。人工计量操作简单,但存在取样代表性差、连续性差和耗时等缺点。随着自动化技术的发展,诸多传感设备逐渐地应用于油气计量。油气都是腐蚀性介质。因此,在其服役过程中,受制于油气的腐蚀性,传感设备的精度会逐渐下降,适用性变差。因此,如何克服这一技术难题是当前油气计量急需解决的。

天然气流量测量技术发展至今,天然气流量计量装置都可以按计量功能结构,均可以划分为:流量传感器(或者节流装置)和流量转换装置,流量转换装置由差压、压力、温度各个变送器或传感器与流量计算机组成。

例如,公开号为cn110411521a的中国专利公开的一种基于双喷嘴的油井多相流分相含率在线计量方法。该方法包括:(1)采集两个喷嘴的瞬时差压值;(2)计算出压差信号波动的标准差;(3)将标准差进行无量纲处理;(4)拟合无量纲参数z1与含气率和雷诺数相关式;(5)拟合无量纲参数z2与含气率和弗劳德数的相关式;(6)联立关系式得到含气率与无量纲参数的关系式;(7)通过射频水仪获得含水率;(8)利用多相流分相模型进行总流量的计算。

该现有技术通过各种流体计算领域的相关知识、结合数学知识对多相流分相含率进行测量,以最终确定各成分的含量和流量。油气管道不管是输油还是输送天然气都是连续输送,而压差信号的采集却是瞬时的,计算机处理器设备对间断的数据进行处理后获取的各流量值具有随机性,目前的系统虽然能够获取到较为准确的分相瞬时流量,但是分相瞬时流量无法代表一段时间内输送多相流体的分相流量,这对于贸易计量是较为不公平的。



技术实现要素:

针对现有技术之不足:测量装置长期处于负载状态,并且受到腐蚀性介质的影响,其精度、灵敏度均会降低,对贸易计量十分不公平。而且,测量装置获得的流量只是瞬时的,其单个测量值仅能反应某一段管道内的流量,而由于沿程阻力等的影响,其并不能代表整条输送管道的流量,这也对贸易计量不公平。

为此,本发明提供一种基于差压的双喷嘴天然气流量测量装置,包括:依次连通于输送管道的第一喷嘴节流元件和第二喷嘴节流元件;用于测量待计量天然气经过所述第一喷嘴节流元件前后的第一差压值△p1的第一差压测量元件和用于测量所述待计量天然气经过所述第二喷嘴节流元件前后的第二差压值△p2的第二差压测量元件;和计量处理器,分别与所述第一差压测量元件和第二差压测量元件建立数据连接,用于基于所述第一差压值△p1和所述第二差压值△p2计算所述待计量天然气的分相含率和/或分相流量;所述计量处理器通信连接至云端服务器,以使得所述云端服务器能够获取不同地理位置的设置于同一输送管道的至少两个所述计量处理器的计量参数,从而所述云端服务器能够基于所述计量参数获取该输送管道的当量流量。云端服务器700可以配置不同的换算模型以应对不同服役年限的测量装置。天然气内含有腐蚀性物质,如二氧化硫、硫化氢等,会造成测量装置的腐蚀,而可能导致测量装置腐化。测量装置内的测量元件在腐蚀后,其灵敏度受到影响,造成其测量精度降低。第一种换算模型为:均值模型,即将不同地理位置的天然气流量值取平均值。这一种模型适用于刚服役的测量装置,其腐蚀程度还不足以影响测量精度,其实将各处的测量值取平均后,得到的当量流量与实验室获得的测量值接近。第二种模型为:拟合模型,即通过数学拟合法将同一时刻的不同位置的测量值与实验室测量值的关系进行拟合,得到其拟合模型。该拟合可以是基于神经网络获得的,也可以是最小二乘法拟合的。这种模型主要适用于已经服役了一段时间的测量装置,通过数学方法削弱腐蚀对测量精度降低的影响。这种拟合模型获得的当量流量与实验室获得的测量值的误差和均值模型获得的当量流量与实验室获得的测量值的误差是接近的,说明了云端服务器计算得到的当量流量具有较好的稳定性,其几乎不受腐蚀对测量装置精度的影响,这符合公平贸易的理念。

根据一种优选的实施方式,在所述计量处理器将其换算的分相流量与其采集时刻对应后间隔发送至所述云端服务器的情况下,所述云端服务器将基于至少两个不同地理位置的对应于同一采集时间的分相流量生成所述当量流量。

根据一种优选的实施方式,同一地理位置所述第一喷嘴节流元件和所述第二喷嘴节流元件组成组节流部件,不同地理位置的组节流部件之间按照能够削弱天然气流动中的沿程阻力的方式至少设置有增压部,而使得天然气在流动至不同地理位置的组节流部件是具有大致一致的输送压力。

根据一种优选的实施方式,所述第一喷嘴节流元件和所述第二喷嘴节流元件按照使得第一差压值△p1和第二差压值△p2具有差异性方式而设置开口直径。

根据一种优选的实施方式,所述第一差压测量元件的上游取压孔和第二差压测量元件的下游取压孔按照彼此之间的轴向距离不小于第一临界距离且不大于第二临界距离的方式串联连通至输送管道。

根据一种优选的实施方式,彼此相邻地理位置的所述组节流部件的空间距离大于所述第二临界距离。

根据一种优选的实施方式,本发明还提供一种基于双喷嘴三压差的天然气两相流测量系统,包括:用于测量待计量流体经过所述第一节流元件前后的第一差压值△p1的第一差压测量元件;用于测量所述待计量流体经过所述第二节流元件前后的第二差压值△p2的第二差压测量元件;和计量处理器,分别与所述第一差压测量元件和第二差压测量元件建立数据连接,用于基于所述第一差压值△p1和所述第二差压值△p2计算所述待计量流体的分相含率和/或分相流量;

根据一种优选的实施方式,所述第一差压测量元件的取压孔和第二差压测量元件的取压孔按照彼此之间的轴向距离不小于第一临界距离且不大于第二临界距离的方式串联连通至输送管道;其中,所述计量处理器配置于不同地理位置的同一输送管道,用于获取不同位置处的计量参数。

根据一种优选的实施方式,所述计量处理器通信连接至云端服务器,以使得所述云端服务器能够获取不同地理位置的设置于同一输送管道的计量处理器的计量参数,从而所述云端服务器能够基于所述计量参数获取该输送管道的当量流量。

根据一种优选的实施方式,在所述计量处理器将其换算的分相流量与其采集时刻对应后间隔发送至所述云端服务器的情况下,所述云端服务器将基于至少两个不同地理位置的对应于同一采集时间的分相流量生成所述当量流量。

根据一种优选的实施方式,同一地理位置所述第一喷嘴节流元件和所述第二喷嘴节流元件组成组节流部件,不同地理位置的组节流部件之间按照能够削弱天然气流动中的沿程阻力的方式至少设置有增压部,而使得天然气在流动至不同地理位置的组节流部件是具有大致一致的输送压力。

附图说明

图1是本发明提供的一种的基于差压的双喷嘴天然气流量测量装置示意图;和

图2是本发明提供的一种单部位的测量示意图。

附图标记列表

100:第一喷嘴节流元件500:计量处理器

200:第二喷嘴节流元件600:输送管道

300:第一差压测量元件700:云端服务器

400:第二差压测量元件

具体实施方式

下面结合附图1和2进行详细说明。

实施例1

本实施例公开了一种基于差压的双喷嘴天然气流量测量装置。如图1所示,该测量装置包括第一喷嘴节流元件100、第二喷嘴节流元件200、第一差压测量元件300、第二差压测量元件400和数据处理器500。第一喷嘴节流元件100和第二喷嘴节流元件200分别依次与输送管道600连通。

第一喷嘴节流元件100的前后分别设置有取压孔,用于第一差压测量元件300测量待计量天然气经过第一喷嘴节流元件100前后的第一差压值△p1。同时,第二喷嘴节流元件200的前后同样分别设置有取压孔,用于第二差压测量元件400测量待计量天然气经过第二喷嘴节流元件200前后的第二差压值△p2。

计量处理器500,分别与第一差压测量元件300和第二差压测量元件400建立数据连接。第一差压测量元件300和第二差压测量元件400分别与计量处理器500采用enocean模块、nb-lot模块或者数据线等实现数据连接。优选地,本实施例中第一差压测量元件300和第二差压测量元件400可以采用enocean模块。enocean模块enocean能量采集模块能够采集周围环境产生的能量,比如机械能,室内的光能,温度差的能量等。这些能量经过处理以后,用来供给enocean超低功耗的无线通讯模块,实现真正的无数据线,无电源线,无电池的通讯系统,而适应长输油气管道的野外输送环境,以防止现有的通讯模块因在野外无电时无法实现计量。计量处理器500能够第一差压值△p1和第二差压值△p2计算待计量天然气的分相含率和/或分相流量。

计量处理器500通信连接至云端服务器700。计量处理器500与云端服务器700可以通过埋地光纤、第四代移动通信技术、第五代移动通信技术等进行数据传送。计量处理器500是沿输送管道600布置的,因此,同一输送管道600上至少设置有连个位于不同地理位置的计量处理器500。而云端服务器700是将输送管道600上的计量处理器500进行组网,以该输送管道600的流量、压力进行换算测量。具体地,不同地理位置的计量处理器500将其获取的计量参数发送至云端服务器700。云端服务器700能够基于计量参数获取该输送管道600的当量流量。

例如,在某一时刻,a地的计量处理器500计算得到的天然气流量值为q1;在同一时刻,b地的计量处理器500计算得到的天然气流量值为q2。此时,云端服务器700将q1和q2换算为当量在这一时刻的当量流量qc。

喷嘴节流元件由于其安装方便、测量精度高、流线较为合理等优势广泛地应用于石油领域的计量。但是由于油气本身具有高腐蚀性,且节流测量会增加节流元件的瞬时压力,因此喷嘴节流元件长期在高腐蚀高压环境下进行工作,造成其节流面出现冲蚀痕迹。而且一旦其安装后,其服役年限需要与输送管道600大致相当,尽量不更换,避免因为其更换造成停输事件。而且,测量装置内的测量元件在腐蚀后,其灵敏度受到影响,造成其测量精度降低。云端服务器700可以配置不同的换算模型以应对不同服役年限的测量装置。天然气内含有腐蚀性物质,如二氧化硫、硫化氢等,会造成测量装置的腐蚀,而可能导致测量装置腐化。第一种换算模型为:均值模型,即将不同地理位置的天然气流量值取平均值。这一种模型适用于刚服役的测量装置,其腐蚀程度还不足以影响测量精度,其实将各处的测量值取平均后,得到的当量流量与实验室获得的测量值接近。第二种模型为:拟合模型,即通过数学拟合法将同一时刻的不同位置的测量值与实验室测量值的关系进行拟合,得到其拟合模型s(q1、q2……qn)。该拟合可以是基于神经网络获得的,也可以是最小二乘法拟合的。这种模型主要适用于已经服役了一段时间的测量装置,通过数学方法削弱腐蚀对测量精度降低的影响。这种拟合模型获得的当量流量与实验室获得的测量值的误差和均值模型获得的当量流量与实验室获得的测量值的误差是接近的,说明了云端服务器700计算得到的当量流量具有较好的稳定性,其几乎不受腐蚀对测量装置精度的影响,这符合公平贸易的理念。

此外,本发明还具有如下优势:由于在输送管道上间隔设置有不同的测量装置,当某一测量装置的测量的流量值长期出现偏差或者短期内出现剧烈偏差时。第一种长期偏差可以提示作业人员测量装置附近的管道可能出现了泄漏等情况,便于作业人员及时进行检查,防止天然气管道进一步出现大规模泄漏和爆炸,进而污染环境等情况的发生。第二种剧烈偏差,则可以提示作业人员测量装置附近可能出现了盗气的情况发生,防止国家财产损失。本发明提供的技术方案在保证贸易长时间相对公平的情况下还具有云监控的功能,能够辅助无人机、在线检查对重点管段的监测,有利于降低国家财产损失、及时杜绝环境污染的发生。

优选地,鉴于计量处理器500属于野外服务器,其与云端服务器700的通信成本较高,为了降低其通信开销,计量处理器500与云端服务器700采用间隔式通信。间隔时长根据输送管道的距离、重要程度等由作业人员设定。计量处理器500将其换算的分相流量及其采集时刻对应后按照数据包的形式缓存于其内的存储器,而后按照设定间隔时长发送至云端服务器700。云端服务器700在收到计量处理器500发送数据包后,将至少两个不同地理位置的对应于同一采集时间的分相流量生成当量流量。此外,计量处理器500还设置有突发模式,以应对其测量的流量不在其安全模式对应的流量阈值内,在其触发突发模式时,计量处理器500向云端服务器700发送紧急信号,以提示作业人员派出无人机等设备进行检查,或者云端服务器700启动无人机等设备前往计量处理器500的附件管道进行监控。

优选地,同一地理位置第一喷嘴节流元件100和第二喷嘴节流元件200组成组节流部件。不同地理位置的组节流部件之间设置有增压部,该增压部能够削弱天然气流动中的沿程阻力,而使得天然气在流动至不同地理位置的组节流部件是具有大致一致的输送压力,从而保证各个组节流部件之间的流量值差异不大。通过这种方式,一方面至保证输送管道内的输送压力是足够的,而另一方面则至为了降低沿程阻力对流量计量的影响。

优选地,第一喷嘴节流元件100和第二喷嘴节流元件200按照使得第一差压值△p1和第二差压值△p2具有差异性方式而设置开口直径。比如,位于上游的第一喷嘴节流元件100的节流开口直径为d1,位于下游的第二喷嘴节流元件200的节流开口直径为d2。当d1和d2不一致时,基于流动定律,第一差压值△p1和第二差压值△p2具有差异,流体产生较强扰动,气相、液相和固相的流速出现差异出现分离,有利于各相含量的计量。优选地,第一喷嘴节流元件100和第二喷嘴节流元件200分别与其输送管道的轴线同轴,以避免流体产生旋涡。并且,第一喷嘴节流元件100和第二喷嘴节流元件200的节流口均是流线型设计,也是为了避免流体产生旋涡,旋涡一方面浪费了输送压力,另一方面使得测量元件的测量信号具有较大的噪声。

优选地,优选地,第一差压测量元件300的上游取压孔和第二差压测量元件400的下游取压孔按照彼此之间的轴向距离不小于第一临界距离且不大于第二临界距离的方式串联连通至输送管道600。不小于第一临界距离是为了使得输送管道内的流体能够产生足够的扰动,而不大于第二临界距离另一方面则是为了避免输送管道600内的其输送流体的扰动产生共振而造成破坏。如图1所示,第一差压测量元件300的下游取压孔和第二差压测量元件400的上游取压孔可以是同一取压孔,以减少对输送管道600的开口数量,因为,此部分的管段内的流态十分紊乱,避免输送管道由于流体对管道造成破坏。

优选地,彼此相邻地理位置的组节流部件的空间距离大于第二临界距离。一般情况下,组节流部件的空间距离一般在10km以上,优选在50km以上;而第二临界距离一般小于5m。

实施例2

本实施例公开了一种基于压差的流量计量方法,其可以针对油气水三相进行计量。在不造成冲突或者矛盾的情况下,其他实施例的优选实施方式的整体和/或部分内容可以作为本实施例的补充。

计算处理器500可以按照优选的流量计量方法进天然气各成分流速、含率进行计算。其具体计算方法可以配置为:

(1)采集获取两个串联连通的喷嘴的差压值△p1和△p2。其中:△p1为待计量流体为第一喷嘴节流元件100的差压值。△p2为待计量流体为第二喷嘴节流元件200的差压值。

(2)计算第一喷嘴节流元件100的差压值△p1的标准差δp1以及计算第二喷嘴节流元件100的差压值△p2的标准差δp2。

其中,n为差压瞬时值采样个数;

δpt1为第一喷嘴节流元件100的差压一的时均值,δpi1为差压一瞬时差压值;

δpt2为第二喷嘴节流元件100的差压二的时均值,δpi2为差压二瞬时差压值;

(3)将标准差进行无量纲处理,即定义无量纲参数z1和z2。

z1=δp1/△p1……(1.3)

z2=δp2/△p2……(1.4)

(4)将无量纲参数z1与含气率和雷诺数相关联,优选地,可以按照如下方式关联:

z1=aμa1(re/104)b1……(1.5)

式中,μ为气相体积含率;re为雷诺数。

(5)将无量纲参数z1与含气率和弗劳德数相关,优选地,可以按照如下方式关联:

z2=bμa2fr1b2……(1.6)

式中,fr1可以按照如下方式计算:

其中,其中,ρl液相密度,ql为液相流量,d2为第二喷嘴节流件200的内径,ρg为气相密度,g为重力速度。

以上参数,a、b、a1、b1、a2、b2均可以通过实验数据进行回归分析确定。

(7)通过式(1.5)和(1.7)可以得出含气率:

(8)通过射频含水仪测量得到含水率w;

(9)利用多相流分相模型进行总流量的计算。例如,可以利用bizon模型:

式(1.9)中:

q为待计量流体的质量流量,kg/s;

c为流出系数,无量纲;ε为被测介质的可膨胀性系数,对于液体ε等于1,对气体、蒸汽、溶解油等可压缩流体ε小于1,无量纲;

a为过流面积,由d可得到;

d为工作状况下节流件的等效开孔直径,单位m;

δp为节流差压,单位pa;

β为直径比,无量纲,β=d/d,d为管线直径,单位m;

ρl为工作状况下,节流前上游处液体的密度,单位kg/m3;

ρg为工作状况下,节流前上游处气体的密度,单位kg/m3;

x为质量含气率,a,b通过实验数据拟合出来的结果:

(10)油气水流量分别为:

q1=qa*x……(1.11)

qo=qa*(1-x)*(1-w)……(1.12)

qw=qa*(1-x)*w)……(1.13)

式(1.11)、(1.12)和(1.13)中:

其中,q为总质量流量,x为质量含气率,ql为液相流量,qo为油相流量,w为含水率,qw为水相流量。

本发明提供的油井多相流分相含率在线计量方法,通过在设备管道中并列安装两个喷嘴,分别利用两个差压计来测量流体流过两个不同节流比的喷嘴时产生的压差△p1,△p2,再计算两个喷嘴节流件产生压差的标准差δp1、δp2,进一步将标准差进行无量纲处理,然后分别拟合其与含气率、雷诺数的相关式,拟合其与含气率、弗劳德数的相关式,联立得到含气率与无量纲参数的关系式,通过射频含水仪测得含水率w,接着利用多相流分相模型进行总流量的计算;该计量方法,在数学模型中加入了雷诺数与弗劳德数,充分的考虑了流动的影响,确保了计量精度。

实施例3

本实施例可以是对实施例1、2或者其结合的进一步改进和/或补充,重复的内容不再赘述。本实施例公开了,在不造成冲突或者矛盾的情况下,其他实施例的优选实施方式的整体和/或部分内容可以作为本实施例的补充。

本实施例公开一种基于双喷嘴三压差的天然气两相流测量系统,包括第一差压测量元件300、第二差压测量元件400和计量处理器500。第一差压测量元件300用于测量待计量流体经过第一节流元件前后的第一差压值△p1。第二差压测量元件400用于测量待计量流体经过第二节流元件前后的第二差压值△p2。计量处理器500,分别与第一差压测量元件300和第二差压测量元件400建立数据连接,用于基于第一差压值△p1和第二差压值△p2计算待计量流体的分相含率和/或分相流量。

第一差压测量元件300的上游取压孔和第二差压测量元件400的下游取压孔按照彼此之间的轴向距离不小于第一临界距离且不大于第二临界距离的方式串联连通至输送管道600。其中,计量处理器500配置于不同地理位置的同一输送管道600,用于获取不同位置处的计量参数。

优选地,计量处理器500通信连接至云端服务器700。计量处理器500与云端服务器700可以通过埋地光纤、第四代移动通信技术、第五代移动通信技术等进行数据传送。云端服务器700能够获取不同地理位置的设置于同一输送管道600的计量处理器500的计量参数,从而云端服务器700能够基于计量参数获取该输送管道600的当量流量。优选地,在计量处理器500将其换算的分相流量与其采集时刻对应后间隔发送至云端服务器700的情况下,云端服务器700将基于至少两个不同地理位置的对应于同一采集时间的分相流量生成当量流量。

优选地,同一地理位置第一喷嘴节流元件100和第二喷嘴节流元件200组成组节流部件,不同地理位置的组节流部件之间按照能够削弱天然气流动中的沿程阻力的方式至少设置有增压部,而使得天然气在流动至不同地理位置的组节流部件是具有大致一致的输送压力。

需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1