嘴动式口腔检测机构及相应的智能口腔检测仪的制作方法

文档序号:22944385发布日期:2020-11-19 19:26阅读:125来源:国知局
嘴动式口腔检测机构及相应的智能口腔检测仪的制作方法

本实用新型涉及医疗仪器领域,尤其涉及医疗检测仪及微流控芯片制造技术领域,具体是指一种嘴动式口腔检测机构及相应的智能口腔检测仪。



背景技术:

人体中的外泌体中,唾液最易得,经过研究,人体口气与唾液中的很多指标都与身体健康正相关,能反映出机体发生的癌症、感染、系统性疾病等。

但现有技术中对于唾液及口气采样的装置存在一些缺陷,具体问题如下:

采用现有技术中的检测设备进行检测,存在收集不便、过程麻烦,检测结果缺乏比对样品;口气样品的收集装置存在体积大、样品保存困难、后续样品处理过程复杂等缺点;外泌体检测,很少具有检测装置可同步实现样品的收集、检测、上传一体化的功能;且制备步骤繁琐、技术复杂、价格昂贵、难于推广,其研究成果产业化困难。

现有技术中的微流控芯片通常包括主动式芯片与被动式芯片两种,其中:

主动式芯片通常必须使用微电机、或微泵等动力为液体流动提供驱动源;该主动式芯片(通过仪器驱动)借助仪器内部精密控制芯片内反应腔结合阀门装置,控制液体反应的位置,实时监测液体在芯片内流动状况,定量控制反应样本体积,使样本定量参与免疫反应,真正达到流量的精确可控;

而被动式芯片(通过毛细管自驱动)不借助外力,严格意义上叫微流体并非微流控,并无液体流动的控制。

综上所述,主动式芯片需要配合外部仪器一起使用,设备成本较高,而被动式芯片存在一定地不可控性。

现有技术中的微流控芯片纸质微流控芯片存在着样液迁移速度慢及加工工艺复杂的不足的问题,其主要采用陶瓷、硅片、玻璃、pet及亚克力等材料构成;该微流控芯片结构复杂(无法对反应做出精准调控);加工过程采用超声波+激光完成,手工步骤多、设备要求高;封装采用超声波及eva胶进行封装,手工组装步骤多;不仅如此,由于繁复的加工过程,导致批内和批间精密度差别大、灵敏度较低;由于其一般是需要重复使用,故需要清洗,清洗步骤及液体传导此致较大污染;多个液体腔室和固相载体,整体设计复杂;反应不充分、重复性受限、准确性不佳;使用过程中,需要通过微电机、微泵、仪器等设备为其提供动力,一般需要实验室定制,产量非常低,故成本较高,价位一般在:200元/片≤微流控芯片≤1200元/片。

以上问题既影响了微流控芯片这类创新产品的应用,也影响了相关产品的推广。因此,亟需开发一种新型生物样品采集的微流控芯片。



技术实现要素:

本实用新型的目的是克服至少一个上述现有技术的缺点,提供了一种性能好、成本低、易于操作的嘴动式口腔检测机构及相应的智能口腔检测仪。

为了实现上述目的或其他目的,本实用新型的嘴动式口腔检测机构及相应的智能口腔检测仪如下:

该嘴动式口腔检测机构,其主要特点是,所述的机构包括中空的吹管及检测芯片;

所述的吹管的管壁上设有尺寸与所述的检测芯片尺寸相匹配的第一开口,且所述的吹管上设有一通孔;

所述的检测芯片包括依次设置的进样孔、进样通道、检测池及反应模块;

所述的检测芯片中设有所述的进样孔的一端插入所述的吹管的第一开口,且所述的进样孔朝向所述的通孔。

较佳地,所述的检测芯片与所述的吹管的管壁垂直,所述的吹管中与所述的第一开口相邻位置的内壁面的水平高度最低。

较佳地,所述的检测芯片的外表面设有限位结构,对所述的检测芯片插入所述的吹管的第一开口的长度进行限位。

较佳地,所述的检测芯片上设有排气孔,用于将所述的检测池中的气体排出。

较佳地,当所述的检测芯片为用于检测唾液的芯片时,所述的检测芯片包括盖板、滤膜、基板及底板;

所述的基板上开有预设长度的通道构成所述的进样通道,所述的通道的两端分别设有两个开孔,两个所述的开孔分别构成所述的进样孔及检测池;

所述的底板设于所述的基板的一面,所述的反应模块设于所述的底板与所述的基板间,并与所述的检测池接触;

所述的滤膜覆盖于所述的基板的另一面,所述的盖板设于所述的滤膜中不与所述的基板接触的一面,且所述的盖板不覆盖所述的进样孔。

更佳地,所述的盖板、滤膜、基板及底板之间通过热熔胶黏合。

较佳地,当所述的检测芯片为用于同时检测唾液及口气的双功能型芯片时,所述的反应模块包括液体反应模块及气体反应模块;

所述的检测芯片包括上盖板、上基板、中隔板、下基板及下盖板;

所述的上盖板上开有预设长度的通道构成所述的进样通道,所述的通道的一端开设第一开孔,构成所述的进样孔,所述的上盖板设于所述的上基板的一面,且所述的上盖板不覆盖所述的进样孔;

所述的中隔板设于所述的上基板中不与所述的上盖板接触的一面上,所述的气体反应模块设于所述的中隔板与所述的上基板之间,并与所述的进样通道相连接;

所述的下基板上设有第二开孔,构成检测池,所述的下基板与所述的中隔板中不与所述的上基板接触的一面贴合;

所述的液体反应模块与所述的下基板中不与所述的中隔板接触的一面贴合;

所述的下盖板与所述的液体反应模块中不与所述的下基板接触的一面贴合,且所述的下盖板不覆盖所述的检测池。

更佳地,所述的上盖板、上基板、中隔板、下基板及下盖板之间通过热熔胶黏合。

较佳地,所述的反应模块由反应试剂和/或电极片构成;

当所述的反应模块由所述的反应试剂构成时,所述的检测芯片上设有色板,且所述的检测芯片上设有显示窗口,可通过所述的显示窗口从所述的检测芯片外部看见所述的反应试剂的颜色变化;

当所述的反应模块由所述的电极片构成时,所述的电极片与对应的检测电路相连接。

较佳地,所述的吹管上还设有至少一个预留出气孔。

一种嘴动式口腔检测机构,其主要特点是,所述的机构包括中空的吹管及检测芯片;

所述的吹管的管壁上设有第一开口,且所述的吹管上设有通孔;

所述的检测芯片为多检测指标式芯片,所述的检测芯片包括进样孔、检测壳体、进样通道、以及至少二个检测池;

所述的检测壳体包括底盘、盖盘及导液结构插片,所述的底盘与盖盘闭合后形成第一容腔,所述的导液结构插片设于所述的检测壳体的壁面位置,所述的进样孔设于所述的导液结构插片上,所述的导液结构插片插入所述的第一开口,且所述的第一开口的尺寸与所述的导液结构插片的尺寸相匹配,并且所述的进样孔朝向所述的通孔;

各个检测池相互隔离,并设于所述的第一容腔内,且各个所述的检测池中均设有对应的反应模块;

所述的进样孔通过所述的进样通道与各个所述的检测池相连接。

较佳地,所述的吹管还包括第一通气孔,所述的检测壳体上设有第二通气孔,所述的第一通气孔与所述的第二通气孔连通;

所述的检测芯片还包括中心带轴孔的基盘,所述的基盘上设有数对呈中心对称的抛物线流道,且所述的基盘中近所述的轴孔的位置设有储液池,所述的进样孔与所述的储液池相连接,所述的检测池设于所述的基盘中远离所述的轴孔的位置;

所述的基盘上还设有与所述的检测池数量匹配的流道,所述的储液池依次通过各个所述的流道、进样通道与对应的所述的检测池相连接;

所述的第一容腔为圆环形容腔,所述的基盘通过所述的轴孔套设于所述的底盘上的芯轴上,所述的基盘上还设有数片叶片。

更佳地,所述的储液池设于所述的检测壳体中的第二容腔中,所述的第二容腔中设有进液孔,所述的检测壳体中还设有一进液通道,所述的进液通道的一端与所述的进样孔相连接,所述的进液通道的另一端朝向所述的第二容腔中的进液孔。

进一步地,所述的检测壳体外侧与所述的导液结构插片相对的位置设有导电插片;

所述的基盘中的数片叶片中有一片叶片为金属叶片,所述的检测壳体中还设有一金属片,所述的导电插片与所述的金属片连接,所述的金属片通电后具备磁性吸引所述的金属叶片。

一种智能口腔检测仪,其主要特点是,所述的检测仪包括主体、芯片插座、单向出气阀、人机交互模块、主控模块、电源模块以及所述的嘴动式口腔检测机构;

所述的芯片插座、单向出气阀、主控模块以及电源模块均设于所述的主体上,所述的嘴动式口腔检测机构可拆卸地设于所述的主体上;

其中,所述的主体为外凸内凹弧形,且所述的主体上设有佩带;

所述的嘴动式口腔检测机构的吹管设于所述的主体的内侧,所述的嘴动式口腔检测机构中的检测芯片中不与所述的第一开口接触的一端插入所述的芯片插座;

所述的电源模块分别与所述的主控模块、人机交互模块及芯片插座相连接;

所述的人机交互模块、芯片插座均与所述的主控模块相连接。

较佳地,所述的检测仪还包括:

人体机能信号采集模块,与所述的主控模块相连接;

信号传输模块,与所述的主控模块相连接,且所述的信号传输模块还与外部移动终端和/或云端服务器相连接。

更佳地,所述的人体机能信号采集模块包括mems检测单元、心率血压检测单元及口气传感器检测单元,所述的mems检测单元、心率血压检测单元及口气传感器检测单元分别与所述的主控模块相连接。

较佳地,所述的人机交互模块设于所述的主体的外侧,所述的人机交互模块包括:

信息提示单元及控制单元,所述的信息提示单元及控制单元分别与所述的主控模块相连接。

较佳地,所述的检测仪中还设有盒体,所述的盒体设于所述的主体的内侧,且所述的盒体为可开合结构;所述的芯片插座及嘴动式口腔检测机构设于所述的盒体中,所述的盒体设有第三开口,所述的吹管穿过所述的第三开口,所述的单向出气阀设于所述的盒体内。

较佳地,所述的主体由柔性材料构成,且所述的主体上设有透气网格,所述透气网格处于吸气的位置还设有滤材。

本实用新型的嘴动式口腔检测机构,包括中空的吹管及检测芯片,所述的吹管的管壁上设有尺寸与所述的检测芯片尺寸相匹配的第一开口;所述的检测芯片包括依次设置的进样孔、进样通道、检测池及反应模块;所述的检测芯片中设有所述的进样孔的一端插入所述的吹管的第一开口,当采用包括该嘴动式口腔检测机构的智能口腔检测仪进行测试时,采用人体自身的动力——吹力,即可将唾液吹至检测池,便于检测仪对唾液和/或口气进行检测,进一步减少了设备成。采用包括该嘴动式口腔检测机构的智能口腔检测仪,结构紧凑,美观易用,可检测用户口腔中的信息来检测出多种早期慢性疾病,及时储存及上传用户的健康数据,是一种便携方便、无创快速、灵敏准确、可穿戴式口腔检测仪,具有较大的社会意义、推广价值、很好的市场应用前景。

附图说明

图1为一实施例中的本实用新型的嘴动式口腔检测机构的结构示意图。

图2-1为一实施例中的本实用新型的嘴动式口腔检测机构中的吹管的主视图。

图2-2为图2-1中的吹管的俯视图。

图2-3为图2-1中的吹管的右视图。

图3-1为另一实施例中的本实用新型的嘴动式口腔检测机构中的吹管的主视图。

图3-2为图3-1中的吹管的俯视图。

图3-3为图3-1中的吹管的右视图。

图4为一实施例中的本实用新型的嘴动式口腔检测机构中的检测芯片的结构示意图。

图5为另一实施例中的本实用新型的嘴动式口腔检测机构中的检测芯片的结构示意图。

图6为一实施例中批量加工本实用新型中检测芯片的示意图。

图7-1为第三实施例中的本实用新型的嘴动式口腔检测机构中的检测芯片的结构示意图。

图7-2为第三实施例中的本实用新型的嘴动式口腔检测机构的结构示意图。

图8-1为一实施例中本实用新型的智能口腔检测仪的结构示意图。

图8-2为图8-1中的智能口腔检测仪的左视图。

图8-3为图8-1中的智能口腔检测仪中的盒体的结构示意图。

图8-4为图8-3中的智能口腔检测仪中的盒体的左示意图。

图9为一实施例中本实用新型的智能口腔检测仪的电路模块示意图。

图10为一实施例中本实用新型的智能口腔检测仪的工作流程图。

图11为一实施例中本实用新型的智能口腔检测仪的检测流程的工作流程图。

图12为一实施例中信号传输模块与外部设备进行通讯的流程示意图。

附图标记

1-吹管;11-管身;12-吹口;13-第一开口;14-第二开口;15-第三开口;2-检测芯片;211-进样孔;212-进样通道;213-检测池;2141-电极片;215-排气孔;22-盖板;23-滤膜;24-基板;25-底板;31-上盖板;32-上基板;33-中隔板;34-下基板;35-下盖板;36-酶板;37-色板;4-智能口腔检测仪;41-滤材;42-主控模块;43-信息提示单元;44-盒盖;451-中间盒体;452-两侧盒体;46-单向出气阀;47-心率血压检测单元;481-两侧芯片插座;482-中间芯片插座;49-佩带;50-底盘;51-盖盘;52-导液结构插片;531-第一通气孔;532-第二通气孔;533-通气管;54-芯轴;55-流道;56-叶片;561-金属叶片;57-基盘;58-导电插片;59-进液通道;60-进液孔;

具体实施方式

为了能够更清楚地描述本实用新型的技术内容,下面结合具体实施例来进行进一步的描述。

本实用新型针对现有技术中的不足,提供了一种成本低、性能好、便于生产及使用的嘴动式口腔检测机构及相应的智能口腔检测仪4。

该嘴动式口腔检测机构,通过将检测芯片2插入吹管1的管壁上设有的第一开口13中,通过其结构特点,可在过程中通过人体口腔动力(即吹气)就可进行唾液及口气的收集,无需额外的驱动设备配合使用,有效降低设备成本。同时考虑到卫生及检测的准确度,所述的检测芯片2及吹管1皆为一次性使用产品,用后即弃或燃烧安全处理。

可将第一开口13设计为一条垂直弹性缝隙、在芯片上设计限位突出物,使得二者可以很好地连接固定。

在一实施例中,所述的检测芯片2为扁平状的结构,第一开口13为一个尺寸与检测芯片2对应的缝隙,二者之间可采用过盈配合,这样使得检测芯片2可以与吹管1紧密结合,其与吹管1的放置结构可参阅图1所示,在该实施例中吹管1包括管身11及吹口12二部分组成,在其他实施例中,吹管1也可以为一体式的结构。所述的检测芯片2的外表面设有限位结构,使得芯片插入吹管1的长度正好合适,该检测芯片2的块状物体为芯片插座,可通过芯片插座对检测芯片2的位置进行限位,避免检测芯片2从吹管1上脱落,实现检测芯片2插入吹管1时的对接缝隙连接固定。

如图2-1至图2-3所示,所述的检测芯片2与所述的吹管1的管壁垂直,所述的吹管1中与第一开口13相邻位置的内壁面的水平高度最低,这样可以使得唾液可以更方便地流入检测芯片2中。

如图3-1至图3-3所示,所述的吹管1的管壁上还设有二个预留出气孔,分别为第二开口14及第三开口15,吹入吹管1的气体可通过这二个出气孔传输到其他与该吹管1连接的传感器上,便于同一时刻进行更多项目的检测。

在一实施例中,该嘴动式口腔检测机构,包括中空的吹管1及检测芯片2,该检测芯片2为一种微流控芯片;

所述的吹管1的管壁上设有尺寸与所述的检测芯片2尺寸相匹配的第一开口13,且所述的吹管1上设有一通孔;

所述的检测芯片2包括依次设置的进样孔211、进样通道212、检测池213及反应模块;

所述的检测芯片2中设有所述的进样孔211的一端插入所述的吹管1的第一开口13,且所述的进样孔211朝向所述的通孔。

在该实施例中,所述的检测芯片2与所述的吹管1的管壁垂直,所述的吹管1中与所述的第一开口13相邻位置的内壁面的水平高度最低。

在该实施例中,所述的检测芯片2的外表面设有限位结构,对所述的检测芯片2插入所述的吹管1的第一开口13的长度进行限位。

在该实施例中,所述的检测芯片2上设有排气孔215,用于将所述的检测池213中的气体排出。

在该实施例中,所述的反应模块由反应试剂和/或电极片2141构成;

当所述的反应模块由所述的反应试剂构成时,所述的检测芯片2上设有色板37(色板即为颜色对应板,使用者可以将反应试剂变化后的颜色与色板上的颜色进行对应,以判断检测结果),且所述的检测芯片2上设有显示窗口,可通过所述的显示窗口从所述的检测芯片2外部看见所述的反应试剂的颜色变化,即可采用透明材料构成与反应模块相邻的板材,也可以在板材上设有开口,使人可以通过开口看到反应模块的颜色变化;当所述的反应模块由所述的电极片2141构成时,所述的电极片2141与对应的检测电路相连接。

在该实施例中,所述的吹管1的管壁上还设有至少一个预留出气孔。

在该实施例中,当所述的检测芯片2为用于检测唾液的芯片时,所述的检测芯片2包括盖板22、滤膜23、基板24及底板25;所述的基板24上开有预设长度的通道构成所述的进样通道212,所述的通道的两端分别设有两个开孔,两个所述的开孔分别构成所述的进样孔211及检测池213;所述的底板25设于所述的基板24的一面,所述的反应模块设于所述的底板25与所述的基板24间,并与所述的检测池213接触;所述的滤膜23覆盖于所述的基板24的另一面,所述的盖板22设于所述的滤膜23中不与所述的基板24接触的一面,且所述的盖板22不覆盖所述的进样孔211。

在该实施例中,所述的盖板22、滤膜23、基板24及底板25之间通过热熔胶黏合。

如图4所示,在该实施例中,所述的检测芯片2由盖板22、滤膜23、基板24、电极片2141及底板25所组成并依次叠放黏贴在一起,该检测芯片2为纸制微流控芯片;其通道结构呈薄带型,所述的薄带型通道结构由进样孔211、进样通道212和检测池213相互连通而成。该实施例中所述的纸质微流控芯片中仅带有一个检测池213,该检测池213与一反应模块连接。如图所示,该检测芯片2为垂直通道芯片,其仅仅实现对液体(即唾液)进行检测,所述的检测芯片2中各层片状材料依次叠放,通过热熔胶黏结贴合构成检测芯片2。

该检测芯片2为扁平状的结构,且该检测芯片2包括了进样孔211、进样通道212、检测池213、电极片2141及排气孔215,在其芯片长度方向的垂直面上设置有扁平状的进样孔211、其端面的二侧边缘设置有限位用外突物;被测样品由进样孔211进入进样通道212最后流入带有排气孔215的检测池213进行检测。

为了使得本领域技术人员可以更好得对单单用于检测唾液的检测芯片2进行理解,下列以采用上述实施例中的检测芯片2进行血糖测验对其结构、制造过程及检测的原理进行说明:

由于该检测芯片2为一种扁平状的芯片,因此在制造过程中可不用一片片进行生产,而可采用以下材料进行生产:

1、采用四种对应的卷材:基板24(pet);滤膜23(超滤膜);盖板22(铜版纸);底板25(胶版纸);2、在底板上印制电极:(1)作电极:ni掺杂fes2粉末修饰电极;(2)对电极:pt丝电极;(3)参比电极:银/氯化银电极;3、该检测芯片2的尺寸设计为:长:35mm;宽:15mm;厚:0.7mm;限位尺寸:3mm等腰三角形(其他实施例中也可根据实际需要,采用其他尺寸);4、具体制造流程如下:

首先在30mm的长度基板上,采用滚切刀具沿水平中心线切割出一条长15mm、宽2mm的唾液通道(即进样通道212)。再以该进样通道212的两端点各自为圆心,分别滚切出φ5mm的进液孔(即进样孔211)、和φ5mm的检测池213;

其次在基板第一表面涂布热熔胶后复合粘贴到滤膜的表面。然后在盖板22表面涂布热熔胶后按20mm长度切断后、在进样孔211处预留10mm空位后复合黏贴到滤膜第二表面上。接下来采用滚针在该复合薄膜上、在检测池213临近唾液通道处的两旁分别加工出二个φ1mm的排气孔215(如图4所示,该芯片在基板、滤膜及盖板22上共设有3个排气口);

此后在基板第二表面涂布热熔胶后在底板电极处预留10mm空位后复合粘贴。最后采用滚刀刀模从芯片进液端的两侧面10mm处滚切出两个小三角的限位突出物,并按每片40mm的长度逐片切断,即可。

【检测说明:被测唾液由进样孔211进入进样通道212后流入检测池213;所述检测池213中的待测唾液与工作电极接触反应后,最终由于葡萄糖被氧化而导致检测池213出现的变化,由此即可查验出对应的检测结果。】

【使用说明:该检测芯片2在上端插入吹管1直至芯片两端限位顶住为止,并往下插入芯片插座接通口腔检测仪系统后,然后再开通口腔检测仪电源,随系统语音提示步序开始检测。】

【滤膜说明:唾液中含有较多消化酶类等蛋白,所述超滤层用于滤除唾液中高丰度蛋白及黏蛋白,使分离出的稀薄唾液、细胞外液等能穿透滤层进入检测区进行检测。】

【电极说明:本实施例制备的1%ni掺杂黄铁矿型fes2无酶电化学葡萄糖传感器,线性检测区间范围:2-16mm葡萄糖;检测灵敏度:灵敏度为17.67μamm-1cm抗干扰性:在葡萄糖的检测过程中对氯化钠、尿酸、尿素具有很好的抗干扰性能。拟合方程为y=0.01767x+0.11128,其中:x和y分别为葡萄糖浓度和电流值,线性相关系数r2=0.99466线性相关系数r2=0.99466。】

【原理说明:该实施例采用检测口腔中唾液糖的方法来推算人体血液中的血糖浓度。】

如果是对其他问题进行检测,可适应性调节反映模块的具体组成(相应的反映模块可采用现有技术中已有的测量模块构成,本实用新型中未对检测过程中应用的反映模块进行创新)。

在第二实施例中,嘴动式口腔检测机构的结构与上述实施例中的嘴动式口腔检测机构的结构基本相同,区别仅为本实施例中所述的嘴动式口腔检测机构中的检测芯片2为用于同时检测唾液及口气的双功能型芯片,因此,下面仅对二者有区别的地方进行详细说明,而对于相同的部分则不进行赘述。

该实施例中,所述的检测芯片2中所述的反应模块包括液体反应模块及气体反应模块;

所述的检测芯片2包括上盖板31、上基板32、中隔板33、下基板34及下盖板35;

所述的上盖板31上开有预设长度的通道构成所述的进样通道212,所述的通道的一端开设第一开孔,构成所述的进样孔211,所述的上盖板31设于所述的上基板32的一面,且所述的上盖板31不覆盖所述的进样孔211;

所述的中隔板33设于所述的上基板32中不与所述的上盖板31接触的一面上,所述的气体反应模块设于所述的中隔板33与所述的上基板32之间,并与所述的进样通道212相连接;

所述的下基板34上设有第二开孔,构成检测池213,所述的下基板34与所述的中隔板33中不与所述的上基板32接触的一面贴合;

所述的液体反应模块与所述的下基板34中不与所述的中隔板33接触的一面贴合;

所述的下盖板35与所述的液体反应模块中不与所述的下基板34接触的一面贴合,且所述的下盖板35不覆盖所述的检测池213。

在该实施例中,所述的上盖板31、上基板32、中隔板33、下基板34及下盖板35之间通过热熔胶黏合。

在该实施例中,所述的反应模块由反应试剂和电极片2141构成;

所述的反应模块由所述的反应试剂构成的一边,设有色板,且所述的检测芯片2上对应位置设有显示窗口,可通过所述的显示窗口从所述的检测芯片2外部看见所述的反应试剂的颜色变化;

而所述的反应模块由所述的电极片2141构成时,所述的电极片2141与对应的检测电路相连接。

在该实施例中,所述的吹管1的管壁上还设有至少一个预留出气孔。

为了使得本领域技术人员可以更好得对用于同时检测唾液几口气的检测芯片2进行理解,下列以采用上述实施例中的检测芯片2进行酒精测验对其结构、制造过程及检测的原理进行说明:

由于该检测芯片2同样为一种扁平状的芯片,因此在制造过程中可不用一片片进行生产,而可采用以下材料进行生产:

1、采用六种对应的卷材:上基板32(apet)、下基板34(pet)、上盖板31(双面胶版纸)、下盖板35(pdms)、中隔板33(双面胶版纸)及色板(2号字典纸);

并选用酶板36(固定化酶纳米纤维膜)作为反应模块;

(实际操作中并不局限于上面几种材料的选择,可根据实际进行调整);

2、中隔板33上印制电极:(1)工作电极:导电石墨;(2)参比电极:银/氯化银;

3、该检测芯片2的尺寸设计为:长:40mm;宽:15mm;厚:1mm;限位尺寸:3mm等腰三角形(其他实施例中也可根据实际需要,采用其他尺寸);

4、具体制造流程如下:

首先在长度为40mm的上基板32(apet)上用滚刀滚切出φ5mm进气孔(即进样孔211)、3mm宽的进样通道212。再将上盖板31(双面胶版纸)面上涂热熔胶后按20mm长度切断,从两端各预留10mm的空位压合粘贴到上基板32(apet)的第一表面上;

其次,在上基板32(apet)第二表面涂布热熔胶后,黏贴到中隔板33(双面胶版纸)第一表面上(印制有二个电极的另一端);

接下来将下基板34(pet)第一表面上涂布热熔胶后黏贴到中隔板33(双面胶版纸)第二表面上,再在下基板34(pet)上切割出φ5mm两端半圆、中心距20mm一条椭园形缺口。后在酶板36(纳米纤维膜)面上喷涂热熔胶后切割出的φ4mm两端半圆、中心距18mm椭圆形条块黏贴到下基板34(pet)第一表面上切割出的椭圆形缺口之中。此刻马上在上椭园形酶板36中部内圆弧处加工出一个φ4mm多层贯通的排气口(如图5所示,该芯片在上盖板31、上基板32、中隔板33及下基板34上共设有4个排气口);

此后在色板(字典纸)面上喷涂热熔胶后覆盖黏贴到下盖板35(pdms)第一表面一侧边,然后再在下盖板35(pdms)的第二表面上喷涂热熔胶,随即再按30mm长度切断后、在距离进液孔(即进样孔211)10mm处覆盖黏贴到下基板34(pet)的第二表面上;

最后用滚刀从芯片进液端的两侧面10mm处滚切出两个小三角的限位突出物,并按每片40mm的长度逐片切断,即可。

【使用说明:检测芯片2在上端插入吹管1直至芯片两端限位顶住为止,并往下插入芯片插座接通系统后,然后再开通本口腔检测仪电源,随系统语音提示步序开始检测。】

【原理说明:将呼出气体酒精浓度和唾液酒精浓度作为酒精摄入量标准,是基于血液中的酒精含量与口气和唾液中的酒精含量在一定范围内成一定比例,使用时将其与口气和唾液通过各自通道分别接触而产生不同检测方式的一致结果。口气检测是先将其转换为电压,然后进行滤波放大,最后测量出对应的电压,计算测量传感器产生的电流大小来确定、并计算出对应的酒精浓度。唾液检测是将其乙醇与乙醇脱氢酶作用生成过氧化氢使显色剂(靛蓝)褪色,利用褪色程度即可得出唾液中的酒精含量,可较准确得到血液中的酒精含量。】

【色板说明:该实施例在芯片表面黏贴“固定化酶纳米纤维膜对应的标准色卡”,该色卡的下方是标注的相应乙醇浓度(mg/ml),色卡以“0、0.05、0.1、0.2、0.5、0.8、1.0”七个档位确定使用者的醉酒程度。】

【验色说明:该实施例采用透明的pdms膜片当作芯片变色的显示窗口,同时将色卡黏贴在检测层上方,以方便观察与比对酒精检测膜片的显色反应结果。】

该实施例中将口气检测部分与唾液检测部分分别设置与检测芯片2的两侧,通过中隔板33将两侧进行隔离,在该双功能芯片一端的端面上,正面设置唾液进液孔、背部设置进气孔(即进样孔211分别包括进液孔及进气孔),实现检测样品同时导入。

由于上述两个实施例中检测芯片2为扁平状的结构,因此均能批量生产,批量生产时的示意图可参与图6所示(图中每个短线段表示一片芯片),在一实施例中,制作过程中采用同为250毫米宽的n种卷材制作芯片,按卷材宽度每排可做8片、1米长的卷材就可制作出3排共24片芯片。以该实施例所设计的模切装置线速度为30米/分钟,故可计算出,以本实施例的制作方法的产量为:720片/分钟。且加工过程中,检测芯片2各层材料之间采用热熔胶进行黏合,具有黏合速度快的特点。

其具体的加工步骤可参考下述加工步骤:

步骤一、分别在机械上多个工位,安装数卷等宽的多种卷材分别滚切、涂胶加工成型;步骤二、在芯片基材薄膜上,采用滚刀分别切割出多个功能区域;步骤三、在芯片基材薄膜上,采用刮涂热熔胶、分别压合粘贴成复合层;步骤四、在切割出的流体通道中,采用极微量/喷射/滴液/计量阀/点样设备/喷头沿直线流体通道中喷出微量试剂注入纸质微流控芯片;步骤五、在芯片底板上,采用刮涂热熔胶后与上述复合的基、盖板压合黏贴;步骤六、在复合黏贴的芯片卷材上,采用滚刀按每片长度逐片切断,即可。

上述两个实施例中,所述的嘴动式口腔检测机构的制造及使用结合了微流控技术、模切(模压)技术、热熔胶喷涂技术,生化技术。所述的嘴动式口腔检测机构的构建和应用中引入了外力场的作用,从而使细胞分离、化学反应等过程及生物信息的检测与分析自动在检测芯片上高效、快速地进行。使用过程中通过采用的是催吐唾液与连续吹气的方式,唾液样品和口气气体在嘴的吹力、唾液重力、纸的毛细渗透力、芯片在离心力作用下、对微流控的腔室施加压力来操控微流体与气体的流动,以实现整个检测的高效、快速地实现。

在第三实施例中,所述的嘴动式口腔检测机构为了能够同时检测多种项目,因此,采用检测芯片2的结构与上述两个实施例中的嘴动式口腔检测机构有所不同,但从图7-1及图7-2可以看出,该实施例中的嘴动式口腔检测机构还是包括了中空的吹管1及检测芯片2,且检测芯片2的一部分可以插入吹管1中的第一开口,使得从通孔进入吹管1的唾液可以很好地进入检测芯片2中,同时,该检测芯片2也与上述两个实施例中提到的检测芯片2有一些共通之处,而对于共通之处,下面不做过多的赘述,而对不同点进行一些说明:

如图7-1及图7-2所示,所述的机构包括中空的吹管1及检测芯片2;所述的吹管1的管壁上设有第一开口13,且所述的吹管1上设有通孔,该吹管1的上也可设置预留出气口;

所述的检测芯片2为多检测指标式芯片,所述的检测芯片2包括进样孔211、检测壳体、进样通道212、以及至少二个检测池213;

所述的检测壳体包括底盘50、盖盘51及导液结构插片52,所述的底盘50与盖盘51闭合后形成第一容腔,所述的导液结构插片52设于所述的检测壳体的壁面位置,所述的进样孔211设于所述的导液结构插片52上,所述的导液结构插片52插入所述的第一开口13,且所述的第一开口13的尺寸与所述的导液结构插片52的尺寸相匹配,并且所述的进样孔朝向所述的通孔;导液结构插片52上也可设有限位突出物,对其与吹管1之间的连接进行限位;

各个检测池213相互隔离,并设于所述的第一容腔内,且各个所述的检测池213中均设有对应的反应模块;

所述的进样孔211通过所述的进样通道212与各个所述的检测池213相连接。

在该实施例中,所述的吹管1还包括第一通气孔531,所述的检测壳体上设有第二通气孔532,所述的第一通气孔531与所述的第二通气孔532连通,在该实施例中,第一通气孔531与第二通气孔532通过通气管533连接;

所述的检测芯片2还包括中心带轴孔的基盘57,所述的基盘57上设有数对呈中心对称的抛物线流道55,且所述的基盘57中近所述的轴孔的位置设有储液池,所述的进样孔211与所述的储液池相连接,所述的检测池213设于所述的基盘57中远离所述的轴孔的位置;

所述的基盘57上还设有与所述的检测池213数量匹配的流道55,所述的储液池依次通过各个所述的流道55、进样通道与对应的所述的检测池213相连接;

所述的第一容腔为圆环形容腔,所述的基盘57通过所述的轴孔套设于所述的底盘50上的芯轴54上,所述的基盘57上还设有数片叶片56(叶片的数量最好设置在10片以上),使用者可通过对吹管1吹气,由通气管533将气体吹入第一容腔内,并吹向叶片56,带动基盘57旋转,使得储液池中的唾液沿抛物线流道55流入各个检测池213。

所述的储液池设于所述的检测壳体中的第二容腔中,第二容腔的体积可设置的稍微小一些,这样可以在使用时,采用尽量少的唾液,就可满足检测需求,所述的第二容腔中设有进液孔,所述的检测壳体中还设有一进液通道59,所述的进液通道59的一端与所述的进样孔相连接,所述的进液通道59的另一端朝向所述的第二容腔中的进液孔。

在该实施例中,所述的检测壳体外侧与所述的导液结构插片相对的位置设有导电插片58;

所述的基盘中的数片叶片中有一片叶片为金属叶片561,其与均无法被带磁性的金属片吸引,所述的检测壳体中还设有一金属片,所述的导电插片58与所述的金属片连接,所述的金属片通电后具备磁性吸引所述的金属叶片561。

这样的设计可以使得在通过导电插片58向金属片供电时,由金属片吸引所述的金属叶片561,使得进液通道59可以很好地对准进液孔,使得唾液可以很好流入储液池中。如图7-2所示,在该实施例中,将与所述的进液孔相对放置的一片叶片设置为金属叶片561,而金属片直接设置在导电插片58的上方,导电插片58可插入智能口腔检测仪的中间芯片插座482中。在该实施例中,导电插片58导液结构插片设于所述的盖盘的外侧,而进液通道59设于所述的盖盘的内侧,并与导液结构插片相连接。

这种检测芯片2为一种带有多个检测池213的离心式抛物线芯片,通过这种具有离心功能,多通道、多检测池213的主动式微流控芯片,可快速、且同时对多种科目进行检测。

为了便于理解下面结合一具体的例子,对上述实施例中提到的嘴动式口腔检测机构进行说明:

1、采用亚克力材料构成所述的基盘57;采用聚氯乙烯构成盖盘51;采用漂白硫酸盐木浆构成底盘50;

2、采用可以对以下项目进行检测的反应模块:①尿酸;②肌红蛋白;③艾滋病;④人体疲劳;(实际测试时,也可以根据实际需要换其他反应模块)

3、该检测芯片2的尺寸设计为:芯片外径:φ5cm;芯片厚度:20mm;芯片结构:圆盘;

4、具体制造流程如下:

首先采用模压成型工艺、制作外径φ5cm带芯轴54的圆形底盘50;

其次采用注塑成型工艺、制作带轴孔的圆形基盘57,该基盘57表面上有4组呈中心对称的抛物线流道55、基盘57近轴心处设置有环状的储液池、基盘57圆周上设置有即进样通道212,芯片盖盘51边缘上端注塑有扁平状的导液结构插片52、边缘下端注塑有扁平状的导电插片58,导电插片58与通电后带有磁性的金属片相连接。基盘57盘片侧面上设置有4个检测池213;所述检测池213中的试剂(即采用反应试剂构成的反应模块)皆以冻干或风干形式预先储存,并合上带卡扣的透明塑胶盖封存,基盘57圆周上设置有n片与壳体尺寸贴近的拾片以上的风叶片56(图中仅绘制了其中的2片叶片),其中的在进液孔的远端的位置设置有一片金属叶片561。然后将上述圆形基盘57装入圆形底盘50的芯轴54上用双螺母锁紧(使基盘57在芯轴54上能轻松自由转动)。最后将注塑成型的透明底盘50,外侧边缘涂布超低温热熔胶后与圆形盖盘51通过圆弧套接粘合即可。

【使用说明:首先将该实施例芯片盖盘51上端的扁平状的导液结构插片52插入吹管1直至芯片圆周顶住为止,然后将下端的扁平状导电插片58插入到下部芯片插座上,接下来再开通本使用装置的电源后,晃动检测仪装置以使并确保该芯片边缘带金属片的叶片被通电后产生磁性而吸引金属叶片至该芯片中与金属片对应的位置,用以确保进样孔与进样通道的准确对接,随后系统才会以语音提示步序开始检测。随着进样进入芯片的储液池后,由吹管边缘上的离心式吹气通道吹气,让气体吹动芯片上基盘57边缘n片风叶片56快速旋转产生离心力,使得储液池中的进样沿抛物线流道55流入各个检测池213,由进样快速混合冻干或风干的试剂而产生化学变化后的检测结果。】

【液流说明:该实施例芯片,盖盘51圆周外垂直的进样孔211、盖盘51内侧的的进液通道、设置在基盘57上的进液孔及基盘57侧面的环状储液池相连通;而储液池的出口通过螺旋形流道55与检测池213的入口相连接。】

【原理说明:本实用新型的离心式检测装置可以实现对单项目或多项目的测定,利用液流在径向(离心力)、切向(欧拉力)、法向(重力)上的控制对液流进行驱动,在集成化高、尺寸小、材料及结构复杂的微流芯片中具有巨大优势。】

上面几个实施例中提到的吹管1可为塑胶吹管1,通过注塑成一端通孔另一端封闭空心状的圆柱形塑胶管,该塑胶管封闭端处的两侧面设置有通气孔,其通孔端处的下方带有横向缝隙(即第一开口13)的导流出口。其中的检测芯片2为嘴动式芯片(由人力自驱动),使用时借助人体动力,自控微流控芯片内的样品流动与反应。

通过下表1可看出本实用新型中的嘴动式口腔机构中的检测芯片2与现有技术中的主动(被动)式微流控芯片的主要区别:

表1

从上表1的比对中不难发现本实用新型中的检测芯片从材质、结构及加工工艺方面来看,其成本低且制备简便、无需复杂外围设备,即可省却好多检测时工序步骤的损耗、还可减少好多配件与辅料的浪费、更可避免被测样品检测过程中的污染,从而实现被检测样品的主动式控制与快速流动,具有很好的性价比。可以摆脱“主动式芯片”必须使用微电机、或微泵等动力为液体流动提供驱动源的问题,能够进行真正意义上一次性、价格低廉、便携式的分析的目的,其原理如下:

芯片垂直安装在吹管1上,由(重力、吹力)让唾液增加动力、快速垂落进检测池;同时,由(重力、吹力、离心力)让唾液垂落及快速旋转飞抛;让唾液飞向进液孔、吹压进入检测池;且芯片中被测的“唾液与口气”皆为37°左右(体温)由检测仪外壳来隔绝外界。

上述实施例中的嘴动式口腔检测机构在实际使用中作为口腔检测仪的一部分进行使用,当将上述提到的任一实施例中的嘴动式口腔检测机构应用于智能口腔检测仪4中进行使用时,所述的智能口腔检测仪4还包括主体、芯片插座、单向出气阀46、人机交互模块、主控模块42及电源模块,其具体结构可参考图8-1及图8-2所示,该智能口腔检测仪4为一种可穿戴的设备,其选用的芯片均为体积较小、且轻便的芯片;

所述的芯片插座、单向出气阀46、主控模块42以及电源模块均设于所述的主体上,所述的嘴动式口腔检测机构可拆卸地设于所述的主体上;

其中,所述的主体为外凸内凹弧形,且所述的主体上设有佩带49,所述的佩带49连接在主体两侧;

该实施例中可采用液状硅胶材质的外凸内凹弧形壳体构成所述的主体,

所述的嘴动式口腔检测机构的吹管1设于所述的主体的内侧,所述的嘴动式口腔检测机构中的检测芯片中不与所述的第一开口13接触的一端插入所述的芯片插座;

所述的电源模块分别与所述的主控模块42、人机交互模块及芯片插座相连接;

所述的人机交互模块、芯片插座均与所述的主控模块42相连接。

在该实施例中,嘴动式口腔检测机构设于所述的主体的中间位置,由于嘴动式口腔检测机构中的吹管1及检测芯片为一次性用品,故其在使用时安装于智能口腔检测仪4上,而在不用时,或完成检测后,可从智能口腔检测仪4中被取下。

通过主控模块42作为信号处理模块对智能口腔检测仪4中个模块的信号进行处理,并对各模块进行集中管理,本实施例中采用该实施例采用st公司的stm32f103cbt6单片机构成所述的主控模块的主要部件,这是一款32位单片机,内部资源丰富,满足本系统的使用需求,采用48管脚sop封装,体积相对较小,其为一微机模块。

该微机模块包括信号采集电路、数模转换电路、信号处理电路和信号输出电路。所述信号采集电路将采集检测模块的检测数据;所述数模转换电路对信号采集电路采集的数据进行数模转换,并将该数据传给信号处理电路进行分析,分析结果通过信号输出电路转换成可视化数据输出给检测仪上的信号显示模块、移动终端及云端服务器。

除此之外,所述的主控模块还可包括usb接口,实际使用中,可将微机模块设于主题内部,而将usb接口设于主体外表面。

所述的电源模块可由石墨烯固态薄膜电池、na-co2电池、多孔镍氟化物薄膜电池、超薄柔性电池flcb电池、纸电池单元、固体可充电电池等供电单元中的一种或多种供电单元构成。

在该实施例中,所述的检测仪还包括:

人体机能信号采集模块,与所述的主控模块相连接;

信号传输模块,与所述的主控模块相连接,且所述的信号传输模块还与外部移动终端和/或云端服务器相连接,在该实施例中,该信号传输模块可采用无线信号传输模块构成。

所述的外部移动终端内置微信小程序数据通讯或微信公众号数据通讯,所述口腔检测仪中的检测芯片及人体机能信号采集模块采集到的数据可通过信号传输模块传递至移动终端、云端服务器上,同时也可将相应的数据传递至主控模块,由主控模块控制人机交互模块中的信息提示单元43显示出来,显示模块可直接安装于主体上,也可通过有线与无线传输的方法与主体中的主控模块进行数据交互。

该实施例中,可将采集的信息显示在所述信号显示模块及移动终端等设备上;同时,可通过所述移动终端将操作记录及监控到电压电流变化数据上传到所述云端服务器,并进行记录。

在该实施例中,由嘴动式口腔检测机构中的检测芯片、人体机能信号采集模块中的mems检测单元、心率血压检测单元47及口气传感器检测单元共同构成信号检测功能模块。

一实施例中,所述的智能口腔检测仪4的电路模块示意图可参阅图9所示,图中绘制了智能口腔检测仪4中比较主要的一些模块的电路连接关系,其包括主控模块中的主控制器(stm32f103cbt6)、电源模块、显示子单元、按键输入子单元、心率血压检测单元47、mems检测单元、检测芯片(其为微流控芯片)及口气传感器检测单元,从图中可以看出电源模块、显示子单元(该显示子单元可以由oled显示单元构成)、按键输入子单元、心率血压检测单元47、mems检测单元、检测芯片及口气传感器检测单元均与主控制器相连接;mems检测单元用于实现温湿度、气压检测及vos口气检测,检测芯片可以用于对唾液糖、酒精、尿酸、肌红蛋白进行检测,而口气传感器检测单元用于实现综合口气检测。

按键输入子单元与oled显示单元(显示子单元)提供人机交互的接口,通过按键操作可以选择以上图示、启动多种测量。采用64×48点阵oled显示屏作为显示单元,其优点在于功耗较低,并且体积小,并且采用i2c总线通信方式,占用单片机总线少,适合在该实施例可穿戴设备上使用。

在该实施例中,口气传感器检测单元可由丙酮检测传感器及异戊二烯的气体传感器构成。

在该实施例中,上述几个实施例中所述的嘴动式口腔检测机构中的检测芯片在智能口腔检测仪4中使用时,与主控制器(stm32f103cbt6)、电源模块及人机交互模块配合实现相应的检测,当所述的反应模块由电极片2141构成时,通过设计测试所需的电压扫描发送电路、恒电位电路、微电流检测电路,实现测量被检测样品的目的。

由于本检测系统只需要显示中文(英文)欢迎词、电压数据、单位,疾病特征提示等,因此采用字符型的oled微型显示屏即可,工作于+5v电压。其需要完成的功能有:通过spi接口实时口罩扫描电压电路从而获得所需的电压信号,通过12c接口的ad转换芯片采集经过处理后的电流信号。

智能口腔检测仪4中stm32f103cbt6芯片的供电电压是3.3v,用asm1117-3.3v芯片实现5v到3.3v电压的转换。所用晶振的频率为8.0mhz。

心率血压检测单元47可分别由心率检测芯片及血压检测芯片构成,

心率检测芯片可采用max30102芯片构成,max30102是一个集成的心率监测仪和脉搏血氧仪生物传感器的模块。它集成了多个led、光电检测器、光器件,以及带环境光抑制的低噪声电子电路。这款脉搏血氧及心率监测集成传感器模组的功耗极低,完善的系统方案有效节省空间、简化智能手机及可穿戴设备的设计流程。max30102采用一个1.8v电源和一个独立的5.0v用于内部led的电源,标准的i2c兼容的通信接口。可通过软件关断模块,待机电流为零,实现电源始终维持供电状态。

max30102具有不同的工作模式,可工作在血氧模式和心率模式下,同时内部带有fifo,最多可以存储32个采样数据,所以处理器不需要在每次采样后都读取芯片数据,而是当fifo满的时候再进行数据的读取。

血压检测芯片可采用freescal公司生产的mpxv5050gp压电传感器构成,可将其置于主体内侧靠近脸颊的部位,这样可以直接将脸动脉血液对血管壁的压力转换为输出电信号。

该智能口腔检测仪4中的信号采集模块与信号显示模块、信号处理模块、无线信号传输模块、电源模块电性连接;该检测仪通过无线网络连接移动终端及云端服务器。

在该实施例中,所述的检测仪中还设有盒体,所述的盒体设于所述的主体的内侧,且所述的盒体为可开合结构;所述的芯片插座及嘴动式口腔检测机构设于所述的盒体中,所述的盒体设有第三开口,所述的吹管1穿过所述的第三开口,所述的单向出气阀46设于所述的盒体内。

在该实施例中,所述的人体机能信号采集模块包括mems检测单元、心率血压检测单元47及口气传感器检测单元,所述的mems检测单元、心率血压检测单元47及口气传感器检测单元分别与所述的主控模块相连接。

在该实施例中,所述的盒体包括了三个部分,分别为中间盒体451及两侧盒体452,嘴动式口腔检测机构置于中间盒体451内,而mems检测单元及口气传感器检测单元分别设置于两侧盒体452于内,即分别设于嘴动式口腔检测机构的左右两侧,吹管1的管壁上设有二个预留出气孔,口气可通过二个预留出气孔通向两侧盒体452,使得mems检测单元及口气传感器检测单元可与检测芯片共同进行检测功能,考虑到一些传感器对检测环境比较高,故可在盒体,特别是两侧盒体452中设有透气网格且填有吸水滤材,避免湿度等情况对影响传感器的性能,其结构可参阅图8-3及图8-4所示,图中绘制了盒体内放置有嘴动式口腔检测机构置状态下的示意图。

通过盒体的密闭连接、带水汽过滤、设置单向出气阀46的设计可以有效解决现有mems存在“水汽侵浊、塑胶硅胶蒸汽吸附”传感器失效的难题。

所述的盒体可选用abs材质构成,其嵌装在智能口腔检测仪4的主体内侧,智能口腔检测仪4的主体为弧形壳体,所述的盒体的形状与主体的形状相匹配,呈外凸内凹、上下呈椭圆弧状的封闭弧形盒盖44及下方左中右三个卡扣相连的可拆卸盒体,所述盒盖44铰接在下部的盒体上,盒盖44下部的中心露空、其左右两侧下部设置透气网格且填有吸水滤材,盒盖44正中的前后方向设置有可穿插的圆形塑胶吹管1;所述盒体上部与盒盖44铰接直通,中部为前后开放式、左右两侧各自独立密闭,且皆相向设置有单向出气阀46,所述盒体三个部分内各设置有专用电路插座,分别为中间芯片插座482及两侧芯片插座48,分别用于与嘴动式口腔检测机构中的检测芯片及mems检测单元及口气传感器检测单元配合工作。

在实际使用中,嘴动式口腔检测机构可为用于检测检测rna、dna、酶、抗原、抗体及激素的唾液检测装置;

而mems检测单元及口气传感器检测单元可分别构成设在智能口腔检测仪4左侧的温、湿度、tvoc、二氧化碳、酒精、碳13检测子模块,及设在智能口腔检测仪4右侧多种慢性病以及早早期癌症(多种)标志物检测子模块。

在该实施例中选用博世bme680传感器构成mems检测单元,其为一种四合一的mems传感器。

该实施例中的智能口腔检测仪4的工作流程可参阅图10所示,当该智能口腔检测仪4执行全项采集模式时,主控制器设计采用模块化的分层编程设计思想,主要分为底层驱动程序和顶层应用程序(相应的程序为现有技术中的程序),底层驱动程序主要包括:模拟i2c总线设备驱动、oled液晶模块的驱动、ad转换程序、smbus驱动程序,顶层程序主要包括:血压提取程序、体温、湿度、气压、vos综合口气数据读取和转换程序、唾液糖、酒精换算等。采集使用装置所支持的生命体征参数数据,并通过蓝牙模块传输到外联设备。

该实施例中的智能口腔检测仪4的检测流程的工作流程可参阅图11所示,接通电源后,首先进行系统的初始化设置,之后进入大循环,大循环中需要对人体的基本数据进行采集、转换和显示(其中人体体温、口腔湿度、口腔气压与vos综合口气的数据可以通过博世bme680传感器接口函数直接读取),血压数据需要通过i2c总线读取max30102、其他健康数据需要通过读取嘴动式口腔检测机构中的检测芯片(即微流控芯片)的采样数据获取。

同时,由于读取的采样数据有干扰和波动,因此还需要进行数据的处理,来提取人体的即时血压数值。该实施例的微流控芯片检测系统只有在需要的时候才启动测量,由按键来控制。

该实施例的微流控芯片只设置单次使用。当使用者将微流控芯片安装在吹管1上、并装好吹管1和接通芯片电路,再按下按键下才开始检测。

当使用者在检测酒精浓度时,只有在芯片中的呼气压力达到一定值时,系统的控制模块才对酒精传感器中的气体进行采样,从而保证了采样的有效性和准确性。

在其他实施例中,人体机能信号采集模块可由mems电导型气敏传感器、纳米薄膜、石墨烯的生物传感器、电化学传感器、皮肤肌电活动传感器、温湿度传感器、多功能复合的传感器中的一种或多种传感器的组合构成。

在该实施例中,所述的人机交互模块包括:信息提示单元及控制单元,所述的信息提示单元及控制单元分别与所述的主控模块相连接。

所述的信息提示单元可由显示子单元及语音播放子单元构成,

显示子单元可由赛伦纸显示屏单元、amoled或oled触摸显示屏单元、mems交互式投影单元中任一单元构成;

语音播放子单元包括语音输出子单元,其由微型扬声器构成;控制单元包括按键输入子单元及语音输入子单元;按键输入子单元包括菜单按键及电源开关机按键等部件构成;

所述语音识别子单元由依次连接的语音采集模块、语音前级处理模块、语音训练模块、语音识别模块、语音提示模块和输出识别模块组成。

该实施例中人机交互模块与构成信号传输模块的无线通讯模块的工作原理如下:

该实施例检测系统中的检测电路获得的电压数字,设计由oled显示屏、以及传输给移动终端实时显示来供操作者查看和记录(控制使用者按系统语音提示操作后,系统通过语音提示检测出的唾液糖/或酒精浓度)。期间的数据交换,是采用系统设置的标准语音提示与用户回答而产生指令的方法,再通过无线模块和显示模块实现人机交互以及无线模块实现数据的传输与储存。

其中,无线通讯模块可由nrf24l01芯片构成核心部件,外围搭配简单的电阻、电容和晶振,绘制简单的pcb天线组成无线通信方案。

具体实施时,可采用蓝牙模块构成信号传输模块,采用蓝牙模块实现与内嵌蓝牙功能的外部设备的数据交换。为减小系统体积、减轻系统质量和降低功耗,该蓝牙模块采用class-2设计方案,usb输出,传输距离为10m,支持蓝牙2.0版本协议能够满足系统的需求。蓝牙模块采用csr公司的bc417413芯片构成。前端射频带通滤波器选用mdr771f-csr-t,巴伦采用tdk公司的hhm-1517完成系统的差分射频信号和天线输入输出信号之间的转换。检测结果能实时传送至患者的移动终端和电子健康档案,确保每个护理中心都能立即获得重要信息。

信号传输模块与外部设备进行通讯的流程可参阅图12所示,外联设备(即外部移动终端)能够遥控控制该实施例使用装置的工作于全项采集模式,将该装置采集到的各项生理指标实时在终端显示屏幕上并保存,方便以后查看。需要的话,能够通过无线网络和intemet网络将采集到的数据发送给远端的医生,实现远程监测。当使用者的关键生理指标小于或大于某个临界点时,外联设备能将采集到的数据和gps信息以短信的方式发送给预先设置的紧急联系人并拨打此号码,确保紧急联系人能第一时间知道使用者的身体状况,及时采取救助措施,保护穿着者的生命安全,适合于患有突发性疾病者使用。

为克服本检测系统的主要干扰:电源和电化学噪声,该实施例引入软件滤波处理算法(通过修改修改参数、编写相关程序实现消噪的效果)。采用去极值平均滤波算法将输入信号中的尖脉冲和持续时间较长的干扰滤掉,使得数据过渡平滑。

在该实施例中,所述的主体由柔性材料构成,且所述的主体上设有透气网格,所述透气网格处于吸气的位置还设有滤材41,所述的滤材41可由空气滤材及活性炭滤材构成,其中,可通过设置内外二层格栅直接放置活性炭滤材,所述的活性炭滤材及空气滤材均可制成薄膜状设置于主体中。

考虑到使用装置穿带的舒适度,同时又不能影响对生命体征数据的处理。故本实用新型中采用到的电路板均使用柔性电路板构成。

上述实施例中的智能口腔检测仪4是专为个人体检研发的检测产品,它是一个安全可靠,方便佩戴的头戴式检测用途的装置。通过采集口腔信息实时记录相关电阻变化情况,丰富多彩的语音培训软件会让广大用户的方便学习与操作使用。它既能通过显示屏展示,又能通过移动终端(或平板电脑)即时了解到自己的健康数据,还可收集到使用者的亚健康状态与早早期癌症等信息。所检测出的数据会通过蓝牙的方式发送出去。

其中,所述智能口腔检测仪4上的蓝牙装置与移动终端上软件关联后,检测数据也可传到医生的电脑终端。医生根据检测仪收集的数据完成专业的数据分析与诊断后,通过与专家互动获得更多关于疾病的相关常识,再向用户手机反馈详细的疾病治疗与建议报告,并通过蓝牙与手机配对后,医生可通过本申请技术方案中的智能口腔检测仪4实现近远程不间断追踪监测患者后续康复进展情况,及时发现潜在的风险因素、动态评价药物疗效,即智能口腔检测仪4可结合云技术,通过蓝牙灯设备将数据上传储存到线下合作医疗的三甲医院的云端,从而建立个人健康数据,便于医生及其他允许访问的用户对该用户的健康数据进行查询,直观的展现用户健康状况和趋势,帮助用户分析健康变化,提供健康分析和养生建议,达到更好的预防和监测慢性病的效果。而且这些数据和图表还能够进行云端分享,可以在就医时快捷地导出来,为医生的诊断做详细的参考。所述检测仪通过蓝牙装置连通使用者的app和医院,形成了一条检测—治疗—康复—监测的医疗服务闭环生态链。再加上一款专门设计的手机app应用软件,就能形成一套完整的智能医疗检测系统。

其中,所述智能口腔检测仪4上的蓝牙装置亦同时将数据上传储存到网络大数据平台上的健康服务系统。所述健康数据服务系统通过收集、整理、过滤、判断、分析、反馈等对用户的效率管理、健康管理、个人偏好生活工作行为等进行统计提炼,并在一定程度上提供干预性建议,让大数据更好的为个体服务。

在该实施例中,嘴动式口腔检测机构中的检测芯片将样品采集,酶促转化,电化学分析,手机信号存储、数据处理等功能精密地集成在一个小型化的生物传感器系统。相应的实施例中,采用电化学与检测试剂相结合的检测方法,所述检测电极的接线端与外接电源相通,反应端靠近独立的进样通道212。所述进样通道212中的待测样品与反应试剂、或电极接触反应后,通过试剂反应后产生颜色变化,或芯片电路上的电阻会发生变化,该变化由电压信号放大电路检测到,从而产生一个相应的电压脉冲信号而获得对应的检测结果。

上述几个实施例中提到的嘴动式口腔检测机构,通过将检测芯片插入吹管1的管壁上设有的第一开口13中,配合相应的智能口腔检测仪4进行使用,可以通过用户口腔中的信息来检测出多种早期慢性疾病,使用过程中通过人体口腔动力(即吹气)就可进行检测,无需额外的驱动设备配合使用,且所述的检测芯片及吹管1均为一次性使用产品,更具干净,防止交叉感染,更佳卫生,且成本较低。

本实用新型结构独特,可直接收集来源不断“唾液与口气”,独创集成化微流控芯片(即嘴动式口腔检测机构),采用芯片垂直输入+唾液吹管1+口气吹压+离心式混合,可以更好地进行唾液、口气的采集;采用n种芯片筛查“多种慢性疾病、及早早期癌症”该检测芯片可采用“抛弃式芯片”“重复使用芯片”满足不同需求,且采用一次性唾液(口气)吹管1的卫生非侵入性检测,更卫生;且成本低、易于购买,且采用采用纸质芯片,使用后即可通过燃烧安全处理,更为环保。

综上所述,本实用新型中的嘴动式口腔检测机构可自动化大批量生产,生产效率高、加工成本低、生产质量更稳定且不涉及精密加工,使原本需要在一个实验室完成的工作可以在一张芯片上即可完成,而且大大简化了微流控芯片的制作过程、以及大大降低了微流控芯片的制作费用,在检测的灵敏度、准确度、测试线性及测试等方面均获得理想的效果。

其配合智能口腔检测仪中其他部件使用,可通过用户移动终端及语音识别功能来简单操控与检测用户口腔中的信息来检测出多种早期慢性疾病,及时储存及上传用户的健康数据,使用时采用电化学检测的微电极,不仅能利用微流控芯片和相关传感器分析判断使用者的健康状态,而且纸质微流控芯片具有成本低廉、结构简单、无需外置驱动仅依靠自身层析力流动、采取吹气压力与依靠吹气产生的离心力快速流动,使用人员吹气动力就可导致唾液更快的流动的特点,解决了传统微流控芯片的诸多弊端,具备无创快速、灵敏准确、便携方便等特点;其操作简单,无需专业人员,使用者直接输入唾液与口气的样本,即可迅速得到诊断结果,并将信息上传至手机和远程监控中心,由专业医生指导保健或治疗(处置),对于上述特定场所对象疾病的及时发现和治疗具有实质性的意义,能让人们长时间地使用、简便高效又成本低廉、适于大规模推广应用。

本实用新型的嘴动式口腔检测机构及相应的智能口腔检测仪技术方案中,其中所包括的各个功能模块和模块单元均能够对应于集成电路结构中的具体硬件电路,因此仅涉及具体硬件电路的改进,硬件部分并非仅仅属于执行控制软件或者计算机程序的载体,因此解决相应的技术问题并获得相应的技术效果也并未涉及任何控制软件或者计算机程序的应用,也就是说,本实用新型仅仅利用这些模块和单元所涉及的硬件电路结构方面的改进即可以解决所要解决的技术问题,并获得相应的技术效果,而并不需要辅助以特定的控制软件或者计算机程序即可以实现相应功能。

本实用新型的嘴动式口腔检测机构,包括中空的吹管及检测芯片,所述的吹管的管壁上设有尺寸与所述的检测芯片尺寸相匹配的第一开口;所述的检测芯片包括依次设置的进样孔、进样通道、检测池及反应模块;所述的检测芯片中设有所述的进样孔的一端插入所述的吹管的第一开口,当采用包括该嘴动式口腔检测机构的智能口腔检测仪进行测试时,采用人体自身的动力——吹力,即可将唾液吹至检测池,便于检测仪对唾液和/或口气进行检测,进一步减少了设备成。采用包括该嘴动式口腔检测机构的智能口腔检测仪,结构紧凑,美观易用,可检测用户口腔中的信息来检测出多种早期慢性疾病,及时储存及上传用户的健康数据,是一种便携方便、无创快速、灵敏准确、可穿戴式口腔检测仪,具有较大的社会意义、推广价值、很好的市场应用前景。

在此说明书中,本实用新型已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本实用新型的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1