一种不受矿化度影响的油水两相流持水率电导测量法

文档序号:25898828发布日期:2021-07-16 20:32阅读:146来源:国知局
一种不受矿化度影响的油水两相流持水率电导测量法

1.本发明属于石油工程与测量技术领域,具体涉及一种不受矿化度影响的油水两相流持水率电导测量法。


背景技术:

2.原油持水率是计量油井产量、评价油藏的开采价值、采出程度及制定开采方案的重要指标。原油持水率在线检测对于确定油井出水出油层位、估计原油产量,预测油井的开发寿命具有重要意义。同时,准确及时的原油持水率检测数据能够反映出油井工作状态,对实现油田自动化管理起重要作用,为油田开采流量计量、提高原油采收率等提供重要参考依据,故油水两相流的持水率准确测量是目前急需解决的问题。
3.电导法测量持水率在产出剖面测井中已有广泛应用,具有较好重复性和一致性。油水两相流中水相电导率与被测矿化度密切相关,在测量油水两相流持水率时,会导致电导测量法测量结果不准确。
4.针对该问题,本发明提出一种不受矿化度影响的油水两相流持水率电导测量法,并利用该测量方法对油水两相流持水率进行准确测量,消除矿化度对测量结果的影响,从而提高持水率测量精度。


技术实现要素:

5.本发明的目的是为消除油水两相流进行持水率测量时矿化度对测量精度的影响,提供一种不受矿化度影响的油水两相流持水率电导测量法,从而间接提高油水两相流持水率测量精度。
6.本发明采用的技术方案为:一种不受矿化度影响的油水两相流持水率电导测量法,所述测量方法包括以下步骤:
7.步骤一:该测量方法所构成测量装置包含纵向环形五电极电导率传感器、凹面电容传感器、电源、信号处理系统和不锈钢套管;
8.步骤二:采用输出波形频率表征油水两相流的电阻,确立持水率与输出波形频率之间关系;
9.步骤三:利用电导传感器与电容传感器关系以及矿化度与电容传感器关系,构建不受矿化度影响的油水两相流持水率测量模型;
10.步骤四:进行现场实验,对不受矿化度影响的油水两相流持水率测量模型进行修正。
11.进一步地,所述步骤一中构成的测量装置作用与装配方法如下:
12.纵向环形五电极电导率传感器由五个铂金属电极组成,铂金属电极1与铂金属电极5为激励电极,铂金属电极2和铂金属电极4为测量电极,铂金属电极3为参考电极;凹面电容传感器为极板为凹面相对放置的电容传感器,两相对极板张角θ为90
°
;电源提供电源信号;信号处理系统由数据采集电路和控制电路构成;不锈钢管用于安装纵向环形电极结构
五电极电导率传感器与凹面电容传感器。
13.进一步地,所述步骤二中采用输出波形频率表征油水两相流的电阻、确立持水率与输出波形频率之间关系方法如下:
14.修正后纵向环形五电极电导率传感器输出的油水两相流实测电导率σ为:
[0015][0016]
式中,r为电导池测量等效电阻;η为电导率修正系数;v
o
为在测量电极2和测量电极4测量得到电压差取的平均值;r3为参考电阻值;v
r3
为参考电阻r3的参考电压。
[0017]
采用输出波形频率表征油水两相流电阻,其数学表达式如下:
[0018][0019]
式中,r
c
为被测液体的电阻,r
x
为数据采集电路中选频端并联电阻值,r
s
数据采集电路中放大端电阻值,c为凹面电容传感器的电容值。
[0020]
由maxwell模型可知:
[0021][0022]
式中,β为持水率。
[0023]
由以上可知,与持水率β的关系如下:
[0024][0025]
进一步地,上述方案所述步骤三中构建不受矿化度影响的油水两相流持水率测量模型方法如下:
[0026]
张角θ为90
°
形状为凹面相对放置极板的电容传感器的数学模型表示为:
[0027][0028]
式中,ε为微元电极间介质矿化度参数因子;ds为微元电容器两极板间相互覆盖面积;i为微元电容器序号;r
i
为第i个微元电容器的两个极板间的相对距离;n为微元电容个数。
[0029]
利用极限法计算凹面电容传感器的电容值c,其表达式可等效为:
[0030][0031]
其中r
max
为两电容极板间最大距离,为电容极板间平均距离,dr为r的微分,s为
凹面电容传感器极板面积。
[0032]
油水两相流导电能力与矿化度相关,可用水相介电常数ε
fw
表征矿化度:
[0033][0034]
式中,为温度为24℃矿化度为1078mg/l时油水两相流的介电常数值,f
(γ,λ)
(mor)为水相矿化度比例因子,γ表示油水两相流中的强电解质,λ表示油水两相流中的弱电解质,mor为纯水在24℃时矿化度值。
[0035]
矿化度受带电粒子的浓度以及带电粒子运动影响,其规律符合扩散运动与布朗运动,即符合以下规律:
[0036][0037]
式中,ω
λ
表示矿化度为mor时扩散运动修正系数,k
γ
表示矿化度为mor时布朗运动修正系数。
[0038]
由和可知:
[0039][0040]
为超定方程,可采用超定方程求解ω
λ
、k
γ

[0041]
由c、ε
fw
、β、建立不受矿化度影响的油水两相流持水率测量模型,其表达式如下:
[0042][0043]
进一步地,上述方案所述步骤四中对不受矿化度影响的油水两相流持水率测量模型进行修正方法如下:
[0044]
在模拟井上通入持水率为ψ的油水两相流,以步进step调整矿化度值,测量实际持水率θ
t
,那么持水率残差(θ
t

ψ)形成的灰预测数据为:
[0045][0046]
式中,t为步进次数,α为持水率残差序列灰发展系数,μ为持水率残差序列灰作用量,为持水率残差序列第(t+1)个预测值。
[0047]
持水率残差变化不大,本发明采用前z项持水率残差序列的值作为修正值修正持水率测量模型,即:
[0048]
[0049]
式中,为修正后的不受矿化度影响的油水两相流持水率。
[0050]
本发明有益效果:
[0051]
(1)建立矿化度与介电常数的函数关系式,克服矿化度对持率测量造成的影响,提高了持水率测量的精度;
[0052]
(2)采用灰色系统理论修正持水率表达式,提高持水率测量精度。
附图说明:
[0053]
图1为水相电导率与矿化度的关系曲线图;
[0054]
图2为本发明测量装置结构示意图;
[0055]
图3为本发明测量电路原理图;
[0056]
图4为本发明与现有方法测量精度对比图;
[0057]
图5为本发明重复性测量叠加图;
[0058]
图6为修正前后持水率测量误差图。
具体实施方式:
[0059]
实施例一
[0060]
一种不受矿化度影响的油水两相流持水率电导测量法,所述测量方法包括以下步骤:
[0061]
步骤一:该测量方法所构成测量装置包含纵向环形五电极电导率传感器、凹面电容传感器、电源、信号处理系统和不锈钢套管;
[0062]
步骤二:采用输出波形频率表征油水两相流的电阻,确立持水率与输出波形频率之间关系;
[0063]
步骤三:利用电导传感器与电容传感器关系以及矿化度与电容传感器关系,构建不受矿化度影响的油水两相流持水率测量模型;
[0064]
步骤四:进行现场实验,对不受矿化度影响的油水两相流持水率测量模型进行修正。
[0065]
实施例二
[0066]
本实施方式为对实施方式一的进一步说明,所述步骤一中构成的测量装置作用与装配方法如下:
[0067]
纵向环形五电极电导率传感器由五个铂金属电极组成,铂金属电极1与铂金属电极5为激励电极,铂金属电极2和铂金属电极4为测量电极,铂金属电极3为参考电极;凹面电容传感器为极板为凹面相对放置的电容传感器,两相对极板张角θ为90
°
;电源提供电源信号;信号处理系统由数据采集电路和控制电路构成;不锈钢管用于安装纵向环形电极结构五电极电导率传感器与凹面电容传感器。
[0068]
实施例三
[0069]
本实施方式为对实施方式一的进一步说明,所述步骤二中采用输出波形频率表征油水两相流的电阻、确立持水率与输出波形频率之间关系方法如下:
[0070]
修正后纵向环形五电极电导率传感器输出的油水两相流实测电导率σ为:
[0071][0072]
式中,r为电导池测量等效电阻;η为电导率修正系数;v
o
为在测量电极2和测量电极4测量得到电压差取的平均值;r3为参考电阻值;v
r3
为参考电阻r3的参考电压。
[0073]
采用输出波形频率表征油水两相流电阻,其数学表达式如下:
[0074][0075]
式中,r
c
为被测液体的电阻,r
x
为数据采集电路中选频端并联电阻值,r
s
数据采集电路中放大端电阻值,c为凹面电容传感器的电容值。
[0076]
由maxwell模型可知:
[0077][0078]
式中,β为持水率。
[0079]
由以上可知,与持水率β的关系如下:
[0080][0081]
实施例四
[0082]
本实施方式为对实施方式三的进一步说明,上述方案所述步骤三中构建不受矿化度影响的油水两相流持水率测量模型方法如下:
[0083]
张角θ为90
°
形状为凹面相对放置极板的电容传感器的数学模型表示为:
[0084][0085]
式中,ε为微元电极间介质矿化度参数因子;ds为微元电容器两极板间相互覆盖面积;i为微元电容器序号;r
i
为第i个微元电容器的两个极板间的相对距离;n为微元电容个数。
[0086]
利用极限法计算凹面电容传感器的电容值c,其表达式可等效为:
[0087][0088]
其中r
max
为两电容极板间最大距离,为电容极板间平均距离,dr为r的微分,s为凹面电容传感器极板面积。
[0089]
油水两相流导电能力与矿化度相关,可用水相介电常数ε
fw
表征矿化度:
[0090][0091]
式中,为温度为24℃矿化度为1078mg/l时油水两相流的介电常数值,f
(γ,λ)
(mor)为水相矿化度比例因子,γ表示油水两相流中的强电解质,λ表示油水两相流中的弱电解质,mor为纯水在24℃时矿化度值。
[0092]
矿化度受带电粒子的浓度以及带电粒子运动影响,其规律符合扩散运动与布朗运动,即符合以下规律:
[0093][0094]
式中,ω
λ
表示矿化度为mor时扩散运动修正系数,k
γ
表示矿化度为mor时布朗运动修正系数。
[0095]
由和可知:
[0096][0097]
为超定方程,可采用超定方程求解ω
λ
、k
γ

[0098]
由c、ε
fw
、β、建立不受矿化度影响的油水两相流持水率测量模型,其表达式如下:
[0099][0100]
实施例五
[0101]
本实施方式为对实施方式一的进一步说明,上述方案所述步骤四中对不受矿化度影响的油水两相流持水率测量模型进行修正方法如下:
[0102]
在模拟井上通入持水率为ψ的油水两相流,以步进step调整矿化度值,测量实际持水率θ
t
,那么持水率残差(θ
t

ψ)形成的灰预测数据为:
[0103][0104]
式中,t为步进次数,α为持水率残差序列灰发展系数,μ为持水率残差序列灰作用量,为持水率残差序列第(t+1)个预测值。
[0105]
持水率残差变化不大,本发明采用前z项持水率残差序列的值作为修正值修正持水率测量模型,即:
[0106][0107]
式中,为修正后的不受矿化度影响的油水两相流持水率。
[0108]
实施例六
[0109]
本实施方式为对实施方式五的进一步说明,图1为油水两相流中水相矿化度与电导率关系曲线图,依据图2制作不受矿化度影响的油水两相流持水率电导法测量样机,图3为本发明的所采用的测量电路。
[0110]
采用本发明制作的测量样机对油水两相流持水率进行测量,得到本发明方法与现有方法精度对比图如图4所示,现有电导法测量油水两相流持水率在持水率为20%时精度最高到达1.9%,在持水率为65%时最差精度为2.3%,平均精度为2.15%,本发明测量持水率在持水率15%时最高精度为1.8%,在持水率35%时最差精度为2.15%,平均精度为1.95%。
[0111]
为验证本发明方法可靠性,进行多次实验,其中偏差最大的两次实验结果如图5。由图5可知,所测曲线基本重合,偏差很小,说明本发明提出的一种不受矿化影响的两相流持水率测量法测量效果稳定、重复性好。
[0112]
图6为修正前后的误差对比图,由图6可知,修正前的误差均大于修正后的误差,且修正前最大误差为5%,修正后最大误差为1.8%,故本发明提出的持水率修正方法提高了持水率测量精度。
[0113]
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明只局限于上述具体实施。在不脱离本发明整体思路和权利要求所保护的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1