一种粗粒土填料大直径三轴试验装置的制作方法

文档序号:30751145发布日期:2022-07-13 09:05阅读:221来源:国知局
一种粗粒土填料大直径三轴试验装置的制作方法

1.本发明涉及岩土工程试验仪器技术领域,涉及季节性冻土区粗粒土填料动力特性试验领域,具体而言,涉及一种粗粒土填料大直径三轴试验装置。


背景技术:

2.随着智能化科技的不断发展,人们的生活、工作、学习之中越来越多地用到了智能化设备,使用智能化科技手段,提高了人们生活的质量,增加了人们学习和工作的效率。
3.我国是一个冻土大国,在建和已建的季节冻土区高铁总里程超过7000公里。在典型季节冻土区高铁运营过程中,路基将受到冻融环境因素以及列车荷载的动力作用的综合影响。在此类冻融循环-列车循环动载耦合作用下,路基填料的性能可能会发生劣化,影响列车的安全运行。如何保持路基填料的长期动力工作性能、控制路基不均匀变形,是高铁路基建设运营中需要考虑的关键问题之一。近年来,粗粒土填料作为铁路、公路和大型土石坝工程中广泛采用的工程材料,其物理力学性能以及长期变形特性逐步受到国内外的关注。高铁路基基床填筑采用的a、b组填料即为粗粒土填料。因此,开展冻融循环-列车循环动载耦合作用下粗粒土填料的大直径动三轴试验,探寻粗粒土填料的动力特性和长期变形规律,对季节性冻土区高速铁路的建设运营具有重要的理论指导意义和工程应用价值。本发明的目的是探究季节性冻土区高速铁路路基涉及的冻融循环-列车循环动载耦合作用下粗粒土填料强度和变形特性,改善温度控制和围压施加的方式,实现三轴试验条件下冻融循环和列车循环动载的实时耦合,提出对应的试验装置和试验方法。
4.目前,在现有技术中:
5.(1)非饱和土多场耦合的三轴试验系统及其方法(cn104964878b)。
6.中国科学院武汉岩土力学研究所公开了一种非饱和土多场耦合的三轴试验系统及其方法,涉及环境荷载下的土工试验领域。本试验系统是:在三轴压力室内设置有土样;围压施加和体变监测单元、轴力施加单元、基质吸力施加单元、温度控制单元、化学溶液循环渗透单元和轴向位移测量单元分别与三轴压力室连接,实现对土样施加设定的各项荷载;数据采集单元分别与围压施加和体变监测单元、轴力施加单元、基质吸力施加单元、温度控制单元、化学溶液循环渗透单元和轴向位移测量单元连接,实现各项数据的采集。本发明适用于非饱和土在不同化学作用、不同温度下的脱吸湿、固结、不排水剪切和排水剪切试验,实现非饱和土的温度、水力、力学和化学耦合行为的联合测定。
7.(2)一种三轴试验条件下的土体冻融循环试验装置及试验方法(cn105300808 b)。
8.重庆交通大学公开了一种三轴试验条件下的土体冻融循环试验装置及试验方法,装置包括稳定压力氮气源、高精度压力控制阀门、三通i、开关控制阀门i、开关控制阀门ii、气体加热装置、气体冷凝装置、三通ii、开关控制阀门iii和gds三轴试验仪。稳定压力的氮气源通过高精度压力控制阀门、开关控制阀门i和开关控制阀门ii给气体加热冷凝装置恒压供气,气体加热冷凝装置通过梯度加热冷凝的方式控制位于装置内部的气体,被加热冷凝具有稳定压力的惰性气体通过开关控制阀门iii传输至gds三轴试验仪。可模拟围压、轴
压条件下的冻融循环过程,测试每一级冻融循环过程中的冻胀和融沉,可测定冻融循环之后试样的强度变形特性,分析冻融循环对土体工程性质的影响。
9.(3)一种并联型岩石温度-渗流-应力耦合三轴流变仪(cn1055510144b)。
10.中国科学院武汉岩土力学研究所公开了一种并联型岩石温度-渗流-应力耦合三轴流变仪,包括加载框架,加载框架内设有若干三轴压力室,各三轴压力室的压头分别与轴压伺服控制系统连接,各个三轴压力室通过油管与围压伺服控制系统连接;各三轴压力室内的试样通过水管与孔压伺服控制系统连接;各个三轴压力室的外壁上设有电加热部,电加热部与温度控制系统连接;轴压伺服控制系统、围压伺服控制系统、孔压伺服控制系统、和温度控制系统均和数据采集与控制系统通过电路连接,数据采集与控制系统实时控制试样的应力场、渗流场和温度场,以测量试样在不同的温度-渗流-应力耦合条件下的流变变形。可以同时进行多组不同温度-渗流-应力耦合条件下的流变试验。
11.(4)复杂裂隙岩体水力耦合现场三轴试验系统及方法(cn105973710b)。
12.长江水利委员会长江科学院公开了一种复杂裂隙岩体水力耦合现场三轴试验系统,它包括水密试验舱、三轴应力加载系统、水压加载系统、排水系统和测量系统,其中,三轴应力加载系统包括透水钢板、传力钢板、千斤顶、液压管路和压力控制器,所述水压加载系统包括高压水泵和压力水管路,排水系统包括透水底座和排水管路,测量系统包括渗压计、流量计、应变计、声波换能器、数据线和计算机。该系统通过千斤顶施加三向主应力,通过水密试验舱施加水力条件。
13.目前,考虑环境冻融循环-列车循环动载耦合作用的三轴试验方法主要有以下两大类:(1)顺序耦合方法,即在进行三轴试验前,利用冷柜、恒温恒湿箱等事先对试样施加冻结-融化的温度循环,完成若干次冻融后再进行静、动力加载。该试验方式简单直接,设备需求低,但无法正确考虑冻融过程中的围压、轴压施加,无法真实反映天然状态下的填料应力状态,也无法实时记录应力-应变关系、压缩性、孔压变化等指标;(2)实时耦合方法,即在三轴仪器上额外安装温度控制设备,通过对压力室内部进行升降温循环模拟试样的冻融过程。该试验方式可以考虑温度与力的实时变化,在施加冻融循环的同时考虑试样所受的应力-应变状态,监测体积、孔压变化等。但由于该过程的实现依托于试样周围液体或气体介质的温度变化,整体升降温效率受介质热容和压力室体积影响较大,且温度变化时易造成围压施加的波动。当温度较低时,围压液体甚至可能被冻结,导致试验整体失败。为考虑冻融循环-列车循环动载的真正耦合作用,实时耦合方法是更优的选择。另外,“现有技术方案”中所述的四种与本发明接近的技术方案均为实时耦合的方法。其客观的技术性缺陷简述如下:
14.中国科学院武汉岩土力学研究所的现有技术方案,即非饱和土多场耦合的三轴试验系统及其方法(cn 104964878 b),为实现非饱和土的温度、水力、力学和化学耦合行为模拟,通过对三轴压力室中的水施加压力从而实现对土样施加设定的围压,温度控制则主要依靠置于三轴压力室外罩内壁上的电阻丝和低温恒温冷浴以及温度控制器分别实现加热和降温功能。其问题在于围压介质选用水,不支持0℃及以下低温环境的模拟,水冻结后无法正常施加围压。此外,该方案中三轴试验土样使用标准尺寸(直径39.1cm,高度为8cm),配套压力室体积也较小,难以满足考虑大直径颗粒在内的粗粒土路基填料试样的制备安装。
15.重庆交通大学的现有技术方案,即一种三轴试验条件下的土体冻融循环试验装置
及试验方法(cn 105300808 b),主要通过稳定压力氮气源、气体加热与冷凝装置,使一定温度的惰性气体作用于试样从而实现试样的升降温冻融循环。其问题在于流动气体的作用方式对围压稳定的影响较大;气体通过接触发热管和冷凝管,经历稳流、加热-冷凝、恒温过程,再导入三轴试验仪器,升降温效率受到影响;另一方面,考虑到既需要使气体平稳通过土颗粒,且不破坏土体颗粒结构,进入三轴试验仪的气体压强需要设置为小于20kpa,增加了控制难度和试验限制。
16.中国科学院武汉岩土力学研究所的现有技术方案,即一种并联型岩石温度-渗流-应力耦合三轴流变仪(cn 1055510144 b),通过并联的多个三轴压力室实现多组不同轴压和温度、相同围压和孔压的三轴温度-渗流-应力耦合条件下的流变试验。其问题在于温度控制采用电加热圈缠绕在三轴压力室中部的外表面,两个温度传感器分别置于电加热圈内(一个)和三轴压力室内(一个)的形式,提供试验所需的温度。从外部对围压压力室进行温度控制效率较低,且电加热圈无法实现低温的控制,难以满足冻融需求。
17.长江水利委员会长江科学院的现有技术方案,即复杂裂隙岩体水力耦合现场三轴试验系统及方法(cn 105973710 b),通过千斤顶施加三向主应力,通过水密试验舱施加水力条件,从而模拟有压水环境以及工程岩体渗流场和岩体应力场。但其围压的施加方式更适用于岩体材料,粗粒土填料的适用性有待考证。试验系统无法考虑温度控制,不能实现冻融循环。
18.针对上述的问题,目前尚未提出有效的解决方案。


技术实现要素:

19.本发明实施例提供了一种粗粒土填料大直径三轴试验装置,以至少解决现有技术中的试验装置难以满足考虑大直径颗粒在内的粗粒土路基填料试样的制备安装,增加了试验进行控制的难度的技术问题。
20.根据本发明实施例的一个方面,提供了一种粗粒土填料大直径三轴试验装置,包括:试样000、轴压位移控制单元100、外压力室(气)200、内压力室(液)300、围压控制单元400、循环液供给单元500、温度控制单元600、主控系统700,其中,试样000置于所述内压力室(液)300内部,所述内压力室(液)300的外部连接外所述压力室(气)200,并由所述围压控制单元400提供稳定围压,所述试样000下方连接所述轴压位移控制单元100。
21.可选的,所述温度控制单元600与所述试样000和所述循环液供给单元500连接,用于监测和控制温度。
22.可选的,所述试样单元000包括:试样001、耐高低温橡皮膜002、上透水石003、下透水石004、试样上部加载块005、试样下部加载块006,并依次排列构成一圆柱体。
23.可选的,所述试样001被所述耐高低温橡皮膜002密封包裹于所述试样上部加载块005和所述试样下部加载块006之间。
24.可选的,所述试样单元000整体被浸没在所述内压力室(液)300的耐低温10cs二甲基硅油介质中。
25.可选的,所述轴压位移控制单元100包括:静动力作动器101、活塞杆102、位移传感器103、隔温底座104、传力杆105、压力传感器106,其中,所述静动力作动器101与所述活塞杆102相连,用于提供动载荷。
26.可选的,所述传力杆105和所述压力传感器106沿中轴线连接在所述试样单元000上方并固定于所述外压力室(气)200的顶盖中心处,用于提供反力并实时监测反馈实际轴向力变化情况。
27.可选的,所述外压力室(气)200包括:压力室筒壁201、拉杆202、顶盖203、顶盖排气孔204、承台205、压力室进气口206,其中,所述压力室筒壁201设置在所述顶盖203和所述承台205之间,并用所述拉杆202将所述顶盖204、所述压力室筒壁201和所述承台205固定为一体,内部空间形成与外界隔离的密封结构。
28.可选的,所述压力室进气口206与所述围压控制单元400连接,用于控制设定压力室围压的大小,所述顶盖排气孔204在实验过程中处于封闭状态,试验结束后开并启用于快速排气降压。
29.可选的,所述内压力室(液)300包括:循环冷浴套筒301、循环液螺旋通道302、内压力室导热液体303、保温隔热层侧壁304、保温隔热层顶盖305,其中,所述循环冷浴套筒301为双层空心结构,所述循环冷浴套筒301内部夹缝形成螺旋状的管道通路,所述循环液螺旋通道302用于设定温度的循环液通过,并将温度传递给所述内压力室导热液体303。
30.可选的,所述保温隔热层侧壁304和所述保温隔热层顶盖305固定于内压力室外壁,用于提供保温隔热功能,所述保温隔热层顶盖305具备透气性,所述外压力室(气)200的气压施加于所述内压力室(液)300的所述内压力室导热液体303液面上方。
31.可选的,所述围压控制单元400包括:压力控制器401、气泵402、导气管403、压力伺服阀404。
32.可选的,所述循环液供给单元500包括:循环液供给源501、循环液出口502、保温输液管503、循环液螺旋通道进液口504、循环液螺旋通道出液口505和循环液回流口506,其中,所述循环液供给源501与所述温度控制单元600连接,所述循环液供给源501外接设置有所述循环液出口502、所述循环液回流口506,所述保温输液管503通过所述承台205预留的通道进入压力室内部并连接在所述循环液螺旋通道进液口504以及所述循环液螺旋通道出液口505上,并在依次连通后形成循环回路。
33.可选的,所述温控单元600包括:温度控制器601、导线602和温度传感器探针603,其中,所述温度传感器探针603置于所述内压力室(液)300内部,所述温度传感器探针603通过所述导线602与所述温度控制器601相连接,所述温度控制器601与所述循环液供给源501相连接。
34.可选的,所述主控系统700包括:操作交互界面701、电脑主机702、轴压位移控制单元连接线703、温度控制单元连接线704、围压控制单元连接线705,其中,所述操作交互界面701用于人员进行操作设置试验参数和控制试验流程。
35.在本发明实施例中,采用设置试样000、轴压位移控制单元100、外压力室(气)200、内压力室(液)300、围压控制单元400、循环液供给单元500、温度控制单元600、主控系统700,其中,试样000置于所述内压力室(液)300内部,所述内压力室(液)300的外部连接外所述压力室(气)200,并由所述围压控制单元400提供稳定围压,所述试样000下方连接所述轴压位移控制单元100的方式,解决了现有技术中的试验装置难以满足考虑大直径颗粒在内的粗粒土路基填料试样的制备安装,增加了试验进行控制的难度的技术问题。
附图说明
36.此处所说明的附图用来提供对本发明的进一步理解,构成本技术的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
37.图1是根据本发明实施例的一种粗粒土填料大直径三轴试验装置的主要组成单元及连接关系图;
38.图2是根据本发明实施例的一种粗粒土填料大直径三轴试验装置的装置结构示意图;
39.图3是利用本试验装置施加围压的曲线实例图;
40.图4是利用本试验装置模拟冻融循环过程的温度曲线实例图。
41.其中,试样001、耐高低温橡皮膜002、上透水石003、下透水石004、试样上部加载块005、试样下部加载块006、静动力作动器101、活塞杆102、位移传感器103、隔温底座104、传力杆105、压力传感器106、压力室筒壁201、拉杆202、顶盖203、顶盖排气孔204、承台205、压力室进气口206、循环冷浴套筒301、循环液螺旋通道302、内压力室导热液体303、保温隔热层侧壁304、保温隔热层顶盖305、压力控制器401、气泵402、导气管403、压力伺服阀404、循环液供给源501、循环液出口502、保温输液管503、循环液螺旋通道进液口504、循环液螺旋通道出液口505和循环液回流口506、温度控制器601、导线602、温度传感器探针603、操作交互界面701、电脑主机702、轴压位移控制单元连接线703、温度控制单元连接线704、围压控制单元连接线705。
具体实施方式
42.为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
43.需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
44.根据本发明实施例,提供了一种粗粒土填料大直径三轴试验装置的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
45.实施例一
46.本发明实施例通过配置如图1所示的装置,实现了以下技术效果:
47.1、温度控制的便捷与自动化问题:通过循环冷浴系统实现试样的升降温控制,选
用具有良好耐低温性能的10cs二甲基硅油作为冷浴介质,可在高低温交变循环过程中保持性能的稳定。温度控制器与试样位置的温度传感器连接,实时监测试样温度变化并进行反馈调节,保证设定冻融循环升降温过程的自动化控制。
48.2、压力室内高低温变化与围压稳定施加的矛盾问题:设置气液分离的内、外压力室,将压力室隔离分为气压部和液压部,其中气压部负责施加稳定围压,液压部则连接循环冷浴系统,将试样浸泡于硅油介质中实现试样的升降温。由于气体围压施加便捷迅速,但体积受到温度变化影响较大,在内外压力室之间通过空心套筒和相应隔温装置隔离,使试样周围小范围的温度独立变化,不影响外界围压施加。该措施满足了围压施加的便捷性和稳定性,同时减小了压力室内温度变化范围,提高了冻融循环效率,约12小时完成一次冻融循环。
49.3、大直径粗粒土填料三轴试样的适用性问题:内外压力室与温度控制系统最大可支持300mm直径、600mm高度的大直径三轴试验的安装和静、动力测试。可满足根据规范要求的包含最大60mm粒径的粗粒土试样的尺寸要求。由于设置气液分离的压力室结构,在大直径试样和大体积压力室情况下依旧可以满足围压施加以及升降温的快捷性。
50.4、冻融循环与列车循环动载的实时耦合问题:温度伺服控制系统、围压、轴压、孔压伺服控制系统均与数据采集处理系统保持通讯连接,实时监测、反馈和调整试样的应力场和温度场,可以满足试验测量粗粒土试样在不同温度-应力耦合条件下的静、动力特性和长期变形规律。其中冻融循环通过温控系统中设定随时间变化的升降温曲线实现,列车循环动载通过轴压系统中输入不同车速和幅值的列车动荷载曲线实现。冻融循环和列车循环动载可以进行分步施加、反复间隔施加,也可同步施加,从而实现冻融循环-列车循环动载的实时耦合。
51.图1是根据本发明实施例的一种粗粒土填料大直径三轴试验装置的主要组成单元及连接关系图,如图1所示,该装置包括:试样000、轴压位移控制单元100、外压力室(气)200、内压力室(液)300、围压控制单元400、循环液供给单元500、温度控制单元600、主控系统700,其中,试样000置于所述内压力室(液)300内部,所述内压力室(液)300的外部连接外所述压力室(气)200,并由所述围压控制单元400提供稳定围压,所述试样000下方连接所述轴压位移控制单元100。
52.可选的,所述温度控制单元600与所述试样000和所述循环液供给单元500连接,用于监测和控制温度。
53.可选的,所述试样单元000包括:试样001、耐高低温橡皮膜002、上透水石003、下透水石004、试样上部加载块005、试样下部加载块006,并依次排列构成一圆柱体。
54.可选的,所述试样001被所述耐高低温橡皮膜002密封包裹于所述试样上部加载块005和所述试样下部加载块006之间。
55.具体的,本装置包括试样000、轴压、位移控制单元100、外压力室(气)200、内压力室(液)300、围压控制单元400、循环液供给单元500、温度控制单元600、主控系统700;其位置连接关系为:试样000置于内压力室(液)300内部,其外部连接外压力室(气)200并由围压控制单元400控制以提供稳定围压;试样000下方连接轴压、位移控制单元100对试样施加应力和位移条件;温度控制单元600与试样000连接监测其实时温度并反馈,温度控制单元600又与循环液供给单元500相连控制循环液的温度,循环液供给单元500与内压力室(液)300
的进、出液口相连,为其提供循环液从而使内压力室内部试样周围的介质达到设定温度。可选的,所述试样单元000整体被浸没在所述内压力室(液)300的耐低温10cs二甲基硅油介质中。
56.需要说明的是,如图2所示,图2是根据本发明实施例的一种粗粒土填料大直径三轴试验装置的装置结构示意图,试样单元000包括试样001,设置有耐高低温橡皮膜002、上透水石003、下透水石004、试样上部加载块005、试样上部加载块006,并依次排列构成一圆柱体;试样001被耐高低温橡皮膜002密封包裹于上下部加载块之间,确保其气、液密封性良好。试样单元000整体被浸没在内压力室(液)300的耐低温10cs二甲基硅油介质中。
57.可选的,所述轴压位移控制单元100包括:静动力作动器101、活塞杆102、位移传感器103、隔温底座104、传力杆105、压力传感器106,其中,所述静动力作动器101与所述活塞杆102相连,用于提供动载荷。
58.可选的,所述传力杆105和所述压力传感器106沿中轴线连接在所述试样单元000上方并固定于所述外压力室(气)200的顶盖中心处,用于提供反力并实时监测反馈实际轴向力变化情况。
59.具体的,轴压位移控制单元100包括静、动力作动器101、活塞杆102、位移传感器103、隔温底座104、传力杆105、压力传感器106。其中静、动力作动器101与活塞杆102相连,提供动荷载;位移传感器实时监测并反馈作动器实际位移变化情况;传力杆105和压力传感器106沿中轴线连接在试样单元000上方,固定于外压力室(气)200的顶盖中心处,提供反力并实时监测反馈实际轴向力变化情况。
60.可选的,所述外压力室(气)200包括:压力室筒壁201、拉杆202、顶盖203、顶盖排气孔204、承台205、压力室进气口206,其中,所述压力室筒壁201设置在所述顶盖203和所述承台205之间,并用所述拉杆202将所述顶盖204、所述压力室筒壁201和所述承台205固定为一体,内部空间形成与外界隔离的密封结构。
61.可选的,所述压力室进气口206与所述围压控制单元400连接,用于控制设定压力室围压的大小,所述顶盖排气孔204在实验过程中处于封闭状态,试验结束后开并启用于快速排气降压。
62.具体的,外压力室(气)200包括压力室筒壁201、拉杆202、顶盖203、顶盖排气孔204、承台205、压力室进气口206。其中压力室筒壁201设置在顶盖203和承台205之间,并用拉杆202将顶盖204、压力室筒壁201和承台205固定为一体,内部空间形成与外界隔离的密封结构;压力室进气口206与围压控制单元400连接,以控制设定压力室围压的大小;顶盖排气孔204在实验过程中处于封闭状态,试验结束后开启用于快速排气降压。
63.可选的,所述内压力室(液)300包括:循环冷浴套筒301、循环液螺旋通道302、内压力室导热液体303、保温隔热层侧壁304、保温隔热层顶盖305,其中,所述循环冷浴套筒301为双层空心结构,所述循环冷浴套筒301内部夹缝形成螺旋状的管道通路,所述循环液螺旋通道302用于设定温度的循环液通过,并将温度传递给所述内压力室导热液体303。
64.可选的,所述保温隔热层侧壁304和所述保温隔热层顶盖305固定于内压力室外壁,用于提供保温隔热功能,所述保温隔热层顶盖305具备透气性,所述外压力室(气)200的气压施加于所述内压力室(液)300的所述内压力室导热液体303液面上方。
65.具体的,内压力室(液)300包括循环冷浴套筒301、循环液螺旋通道302、内压力室
导热液体303、保温隔热层侧壁304、保温隔热层顶盖305。其中循环冷浴套筒301为双层空心结构,其内部夹缝形成螺旋状的管道通路,即循环液螺旋通道302供设定温度的循环液通过,将温度传递给内压力室导热液体303以及浸泡在其中的试样单元000;保温隔热层侧壁304和保温隔热层顶盖305固定于内压力室外壁,提供保温隔热功能,且保温隔热层顶盖305具备透气性,外压力室(气)200的气压施加于内压力室(液)300的导热液体303液面上方,并简介施加给试样,实现内外压力的平衡和围压的稳定施加。
66.可选的,所述围压控制单元400包括:压力控制器401、气泵402、导气管403、压力伺服阀404。
67.具体的,围压控制单元400包括压力控制器401、气泵402、导气管403、压力伺服阀404。其中压力控制器401对压力实时监测并依据设定值进行调控,气泵402提供气压动力来源,导气管403连接气泵与压力控制器401以及外压力室(气)200,并通过压力伺服阀404控制通断。
68.可选的,所述循环液供给单元500包括:循环液供给源501、循环液出口502、保温输液管503、循环液螺旋通道进液口504、循环液螺旋通道出液口505和循环液回流口506,其中,所述循环液供给源501与所述温度控制单元600连接,所述循环液供给源501外接设置有所述循环液出口502、所述循环液回流口506,所述保温输液管503通过所述承台205预留的通道进入压力室内部并连接在所述循环液螺旋通道进液口504以及所述循环液螺旋通道出液口505上,并在依次连通后形成循环回路。
69.具体的,循环液供给单元500包括循环液供给源501、循环液出口502、保温输液管503、循环液螺旋通道进液口504、循环液螺旋通道出液口505和循环液回流口506;其中循环液供给源501与温度控制单元600连接,其内部对循环液进行降温或升温,并为循环冷浴的运转提供动力;其外接设置有循环液出口502、循环液回流口506;保温输液管503通过承台205预留的通道进入压力室内部并连接在循环液螺旋通道进液口504以及循环液螺旋通道出液口505上,依次连通后形成循环回路。
70.可选的,所述温控单元600包括:温度控制器601、导线602和温度传感器探针603,其中,所述温度传感器探针603置于所述内压力室(液)300内部,所述温度传感器探针603通过所述导线602与所述温度控制器601相连接,所述温度控制器601与所述循环液供给源501相连接。
71.具体的,温控单元600包括温度控制器601、导线602和温度传感器探针603。其中温度传感器探针603置于内压力室(液)300内部,温度传感器探针603通过导线602与温度控制器601相连接,温度控制器601与循环液供给源501相连接。
72.可选的,所述主控系统700包括:操作交互界面701、电脑主机702、轴压位移控制单元连接线703、温度控制单元连接线704、围压控制单元连接线705,其中,所述操作交互界面701用于人员进行操作设置试验参数和控制试验流程。
73.具体的,温控单元600包括温度控制器601、导线602和温度传感器探针603。其中温度传感器探针603置于内压力室(液)300内部,温度传感器探针603通过导线602与温度控制器601相连接,温度控制器601与循环液供给源501相连接。
74.通过上述实施例,解决了现有技术中的试验装置难以满足考虑大直径颗粒在内的粗粒土路基填料试样的制备安装,增加了试验进行控制的难度的技术问题。
75.实施例二
76.为了实现本发明的技术效果,根据上述一种粗粒土填料大直径三轴试验装置进行试验流程,具体如下:
77.1.打开主控系统700,温度控制单元600,循环液供给单元500、围压控制单元400和轴压、位移控制单元100的电源,打开操作界面,观察是否所有单元传感器是否正常工作,将轴向作动器设置到一合适的高度。
78.2.安装试样001,在隔温底座104上放置下透水石004,滤纸。截取耐高低温橡皮膜002为合适长度,把耐高低温橡皮膜002套在试样001外部并密封固定于隔温底座104,然用橡胶条将橡胶模的下部扎紧做好密封。在试样001的顶部放上滤纸及上透水石003以及上部加载块005并做好顶部密封措施,试样制作完毕。
79.3.放置温控内压力室(液)300,把循环冷浴套筒301安装在试样001外部,并在底部固定于隔温底座104,确保内压力室的下部接缝处的密封性。
80.4.向内压力室(液)300中倒入内压力室导热液体303(耐低温10cs二甲基硅油),检查内压力室的密闭处是否有油液渗滴。确认无渗滴候,将硅油住满内压力室,需要的硅油大约为6l左右,硅油应没过试样上部加载块005。
81.5.安装外压力室(气)200,用螺栓将压力室筒壁201、拉杆202及承台205拧紧连接,检查密封处气密性。
82.6.将围压控制单元400的导气管403连接至外压力室(气)200,利用主控系统700操作施加设定的围压值。
83.7.在温度控制单元600和主控系统700建立正常通讯后,在操作交互界面701设置目标温度值,等温度达到目标温度时,即可进行动三轴动态加载。温度控制最大范围为-60~200℃,在-20~60℃范围单次升、降温速度可达到3.3℃/h。
84.8.试验加载过程:通过主控系统700的操作交互界面701,可进行变温加载耦合试验,在试验步中设置随时间变化的温度曲线和列车荷载曲线。程序可实时对围压、温度、轴向力或位移进行实时监测和控制。围压与静、动力加载过程:例如可以将围压加至100kpa,历程时间10分钟,维持轴向力保持不变。选择围压加载指令,添加目标值,在时间框中添加10min。轴向力指令,设置轴向力目标值,使传力杆105自动接触至试样上部加载块005。后续进行动力加载一般有两种控制模式,即轴向力控制或者是轴向位移控制。轴向力最大64kn,控制精度<0.1%,位移最大范围100mm,控制精度0.20μm。可设置的试验参数包括频率、幅值、中间值等。可以实现不同速度、不同轴重列车循环动载时程曲线的模拟施加。
85.9.试验结束拆样:试验结束以后,将轴向压力卸载,移动活塞杆102至最低点,并设置围压为0kpa,缓缓打开顶盖排气孔204,等待围压降至0;依次拆卸外压力室(气)200、内压力室(液)300以及试样单元000,排出内压力室(液)300内部的导热液体303以及循环液,关闭主控系统700,断开与各单元的通讯,关闭电源。
86.图3是利用本试验装置施加围压的曲线实例图。可以看出,在200s左右即3.3min内,围压即达到了设定值60kpa,上升速率约18kpa/min。经过短暂的稳定平衡过程后,围压即稳定在60kpa保持不变,500s后始终维持该设定值。相对于单纯液体围压的施加方式,本装置的围压施加避免了大量介质液的注入、稳定乃至泄压回收过程的时间浪费,可以实现大容量压力室空间的高效、稳定围压施加功能。
87.图4是利用本试验装置模拟冻融循环过程的温度曲线实例图。可以看出,以30℃~-15℃为最大和最小温度控制设定值,完成一个完整冻融循环约需40000s,即约11.1h,其中降温过程需要约5.2h,升温过程需要约5.9h。冻融循环过程以控制系统实现自动化温度控制,升、降温效率较高,能够满足大直径粗粒土试样和大空间压力室的试验需求。
88.通过本发明实施例,使得本发明与现有技术相比较,具有以下优势:
89.1.气、液分离的内外双压力室设置,对三轴压力室进行分区处理,内、外双层压力室极大提高了升降温效率,气、液分离措施以及耐低温硅油的使用有效避免了围压介质低温冻结和压力不稳定的问题。
90.2.更加适用于高速铁路路基大直径粗粒土填料试样,利用大体积外压力室和可拆卸式内压力室,可以适配最大300mm直径、600mm高度的大直径粗粒土试样,真实模拟现场填筑材料的物理力学特征,同时满足高效率围压施加和升降温控制。
91.3.实现冻融循环与列车循环动载实时耦合的自动化过程,利用轴压、位移控制单元、温度控制单元、围压控制单元,可以在主控系统中实时监测与调控静、动荷载和升降温变化,可以支持循环动载、围压、温度的时程曲线的设置,并考虑多级、多阶段冻融循环与不同频率、幅值列车动载循环的耦合施加,实现冻融循环与列车循环动载的自动化实时耦合,获取不同冻融阶段和设定温度条件下的路基填料静、动力特性。
92.上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
93.在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
94.在本技术所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
95.所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
96.另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
97.所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
98.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1