基于多参考基点的三维激光中心测距方法、系统及终端与流程

文档序号:28123902发布日期:2021-12-22 15:36阅读:109来源:国知局
基于多参考基点的三维激光中心测距方法、系统及终端与流程

1.本发明涉及激光测距技术领域,更具体地说,它涉及基于多参考基点的三维激光中心测距方法、系统及终端。


背景技术:

2.激光测距装置是利用激光对目标的距离进行准确测定的仪器。激光测距装置在工作时向目标射出一束激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
3.现有的激光测距大部分采用单光束进行测距,其具有结构简单、测距效率高,但受仪器本身的精度误差、操作误差、环境干扰等因素影响,使得单光束激光测距的误差较大,环境干扰如烟雾、灰尘、雨滴等因素的干扰。为了有效提高激光测距的精度,部分采用了多光束测距方式;现有的多光束测距在同一光源点分离出多个不同角度的光束,依据光束角度和对应光束的测距信息得到相应的测距结果,并依据不同角度的测距结果进行均值计算,得到最后的测距结果,可以有效避免激光测距出现较大的误差,主要适应于表面平整的目标物测距;此外,还有部分多光束激光测距过程,对可调控的目标表面进行转动,以此测量多组数据进行误差校准,主要适应于可移动目标物的测距;另外,还有部分多光束激光测距在不同的光源点以不同角度的光束对同一目标点进行测量。
4.现有的多光束激光测距以多个光束为参考虽然能够有效降低目标物的激光测距误差,但是作为参考的光束也会受到各种因素影响,从而导致激光测距误差降低的效果并不能完成达到理想状态。因此,如何研究设计一种能够克服上述缺陷的基于多参考基点的三维激光中心测距方法、系统及终端是我们目前急需解决的问题。


技术实现要素:

5.为解决现有技术中的不足,本发明的目的是提供基于多参考基点的三维激光中心测距方法、系统及终端。
6.本发明的上述技术目的是通过以下技术方案得以实现的:第一方面,提供了基于多参考基点的三维激光中心测距方法,包括以下步骤:通过中心激光测距器采集目标点的中心测距信息,并将中心测距信息转为中心测距向量;根据中心测距向量确定分布在中心激光测距器四周的边缘激光测距器的测距角度,并通过边缘激光测距器采集目标点的边缘测距信息,以及将边缘测距信息转为边缘测距向量;根据多个边缘测距向量之和计算得到标准测距向量,并以中心测距向量在标准测距向量的投影作为最终测距向量的模;
根据标准测距向量与中心测距向量之和计算得到参考测距向量,并以参考测距向量的方向作为最终测距向量的方向;将最终测距向量的模与方向融合后得到表征最终测距信息的最终测距向量。
7.进一步的,多个所述边缘激光测距器的测距线路呈三维立体分布,且中心激光测距器的测距线路位于多个边缘激光测距器对应测距线路所覆盖的三维立体空间内。
8.进一步的,所述边缘激光测距器的测距角度计算公式具体为:其中,表示边缘激光测距器与中心激光测距器的测距方向夹角,即边缘激光测距器的测距角度;表示中心测距向量;表示边缘激光测距器到中心激光测距器的直线距离。
9.进一步的,该方法还包括:依据中心测距向量、标准测距向量相对于各个边缘测距向量的偏移向量对最终测距向量的模进行路径误差校准处理。
10.进一步的,所述最终测距向量的模进行路径误差校准处理的过程具体为:根据边缘测距向量与中心测距向量之差,得到对应边缘激光测距器的实测偏移向量;在标准测距向量上截取与中心测距向量的模一致的向量作为标准测距向量的基准向量,并根据边缘测距向量与基准向量之差,得到对应边缘激光测距器的理论偏移向量;根据理论偏移向量与实测偏移向量之和计算得到相应边缘激光测距器的偏移量差;以偏移量差与标准测距向量的单位向量之间的向量积作为对应边缘激光测距器的误差校准量;根据最终测距向量的模与将所有误差校准量之和的差计算得到校准后的最终测距向量。
11.进一步的,所述最终测距向量的模进行路径误差校准处理的计算公式为:其中,表示校准后最终测距向量的模;表示中心测距向量;表示中心测距向量与标准测距向量的夹角度数;表示边缘激光测距器的数量;表示第个边缘激光测距器的校正系数;表示第个边缘激光测距器对应的边缘测距向量;表示基准向量;表示标准测距向量的单位向量。
12.进一步的,所述校正系数与边缘测距向量、标准测距向量之间的角度度数呈正相关。进一步的,所述校正系数的计算公式具体为:
其中,表示边缘激光测距器的测距角度;表示标准测距向量。
13.第二方面,提供了基于多参考基点的三维激光中心测距系统,包括:中心测距模块,用于通过中心激光测距器采集目标点的中心测距信息,并将中心测距信息转为中心测距向量;边缘测距模块,用于根据中心测距向量确定分布在中心激光测距器四周的边缘激光测距器的测距角度,并通过边缘激光测距器采集目标点的边缘测距信息,以及将边缘测距信息转为边缘测距向量;模分析模块,用于根据多个边缘测距向量之和计算得到标准测距向量,并以中心测距向量在标准测距向量的投影作为最终测距向量的模;方向分析模块,用于根据标准测距向量与中心测距向量之和计算得到参考测距向量,并以参考测距向量的方向作为最终测距向量的方向;融合模块,用于将最终测距向量的模与方向融合后得到表征最终测距信息的最终测距向量。
14.第三方面,提供了一种计算机终端,包含存储器、处理器及存储在存储器并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面中任意一项所述的基于多参考基点的三维激光中心测距方法。
15.与现有技术相比,本发明具有以下有益效果:1、 本发明提出的基于多参考基点的三维激光中心测距方法,即考虑了多个参考基点边缘测距对中心测距的距离值大小影响,又考虑了边缘测距与中心测距的误差情况同时对目标点真实测距的方向影响,使得最终测距向量与真实距离情况的差异相对较小,有效降低了激光测距的波动性,从而使得激光测距的稳定性更强;2、本发明依据中心测距向量灵活调整边缘测距的测距方向,能够使得中心激光测距器和边缘激光测距器在同一目标物表面的真实测量点之间的离散度较低,从而增强了边缘激光测距器作为参考基点的可靠性;3、本发明依据各个边缘测距向量相对于中心测距向量、标准测距向量的差异性分布,即不同角度的光束路径受环境干扰等因素带来的误差,共同对最终测距向量的模进行误差校准,提高了激光测距的精确度;4、本发明还考虑了各个边缘测距向量对差异性分布的贡献情况,并以动态生成的校正系数对误差校准进行灵活调整,进一步提高了激光测距的精确度。
附图说明
16.此处所说明的附图用来提供对本发明实施例的进一步理解,构成本技术的一部分,并不构成对本发明实施例的限定。在附图中:图1是本发明实施例中的流程图;图2是本发明实施例中的分析示意图;
图3是本发明实施例中的系统框图。
具体实施方式
17.为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
18.实施例1:基于多参考基点的三维激光中心测距方法,如图1与图2所示,包括以下步骤:s1:通过中心激光测距器采集目标点的中心测距信息,并将中心测距信息转为中心测距向量;s2:根据中心测距向量确定分布在中心激光测距器四周的边缘激光测距器的测距角度,并通过边缘激光测距器采集目标点的边缘测距信息,以及将边缘测距信息转为边缘测距向量;s3:根据多个边缘测距向量之和计算得到标准测距向量,并以中心测距向量在标准测距向量的投影作为最终测距向量的模;s4:根据标准测距向量与中心测距向量之和计算得到参考测距向量,并以参考测距向量的方向作为最终测距向量的方向;s5:将最终测距向量的模与方向融合后得到表征最终测距信息的最终测距向量。
19.本发明即考虑了多个参考基点边缘测距对中心测距的距离值大小影响,又考虑了边缘测距与中心测距的误差情况同时对目标点真实测距的方向影响,使得最终测距向量与真实距离情况的差异相对较小,有效降低了激光测距的波动性,从而使得激光测距的稳定性更强。
20.多个边缘激光测距器的测距线路呈三维立体分布,且中心激光测距器的测距线路位于多个边缘激光测距器对应测距线路所覆盖的三维立体空间内。作为一种优选的实施方式,多个边缘激光测距器与中心激光测距器可分布在同一基座平面内,多个边缘激光测距器沿中心激光测距器圆周方向均匀分布,中心激光测距器位于多个边缘激光测距器的中心,且中心激光测距器的测距方向尽可能保持与基座平面垂直。
21.边缘激光测距器的测距角度计算公式具体为:其中,表示边缘激光测距器与中心激光测距器的测距方向夹角,即边缘激光测距器的测距角度;表示中心测距向量;表示边缘激光测距器到中心激光测距器的直线距离。
22.本发明依据中心测距向量灵活调整边缘测距的测距方向,能够使得中心激光测距器和边缘激光测距器在同一目标物表面的真实测量点之间的离散度较低,从而增强了边缘激光测距器作为参考基点的可靠性。
23.实施例2:基于多参考基点的三维激光中心测距方法,如图2所示,实施例2与实施例1的不同之处在于:为了提高三维激光中心测距的精确度,依据中心测距向量、标准测距
向量相对于各个边缘测距向量的偏移向量对最终测距向量的模进行路径误差校准处理。
24.最终测距向量的模进行路径误差校准处理的过程具体为:s21:根据边缘测距向量与中心测距向量之差,得到对应边缘激光测距器的实测偏移向量;s22:在标准测距向量上截取与中心测距向量的模一致的向量作为标准测距向量的基准向量,并根据边缘测距向量与基准向量之差,得到对应边缘激光测距器的理论偏移向量;s23:根据理论偏移向量与实测偏移向量之和计算得到相应边缘激光测距器的偏移量差;s24:以偏移量差与标准测距向量的单位向量之间的向量积作为对应边缘激光测距器的误差校准量;s25:根据最终测距向量的模与将所有误差校准量之和的差计算得到校准后的最终测距向量。
25.本发明依据各个边缘测距向量相对于中心测距向量、标准测距向量的差异性分布,即不同角度的光束路径受环境干扰等因素带来的误差,共同对最终测距向量的模进行误差校准,提高了激光测距的精确度。
26.最终测距向量的模进行路径误差校准处理的计算公式为:其中,表示校准后最终测距向量的模;表示中心测距向量;表示中心测距向量与标准测距向量的夹角度数;表示边缘激光测距器的数量;表示第个边缘激光测距器的校正系数;表示第个边缘激光测距器对应的边缘测距向量;表示基准向量;表示标准测距向量的单位向量。
27.以极限法进行分析:1)假设边缘测距定位的标准测距向量与真实测量方向一致,而中心测距的测量方向存在偏差, 在不考虑目标物表面凹凸差异的影响,可知,中心测距向量的模相比于真实距离值较大,进行投影分析后最终测距向量的模接近真实距离值;同时,考虑到近似环境下的偏差存在部分相同,所以中心测距向量与标准测距向量的夹角度数一般情况下相对于实际情况会小,而误差校正的向量积计算结果为正值,可进一步进行误差校正。
28.2)假设中心测距定位的中心测距向量与真实测量方向一致,而边缘测距的测量方向存在偏差, 在不考虑目标物表面凹凸差异的影响,可知,中心测距向量的模非常接近真实距离值,但是一般情况小于真实距离值,进行投影分析后最终测距向量的模接近小于真
实距离值;同时,考虑到近似环境下的偏差存在部分相同,所以中心测距向量与标准测距向量的夹角度数一般情况下相对于实际情况会小,而误差校正的向量积计算结果为负值,可进一步进行误差校正。
29.校正系数与边缘测距向量、标准测距向量之间的角度度数呈正相关。进一步的,校正系数的计算公式具体为:其中,表示边缘激光测距器的测距角度;表示标准测距向量。
30.本发明还考虑了各个边缘测距向量对差异性分布的贡献情况,并以动态生成的校正系数对误差校准进行灵活调整,进一步提高了激光测距的精确度。
31.需要说明的是,校正系数还可以采用各个边缘测距向量相对于标准测距向量的角度值占所有角度值的均值比进行正相关设置。
32.实施例3:基于多参考基点的三维激光中心测距系统,如图3所示,包括中心测距模块、边缘测距模块、模分析模块、方向分析模块和融合模块。
33.其中,中心测距模块,用于通过中心激光测距器采集目标点的中心测距信息,并将中心测距信息转为中心测距向量;边缘测距模块,用于根据中心测距向量确定分布在中心激光测距器四周的边缘激光测距器的测距角度,并通过边缘激光测距器采集目标点的边缘测距信息,以及将边缘测距信息转为边缘测距向量;模分析模块,用于根据多个边缘测距向量之和计算得到标准测距向量,并以中心测距向量在标准测距向量的投影作为最终测距向量的模;方向分析模块,用于根据标准测距向量与中心测距向量之和计算得到参考测距向量,并以参考测距向量的方向作为最终测距向量的方向;融合模块,用于将最终测距向量的模与方向融合后得到表征最终测距信息的最终测距向量。
34.工作原理:本发明即考虑了多个参考基点边缘测距对中心测距的距离值大小影响,又考虑了边缘测距与中心测距的误差情况同时对目标点真实测距的方向影响,使得最终测距向量与真实距离情况的差异相对较小,有效降低了激光测距的波动性,从而使得激光测距的稳定性更强;同时,本发明还依据各个边缘测距向量相对于中心测距向量、标准测距向量的差异性分布,即不同角度的光束路径受环境干扰等因素带来的误差,共同对最终测距向量的模进行误差校准,提高了激光测距的精确度。
35.本领域内的技术人员应明白,本技术的实施例可提供为方法、系统、或计算机程序产品。因此,本技术可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本技术可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd

rom、光学存储器等)上实施的计算机程序产品的形式。
36.本技术是参照根据本技术实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流
程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
37.这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
38.这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
39.以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1