智能电路中断的制作方法

文档序号:32481284发布日期:2022-12-09 22:48阅读:44来源:国知局
智能电路中断的制作方法
智能电路中断
1.相关申请的交叉引用
2.本技术要求2020年1月21日提交的美国临时申请序列第62/964,078号的权益,其公开内容通过引用并入本文。
技术领域
3.本公开整体涉及用来保护电路免受诸如电弧故障状况之类的故障状况的影响的电路中断技术。


背景技术:

4.通常,电路断续器是在给定建筑物或家庭结构的配电系统中使用的组件,用于保护分支电路导体和电气负载免受例如电流过载状况和故障状况的影响。电流过载状况被定义为设备运行超过其正常满载额定值,或分支电路超过其载流量,当过载持续足够长的一段时间时,会导致损坏或危险的过热。故障状况包括非预期的或意外的负载状况,这些状况通常会产生比过载高得多的过电流状况,具体取决于故障的阻抗。产生最大过电流状况的故障称为短路或“螺栓式故障”。
5.存在各种类型的电路断续器装置,包括但不限于电弧故障电路断续器(afci)装置。afci装置被设计来防止可能由电路中潜在危险的电弧故障引起的电气火灾。电弧故障是电路中发生的一种意外电弧放电状况。电弧放电会产生高强度的热量,会点燃周围的材料并引起火灾。afci装置被配置为检测电路中的电弧放电状况并断开电路以停止电弧放电。afci装置被设计来区分由于电气装置的正常运行(例如,触点或开关的打开/闭合、带刷电机的运行、诸如空调、冰箱、工具等家用电器的运行)而产生的无害电弧以及由以下原因引起的潜在危险电弧,例如,电线绝缘层损坏、导致连接之间产生电弧的连接松动、电线中的导体断裂等,这些可能导致串联电弧故障或并联电弧故障。
6.作为具体示例,触点磨损的电源插座(例如,插座)是导致电气火灾的电弧放电的常见原因。随着时间的推移,电源插座的触点弹簧会随着电插头的重复插入而磨损,这会导致触点弹簧失去张力并使插座触点与电插头端子之间的连接劣化。触点连接的这种劣化导致在电源插座内产生电弧,随着时间的推移会导致插座触点出现点蚀、熔化和飞溅,从而引发危险的电气火灾。
7.常规的断路器通常被配置为防范电流过载和短路状况,而不能防范产生不稳定且经常减小的电流的电弧放电状况。事实上,分支电路中的电弧故障状况通常会导致电流和电压降低,这并非常规断路器被针对设计来防范的短路或过载状况的特征或指示。例如,并联电弧故障的rms电流值将大大小于螺栓式短路故障的rms电流值。因此,没有afci保护的常规典型15安培断路器将无法在可能点燃火灾之前清除电弧故障。


技术实现要素:

8.本公开的实施例包括用来保护电路免受诸如电弧故障状况之类的故障状况的影
响的电路断续器装置和方法。例如,在一个示例性实施例中,一种电路断续器装置包括线路火线端子、线路中性线端子、负载火线端子、负载中性线端子、固态开关、内部短路开关电路和控制电路。固态开关串联连接在线路火线端子与负载火线端子之间的电气路径中。内部短路开关电路包括串联连接在第一节点与第二节点之间的内部短路开关和分流电阻器,其中第一节点耦合到线路火线端子并且第二节点耦合到线路中性线端子。控制电路耦合到固态开关和内部短路开关电路。控制电路被配置为检测故障状况的发生并且响应于检测到故障状况的发生将固态开关驱动到断开状态。控制电路还被配置为响应于检测到故障状况的发生而激活内部短路开关,从而在第一节点与第二节点之间产生内部短路路径并允许短路电流流过电路断续器装置的线路火线端子与线路中性线端子之间的分流电阻器。
9.另一个示例性实施例包括一种系统,该系统包括断路器和电路断续器装置。断路器包括线路输入端子和负载输出端子,其中断路器的线路输入端子耦合到交流(ac)电源。电路断续器装置耦合到断路器的负载输出端子。电路断续器装置包括线路火线端子、线路中性线端子、负载火线端子、负载中性线端子、固态开关、内部短路开关电路和控制电路。固态开关串联连接在线路火线端子与负载火线端子之间的电气路径中。内部短路开关电路包括串联连接在第一节点与第二节点之间的内部短路开关和分流电阻器,其中第一节点耦合到线路火线端子并且第二节点耦合到线路中性线端子。控制电路耦合到固态开关和内部短路开关电路。控制电路被配置为检测故障状况的发生并且响应于检测到故障状况的发生将固态开关驱动到断开状态。控制电路还被配置为响应于检测到故障状况的发生而激活内部短路开关,从而在第一节点与第二节点之间产生内部短路路径并允许短路电流流过电路断续器装置的线路火线端子与线路中性线端子之间的分流电阻器,其中电路断续器装置的线路火线端子与线路中性线端子之间的短路电流的流动足以使断路器跳闸。
10.另一个示例性实施例包括一种由电路断续器装置实现的方法。该方法包括:检测受断路器保护的分支电路上的故障状况的发生,以及响应于检测到故障状况的发生而中断该分支电路上的负载电流的流动。该方法还包括;响应于检测到故障状况的发生而产生短路路径以允许短路电流流过电路断续器装置内的分流电阻器,其中短路电流在电路断续器装置内的流动使断路器跳闸并断开ac电源与分支电路的连接。
11.其他实施例将在以下示例性实施例的详细描述中进行描述,其将结合附图进行阅读。
附图说明
12.图1示意性地示出了包括根据本公开的示例性实施例的智能电路断续器装置的电气系统。
13.图2示意性地示出了在没有电弧故障状况的正常操作状况下公用电源的示例性ac波形。
14.图3是根据本公开的示例性实施例的用于提供电路中断的方法的流程图。
具体实施方式
15.现在将关于用来保护电路免受诸如电弧故障状况之类的故障状况的影响的电路断续器装置和方法来更详细地描述本公开的实施例。如本文所用,术语“示例性”是指“用作
示例、实例或说明”。本文中描述为“示例性”的任何实施例或设计不应被解释为优于或有利于其他实施例或设计。
16.图1示意性地示出了包括根据本公开的示例性实施例的智能电路断续器装置的电气系统。特别地,图1示意性地示出了电气系统50,该电气系统包括公用电源10(在本文中称为ac干线电源10)、断路器15和包括智能电路断续器装置100和负载20的分支电路。ac干线电源10包括火线相11(称为“线路火线”11)和中性线相12(称为“线路中性线”12)。断路器15包括线路输入端子15a和负载输出端子15b。智能电路断续器装置100包括线路火线端子100a(或第一输入端子)、线路中性线端子100b(或第二输入端子)、负载火线端子100c(或第一输出端子)、负载中性线端子100d(或第二输出端子)和接地端子100e。断路器15的线路输入端子15a耦合到ac干线电源10的线路火线11,断路器15的负载输出端子15b耦合到智能电路断续器装置100的线路火线端子100a。智能电路断续器装置100的线路中性线端子100b耦合到ac干线电源10的线路中性线12。智能电路断续器装置100的负载火线端子100c耦合到负载20的负载火线21,智能电路断续器装置100的负载中性线端子100d耦合到负载20的负载中性线22。
17.在诸如图1所示的一些实施例中,智能电路断续器装置100是耦合到受断路器15保护的分支电路的装置(例如,第一分支电源插座)。在一些实施例中,智能电路断续器装置100是断路器15下游的分支电路上的第一装置。就这一点而言,负载20一般意在表示:(i)直接连接到智能电路断续器装置100的负载侧的一个或多个电气装置,(ii)耦合到智能电路断续器装置100的负载侧的一个或多个分支电源插座(例如,标准分支插座),(iii)插入到一个或多个分支电源插座中的一个或多个电气装置,或(iv)-(i)、(ii)和(iii)的组合。
18.如图1进一步所示,ac干线电源10的线路中性线12结合到接地14(gnd)。接地14通常连接到断路器配电板中的接地棒,其中接地棒接合到断路器配电板中的中性线条。从断路器配电板中的接地棒到智能电路断续器装置100的接地端子100e实现接地连接16。类似的接地连接是从分支电路上的其他插座或装置(例如负载20)到断路器配电板中的接地棒来实现。接地连接16为在智能电路断续器装置100或负载20内发生接地故障状况的情况下接地故障返回电流提供替代的低电阻路径。
19.在一些实施例中,断路器15被配置为响应于过电流和短路故障状况而“跳闸”。如上所述,当设备以超过其正常的满载额定值或分支电路以超过其载流量运行时,会发生过电流状况,当过电流状况持续足够长的一段时间时,会导致损坏或危险的过热。短路故障状况包括非预期或意外负载状况,这些状况产生比过电流状况高得多的电流过载,具体取决于故障的阻抗。如上所述,产生最大过电流状况的故障称为短路或“螺栓式故障”。在一些实施例中,断路器15不是afci保护装置。
20.在一些实施例中,断路器15包括机电断路器,其包括诸如机械ac开关(例如,气隙开关)、机械致动器机构、电磁致动器元件(例如,螺线管)、热致动器元件(例如,双金属元件)和手动开关之类的元件。在一些实施例中,机械气隙开关包括通过机械致动器机构(例如,具有弹簧元件的闩锁机构)的操作而物理闭合或分离的第一和第二触点。特别地,机械致动器机构被配置为响应于将手动开关手动致动到“开启”位置而将第一和第二触点物理地闭合在一起,从而允许电流在断路器15的线路输入端子15a与负载输出端子15b之间的电气路径中流动。此外,机械致动器机构被配置为手动地响应于将手动开关手动致动到“关
闭”位置或自动响应短路状况或长时间过电流状况的发生而物理分离机械ac开关的第一和第二触点(即,使断路器15跳闸)。当断路器15手动或自动跳闸时,在机械ac开关的第一和第二触点之间产生气隙。
21.特别地,电磁致动器元件(例如螺线管)被配置为响应于由例如短路事件产生的电流中的大电涌而被磁致动,其中电磁元件的致动导致致动器机构的机械致动以分离ac开关的第一和第二触点,从而使断路器15跳闸。此外,热致动器元件(例如,双金属元件)被配置为响应于长时间的过电流状况而被热致动,其中热致动器元件的致动导致致动器机构的机械致动以分离ac开关的第一和第二触点,从而使断路器15跳闸。就这一点而言,断路器15的电磁元件对电流中的大电涌(短路)作出瞬时响应,而热致动器元件对不太极端但更长期的过电流状况作出响应。一旦跳闸,断路器15必须使用手动开关手动复位(例如,将手动开关切换到“关闭”位置,然后切换到“开启”位置)。
22.在一些实施例中,智能电路断续器装置100包括串联连接在线路火线端子100a与负载火线端子100c之间的电气路径中的固态开关101/102、控制电路110和内部短路开关电路120。内部短路开关电路120包括串联连接在第一节点n1与第二节点n2之间的内部短路开关121/122和短路限流电阻器r4(本文中另选地称为分流电阻器r4)。第一节点n1耦合到线路火线端子100a,并且第二节点n2耦合到线路中性线端子100b。控制电路110耦合到固态开关101/102和内部短路开关电路120。如下文进一步详细解释的,控制电路110被配置为:(i)检测故障状况的发生,(ii)响应于检测到故障状况的发生而驱动固态开关101/102进入断开状态,以及(iii)响应于检测到故障状况的发生而激活内部短路开关121/122,从而在第一节点n1与第二节点n2之间产生内部短路路径并允许短路电流流过电路断续器装置100的线路火线端子100a与线路中性线端子100b之间的分流电阻器r4,从而使断路器15跳闸并且断开ac电源10与分支电路的连接。
23.固态开关101/102包括形成双向固态开关的第一开关101和第二开关102。在一些实施例中,电流传感器105串联连接在第一和第二开关101和102之间。在一些实施例中,第一和第二开关101和102各自包括金属-氧化物-半导体场效应晶体管(mosfet)开关(例如,功率mosfet开关)。在一些实施例中,第一和第二开关101和102包括n型增强mosfet装置。第一和第二开关101和102背靠背串联连接,并且具有通过电流传感器105耦合的源极(s)端子和连接到控制电路110的共同连接的栅极(g)端子。第一开关101包括耦合到线路火线端子100a的漏极端子,并且第二开关102包括耦合到负载火线端子100c的漏极端子。
24.如图1进一步所示,第一和第二mosfet开关101和102分别包括固有的体二极管101-1和102-1,其中每个体二极管代表mosfet开关的p型衬底主体与n掺杂漏极区之间的p-n结。体二极管101-1和102-1是mosfet开关101和102的固有元件(即,不是分立元件),因此用虚线连接示出。需要注意的是,mosfet开关101和102的固有体-源极二极管未示出,因为它们被源极区和衬底主体之间的连接短路(例如,n+源极和p掺杂主体结通过源极金属化短路)。
25.固态开关101/102被配置为:(i)当固态开关101/102处于接通状态时允许负载电流在智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间双向流动,以及(ii)当固态开关101/102处于断开状态时阻断负载电流在智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间的双向流动。
26.控制电路110包括电流传感器105和一个或多个集成电路块,这些集成电路块实现断路器致动器电路111、开关控制电路112、电流极限检测电路113、数字信号处理器114、功率测量微处理器115、ac-dc转换器电路116、电压传感器电路117和无线控制电路118,它们的功能将在下面更详细地解释。如上所述,内部短路开关电路120包括串联连接在第一节点n1与第二节点n2之间的内部短路开关121/122和分流电阻器r4。如图1进一步所示,内部短路开关电路120包括开关偏置电路123(在本文中另选地称为自偏置电路123)和致动开关124。开关偏置电路123包括第一和第二电阻器r1和r2、第一和第二二极管d1和d2、第三电阻器r3、电容器c1和齐纳二极管zd。
27.在一些实施例中,内部短路开关121/122包括双向固态开关,该双向固态开关包括分别包括本征体二极管121-1和122-1的第一mosfet开关121和第二mosfet开关122。第一和第二mosfet开关121和122包括共同耦合到第三节点n3的栅极(g)端子和共同耦合到第四节点n4的源极(s)端子,其中第四节点n4包括内部短路开关电路120的虚拟接地节点。第一和第二mosfet开关121和122的栅极(g)端子通过第三节点n3连接到开关偏置电路123。第一mosfet开关121包括耦合到第一节点n1的漏极(d)端子,并且第二mosfet开关122包括通过分流电阻器r4耦合到第二节点n2的漏极(d)端子。在如图1所示的一些实施例中,分流电阻器r4连接在第二mosfet开关122的漏极端子与第二节点n2之间。在其他实施例中,分流电阻器r4可以连接在第一mosfet开关121的漏极端子与第一节点n1之间。
28.如图1进一步所示,致动开关124耦合在第三节点n3与第四节点n4之间。第一和第二mosfet开关121和122基本上作为内部短路开关操作,其通过致动开关124的操作来激活/停用。在一些实施例中,致动开关124包括双极结型晶体管(bjt)(例如,npn bjt)或绝缘栅双极晶体管(igbt),其具有耦合到断路器致动器电路111的基极(b)端子、耦合到第一和第二mosfet开关121和122的共同连接的源极(s)端子的发射极(e)端子(在第四节点n4处),以及连接到第一和第二mosfet开关121和122的共同连接的栅极(g)端子的集电极(c)端子(在第三节点n3处)。
29.此外,开关偏置电路123包括自偏置电路,该自偏置电路被配置为使用从施加到电路断续器装置100的线路火线和线路中性线端子100a和100b的ac电源汲取的电流产生调节的直流(dc)电压,并通过电阻器r3将调节的dc电压施加到内部短路开关的第一和第二mosfet开关121和122的栅极端子。自偏置电路包括被配置为产生调节的dc电压的电压钳位电路,其中电压钳位电路包括并联连接在第五节点n5与第四节点n4之间的电容器c1和齐纳二极管zd。此外,自偏置电路包括串联连接在第一节点n1与第五节点n5之间的第一电阻器r1和第一二极管d1,以及串联连接在第二节点n2与第五节点n5之间的第二电阻器r2和第二二极管d2。下面将更详细地讨论内部短路开关电路120的操作。
30.在一些实施例中,控制电路110通过开关控制电路112的操作来控制双向固态开关101/102的激活和停用。在一些实施例中,开关控制电路112被配置为产生栅极控制信号,该栅极控制信号被施加到第一和第二mosfet开关101和102的栅极端子以将双向固态开关101/102置于接通状态或断开状态。特别地,在智能电路断续器装置100的正常操作期间,开关控制电路112将栅极控制信号施加到第一和第二mosfet开关101和102的栅极端子以将双向固态开关101/102置于接通状态,这允许ac负载电流在智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间双向流动。
31.另一方面,当控制电路110的给定电路块检测到故障状况或异常操作状况(例如,串联电弧放电、并联电弧放电、短路状况、过电流状况、接地故障状况、异常负载功率分布等)时,控制电路110将产生故障检测控制信号。响应于故障检测控制信号,开关控制电路112将栅极控制信号施加到第一和第二mosfet开关101和102的栅极端子以将双向固态开关101/102置于断开状态,从而中断(即阻断)ac负载电流在智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间的双向流动,并因此中断负载电流向负载20的流动。
32.控制电路110被配置为监测智能电路断续器装置100内的各个节点处的电压(例如,vl、vn等),以及监测在线路火线端子100a与负载火线端子100c之前通过智能电路断续器装置100的电气路径中流动的负载电流,并利用监测到的电流和电压来执行诸如测量功率使用和负载曲线、检测故障状况等之类的功能。例如,负载电流传感器105被配置为感测负载电流在智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间的火线路径中的流动。负载电流传感器105可以使用任何合适类型的电流感测元件来实现,包括但不限于电流感测电阻器、电流放大器、霍尔效应电流传感器等。
33.负载电流传感器105的输出被输入到控制电路110的各个电路块以检测故障状况的发生并至少部分地基于所检测的负载电流的幅度和/或ac波形特征来检测负载20的异常功率分布。电流传感器105的输出将根据所实施的电流传感器105的类型而变化。例如,在一些实施例中,电流传感器105的输出可以是由于负载电流流过感测电阻器而在感测电阻器两端产生的电压。在一些实施例中,电流传感器105的输出可以是响应于电流传感器105检测到过流状况等而产生的故障检测信号。在其他实施例中,可以实施第二电流传感器以感测负载电流在智能电路断续器装置100的线路中性线端子100b与负载中性线端子100d之间的中性线路径中的流动。
34.电压传感器电路117被配置为感测智能电路断续器装置100内不同节点处的电压电平。例如,在图1的示例性实施例中,电压传感器电路117被配置为感测沿着智能电路断续器装置100的线路火线端子100a与负载火线端子100c之间的电气路径的某点处的火线电压vl。此外,电压传感器电路117被配置为感测沿着智能电路断续器装置100的线路中性线端子100b与负载中性线端子100d之间的电气路径的某点处的中性线电压vn。
35.电压传感器电路117可以使用任何合适类型的电压感测电路来实现,包括但不限于过零检测器电路。过零检测器被配置为接收ac波形作为输入,将输入的ac波形与零参考电压(例如,线路中性线电压)进行比较,以及检测ac波形从正到负的转换,这在ac波形穿过零基准电压时重合。在一些实施例中,过零检测器电路被配置为在每次检测到ac电压波形的过零时产生在逻辑“1”和逻辑“0”输出之间转换的方波输出。在其他实施例中,过零检测器电路被配置为产生具有rc可调持续时间的短寿命脉冲(约3us)。在一些实施例中,电压传感器电路117包括被配置为将感测电压vl、vn等分压到较低电压电平和作为输入电压vl、vn等的电压电平的一小部分的输出电压的分压器电路,其中较低电压电平被输入到控制电路110的各种电路块(例如,数字信号处理器114、功率测量微处理器115等)以执行故障检测和功率测量功能。
36.电流极限检测电路113被配置为基于电流传感器105检测到的ac电流波形的幅度(例如,rms值、峰值电流等)来检测故障状况,诸如过流和短路状况。例如,在一些实施例中,电流传感器105包括基于流过感测电阻器的负载电流量产生“感测电压”的感测电阻器,并
且电流极限检测电路113被配置为测量感测电压并确定感测电压是否超过指示短路故障状况的预定值。响应于检测到故障状况,电流极限检测电路113向开关控制电路112输出故障检测控制信号,这导致开关控制电路112停用第一和第二mosfet开关101和102。
37.功率测量微处理器115被配置为利用感测的电流和电压(例如,电流传感器105和电压传感器电路117的输出)来确定输送到负载20的功率量。在一些实施例中,功率测量微处理器115包括专用集成电路(asic),其被专门设计用于测量电力线系统中的功率和能量并处理瞬时电压和电流波形以计算电压和电流的rms值以及有功、无功和视在功率和能量。在其他实施例中,功率测量微处理器115包括实现所需功率测量功能的“现成的”专用标准产品(assp)芯片。
38.在一些实施例中,功率测量微处理器115被配置为测量负载20的功率使用并且随时间保持这种功率使用信息用于历史分析。在一些实施例中,功率测量微处理器115被配置为检测异常负载功率使用或异常功率分布。例如,功率测量微处理器115可以被配置为检测指示可能引起火灾的高电阻连接(称为发热连接)的功率分布,以及与例如高线路电压或低线路电压等相关联的其他异常功率分布。响应于检测到存在异常负载功率使用或异常功率分布,功率测量微处理器115可以被配置为向开关控制电路112输出故障检测控制信号,这导致开关控制电路112停用第一和第二mosfet开关101和102。
39.在一些实施例中,数字信号处理器114被配置为检测电弧故障状况的发生。更具体地,在一些实施例中,数字信号处理器114被配置为电弧信号分析器,其对感测的电压波形和/或感测的电流波形进行数字采样以识别所采样的电压和电流波形中指示电弧放电波形的某些特征。例如,数字信号处理器114可以被配置为以小增量(例如,微秒)对感测的电压和/或电流波形进行采样,并将采样波形的特征与电弧放电波形的已知特征进行比较以确定是否存在电弧放单状况,其中所采样的波形的幅度或时间段中的某些异常特征指示电弧放电状况。特别地,电压降低、电流降低、预期的过零电压时序的变化、过零电压的丢失等是可以指示电弧放电状况的状况。在一些实施例中,如果在ac干线电源10的两个或更多个周期中存在指示电弧放电状况的多个特征,则数字信号处理器114可以确定存在电弧放电状况。
40.例如,图2示意性地示出了可以由ac干线电源10提供的公用电源的示例性ac电压波形200。特别地,图2示意性地示出了在没有电弧故障状况的正常操作条件下公用电源的示例性ac波形200。ac波形200包括具有各自正半周期201和负半周期202的正弦波。ac波形200在正半周期201中具有正峰值电压vp+,在负半周期202中具有负峰值电压vp-,以及电压过零(0v)203。例如,对于120vrms的公用电源,正峰值电压vp+约为170v,负峰值电压vp-约为-170v。示例性ac波形200例示了具有约16.66毫秒周期的60hz信号,其中每个半周期201和202具有约8.33毫秒的持续时间。
41.当发生电弧故障时,图2中的示例性ac电压波形200可能以各种方式失真。例如,失真的ac电压波形200可以具有引起ac电压波形的电压波动的高频ac分量(例如,100khz或更高)。失真的ac波形200可以具有降低的峰值电压,由此ac波形没有达到预期的峰值电压vp+和vp-。此外,失真的ac电压波形可能具有不发生在图2所示的过零电压203的预期时间处的异常过零电压。此外,失真的交流电压波形在正半周期201和负半周期202中的波形分布中可能具有明显的不对称性,其显著偏离了如图2所示的正常ac电压波形的对称分布。
42.在一些实施例中,数字信号处理器114可以每微秒对感测的ac电压波形进行数字采样,这提供采样的ac波形的每毫秒1000个采样。对于如图2所示的具有16.67毫秒(60hz信号)周期的示例性ac电压波形200,对ac电压波形(和相关联的电流波形)每微秒或几微秒一次的数字采样可以提供大量的信息来分析交流电压波形的各种特征以确定电弧放电状况的存在。
43.响应于检测到电弧放电状况的存在,数字信号处理器114将向开关控制电路112输出故障检测控制信号,这导致开关控制电路112停用第一和第二mosfet开关101和102。此外,如下文进一步详细解释的,响应于检测到电弧放电状况,数字信号处理器114将向断路器致动器电路111输出故障检测控制信号,这导致断路器致动器电路111激活内部短路开关电路120内的内部短路开关(例如双向固态开关121/122)。内部短路开关的激活导致在智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间形成内部短路路径,其中受控量的短路电流量流过串联耦合在线路火线端子100a与线路中性线端子100b之间的分流电阻器r4。智能电路断续器装置100内的内部短路电流的流动导致断路器15跳闸并断开ac电源与分支电路的连接。
44.ac-dc转换器电路116被配置为向智能电路断续器装置100的电路块111、112、113、114、115、117和118提供dc电源。在一些实施例中,ac-dc转换器电路116连接在火线(例如,vl)与中性线(例如,vn)之间,并且被配置为将由ac干线电源10输送的ac电力转换成用于为控制电路110的各种电路块供电的调节的dc电源电压。在一些实施例中,ac-dc转换器电路116包括足够的存储电容以在公用电力停电之后立即为控制电路110供电,使得可以在公用电力崩溃时获得并存储相关的停电或短路信息,并且随手使用无线控制电路118无线传输到远程节点、装置或系统。ac-dc转换器电路116还可以包括足够的电容以在负载短路事件期间保持控制电路110足够的dc功率,从而允许控制电路110正确地操作和停用双向固态开关101/102并中断到负载20的电力。
45.在一些实施例中,无线控制电路118包括用于与远程节点、装置、系统等进行无线通信的射频(rf)收发器,以支持对能量利用的远程监测和故障状况的检测。此外,无线控制电路118被配置为实现与智能电路断续器装置100的无线通信,以允许技术人员、电工或远程计算节点例如使用预定命令远程控制智能电路断续器装置100。无线控制电路118可以实现任何合适的无线通信协议,例如wi-fi或wimax、蓝牙等。
46.如上所述,内部短路开关电路120被配置为响应于检测到诸如短路状况、电弧故障状况等之类的故障状况在智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间产生内部短路路径。当控制电路110的给定电路块检测到故障状况时,开关控制电路112将双向固态开关101/102置于断开状态,并且断路器致动器电路111激活内部短路电路开关电路120以在智能电路断续器100内产生受控短路电流,从而使断路器15跳闸。内部短路开关电路120被配置为产生受限/受控的内部短路电流,该电流通过分流电阻器r4在智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间流动以有效地跳闸并关闭断路器15。
47.虽然智能电路断续器装置100的双向固态开关101/102可以响应于检测到电弧故障状况而被停用以防止电流流向负载20,但双向固态开关101/102的停用不会保护免受智能电路断续器装置100的双向固态开关101/102的线路侧或以其他方式在上游发生的电弧
故障状况的影响,并且当断路器15未实现电弧故障电路断续器功能时这种上游电弧故障状况可能持续存在。就这一点而言,应当理解,智能电路断续器装置100内的内部短路开关电路120的具体实施有利地提供了一种为连接到断路器15的整个分支电路提供afci保护的成本有效的解决方案,即使断路器15不具有afci功能。
48.如图1所示,内部短路开关电路120包括在内部第一节点n1(其耦合到线路火线端子100a)与内部第二节点n2(其耦合到线路中性线端子100b)之间的短路路径。当双向固态开关121/122被激活以使受控短路电流流过内部节点n1与n2之间的分流电阻器r4时,在内部节点n1与n2之间产生短路路径。第一和第二mosfet开关121和122基本上作为内部短路开关操作,其通过致动开关124的操作来激活/停用。
49.如上所述,开关偏置电路123包括自偏置电路,该自偏置电路被配置为在节点n5上产生调节的dc电压,其用于驱动第一和第二开关121和122的栅极(g)端子并在致动开关124断开时接通第一和第二开关。当致动开关124接通时,第一和第二开关121和122的栅极(g)和源极(s)端子被有效地分流/短路(例如,v
gs
约为0v),这导致保持双向固态开关121/122的第一和第二开关121和122处于断开状态。另一方面,当致动开关124断开时,节点n5处的自己产生的调节的dc电压被施加到第一和第二开关121和122的共同连接的栅极(g)端子,这导致第一和第二开关121和122接通,从而在内部第一和第二节点n1和n2之间,即在智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间产生内部短路路径。当产生内部短路路径时,分流电阻器r4将控制在线路火线端子100a与线路中性线端子100b之间流动的内部短路电流的幅度,以使断路器15跳闸。
50.在一些实施例中,致动开关124的操作(激活/停用)由断路器致动电路111控制,其中断路器致动电路111产生控制电压并将控制电压输出到致动开关124的基极(b)端子以激活或停用致动开关124。在智能电路断续器装置100正常操作期间,断路器致动电路111向致动开关124的基极(b)端子输出控制电压,以保持致动开关124处于接通状态,以保持第一和第二开关121和122处于断开状态。当控制电路110检测到故障状况(例如,由数字信号处理器114检测到的电弧故障状况)时,产生故障检测控制信号并将其施加到开关控制电路112和断路器致动器电路111。响应于故障检测控制信号,断路器致动器电路111产生控制电压并将其输出到致动开关124的基极(b)端子以停用(断开)致动开关124。致动开关124的停用导致内部短路开关的激活(即,第一和第二开关121和122的激活),这导致在智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间(节点n1与n2之间)形成内部短路路径,其中短路电流流过串联耦合在线路火线端子100a与线路中性线端子100b之间的分流电阻器r4。
51.更具体地,在一些实施例中,内部短路开关电路120如下操作。在智能电路断续器装置100的加电期间(即,当ac干线电源10的电力被施加在智能电路断续器装置100的线路火线端子100a和线路中性线端子100b上时)和正常操作期间,断路器致动电路111产生控制电压并将控制电压输出到致动开关124的基极端子以将致动开关124置于接通状态。当致动开关124处于接通状态时,第一和第二开关121和122的栅极(g)和源极(s)端子被有效地分流/短路,这导致保持内部短路开关的第一和第二开关121和122处于断开状态。这样,内部节点n1与n2之间的路径中没有短路电流流动。
52.在一些实施例中,如上所述,第四节点n4用作内部短路开关电路120的虚拟接地节
点,其中节点n4上的电压vs(例如,虚拟接地电压)被控制电路110(例如,断路器致动器电路111)用作接地参考以驱动致动开关124的基极(b)端子。更具体地,在智能电路断续器装置100的正常操作期间,控制电路110将向致动器开关124的基极(b)端子施加驱动电压,使得基极-发射极(v
be
)电压将至少等于或大于致动器开关124的阈值电压(例如,0.7v)。参考虚拟节点n4的电压vs产生施加到致动器开关124的基极(b)端子的驱动电压(v
be
)。当致动器开关124被停用时,控制电路110将实质上将虚拟接地电压vs施加到致动器开关124的基极(b)端子(例如,将虚拟接地节点n4耦合到致动器开关124基极(b)端子),这导致致动开关124断开。
53.此外,在智能电路断续器装置100上电期间,开关偏置电路123操作为将电容器c1充电至由齐纳二极管zd的反向击穿电压(称为“齐纳电压”)钳位的最大电压。在一些实施例中,齐纳电压在约10v至约15v的范围内。特别地,在ac干线电源10的正半周期期间,电流沿着路径流动通过第一电阻器r1、第一二极管d1、电容器c1、第二开关122的本征体二极管122-1和分流电阻器r4,以给电容器c1充电。在ac干线电源10的负半周期间,电流沿着路径流动通过第二电阻器r2、第二二极管d2、电容器c1和第一开关121的本征体二极管121-1以对电容器c1充电。因此,在智能电路断续器装置100的初始加电阶段期间,ac干线电源10的一个或多个周期导致电容器c1被充电至齐纳二极管zd的齐纳电压,该齐纳电压大于第一和第二开关121和122的阈值电压v
t

54.在智能电路断续器装置100的操作期间,控制电路110的给定电路块可以检测故障状况,诸如短路状况、过流状况、电弧故障状况等,这是分析从例如电流传感器105和/或电压传感器电路117获得的传感器数据所得到的结果。例如,数字信号处理器114可以检测存在于智能电路断续器装置100内部或智能电路断续器装置100外部(线路侧或负载侧)的电弧放电波形的出现。作为响应,控制电路110产生故障检测信号,该信号触发断路器致动器电路111以产生控制信号来停用内部短路开关电路120的致动开关124。致动开关124的停用导致内部短路开关的激活(即,第一和第二开关121和122的激活),这继而在节点n1与n2之间产生内部短路路径,从而导致智能电路断续器装置100的线路火线端子100a与线路中性线端子100b之间的分流连接。在智能电路断续器装置100内产生的内部短路路径导致过电流流过断路器15,从而使断路器15跳闸,并在ac干线电源10的线路火线11与智能电路断续器装置100的线路火线端子100a之间的电气路径中形成气隙。气隙用于将ac干线电源10的线路火线11与负载20电隔离。
55.通过内部短路开关电路120的操作而产生的内部短路路径中流动的内部短路电流的幅度受到分流电阻器r4的电阻值的限制。在一些实施例中,分流电阻器r4的电阻被选择成使得在智能电路断续器装置100内的节点n1与n2之间的短路路径中流动的内部短路电流的幅度在断路器15的额定电流约2倍到约3倍的范围内。例如,如果断路器15具有20安培的额定电流,则分流电阻器r4的电阻被选择成使得最大约40至60安培的电流流过断路器15并流过智能电路断续器装置100内的节点n1与n2之间短路路径,从而使断路器15跳闸。就这一点而言,流过断路器15的短路电流的幅度受到基于分流电阻器r4的电阻值在节点n1与n2之间的短路路径中产生的内部短路电流的幅度的限制。在这种情况下,为使断路器15跳闸而产生的短路电流量由分流电阻器r4控制/限制,这进一步限制了在断路器15跳闸时断路器15的气隙开关的触点之间产生的电弧放电量。
56.图3是根据本公开的示例性实施例的用于提供电路中断的方法的流程图。更具体地,图3示出了根据本公开的示例性实施例的图1的智能电路断续器装置100的高级操作模式。该方法包括监测电压波形和/或电流波形以检测在受断路器保护的分支电路上故障状况的发生(框300)。例如,如上所述,智能电路断续器装置100的控制电路110被配置为监测和感测电压波形和负载电流波形,例如,在沿着(i)线路火线端子100a与负载火线端子100c之间的电气路径和/或(ii)线路中性线端子100b与负载中性线端子100d之间的电气路径的各点处。当智能电路断续器装置100检测到分支电路上出现故障状况时(框301中的肯定确定)时,智能电路断续器装置100将中断分支电路上的负载电流的流动(框302)并在智能电路断续器装置100内产生内部短路路径,以允许短路电流流过智能电路断续器装置100内的分流电阻器,其中短路电流在智能电路断续器装置内的流动导致断路器跳闸并断开ac电源与分支电路的连接(框303)。
57.在图1的示例性实施例中,智能电路断续器装置100包括单刀单掷(spst)开关配置,其中双向固态开关的第一和第二mosfet开关101和102背靠背串联连接在线路火线端子100a与负载火线端子100c之间的电气路径中。在其他实施例中,智能电路断续器装置包括双刀单掷(dpst)开关配置,其中第一mosfet开关101连接在线路火线端子100a与负载火线端子100c之间的电气路径中,并且第二mosfet开关102连接在线路中性线端子100b与负载中性线端子100d之间的电气路径中。在dpst配置中,第二mosfet开关102的漏极(d)端子将耦合到线路中性线端子100b,而第二mosfet开关102的源极(s)端子将耦合到负载中性线端子100d。在dpst开关配置中,第一和第二mosfet开关101和102的栅极(g)端子将同时由控制电路110(例如,开关控制电路112)控制,如在以上所讨论的图1的spst开关配置中一样,由此第一和第二mosfet开关101和102的停用将有效地断开线路火线端子100a与负载火线端子100c,以及有效地断开线路中性线端子100b与负载中性线端子100d。
58.应当理解,根据本公开示例性实施例的智能电路断续器装置可以体现在各种装置和应用中。例如,在一些实施例中,图1的智能电路断续器装置100可以实施或以其他方式集成在电插座装置(例如,分支插座)中,或电灯开关(例如,壁挂式灯开关,或在智能灯具或智能天花板灯泡插座等中实现的灯开关),或为负载提供电力的其他类型的装置。在其他实施例中,图1的智能电路断续器装置100可以包括独立装置,其设置在家庭或建筑物的电网中的接线盒内并且被配置为保护连接在独立智能电路断续器装置下游的分支电路中的一个或多个电气装置、电器、负载等。
59.应当理解,本文公开的示例性智能电路断续器装置和方法提供了各种技术优势。例如,双向固态开关101/102的具体实施允许智能电路断续器装置100通过快速停用双向固态开关101/102来快速响应即将发生的故障状况,诸如电弧故障状况、过电流故障状况、负载侧短路故障状况、内部故障状况、接地故障状况、过电压状况等。实际上,停用双向固态开关101/102以隔离故障状况的响应时间可以比与常规断路器的机电交流开关用来隔离诸如短路或过电流状况的故障状况的自动跳闸相关联的响应时间(例如,约几毫秒)快约1000倍,因为固态双向开关101/102可以在约微妙或纳秒的量级上从接通状态转变为断开状态。
60.此外,如上所述,智能电路断续器装置100内的内部短路开关电路120的具体实施有利地提供了一种为连接到断路器15的整个分支电路提供afci保护(以及诸如接地故障电路断续器(gfci)保护的其他保护)的成本有效的解决方案,即使断路器15不具有afci功能。
例如,在包括未向给定住宅或建筑物内的分支电路提供afci保护的常规断路器的现有配电系统中,可以在每个分支电路中添加如图1所示的智能电路断续器装置作为第一装置(例如,具有集成智能电路断续器装置100的电源插座)以有效地提供afci保护,而无需将常规断路器更换为昂贵的afci断路器。
61.此外,智能电路断续器装置100内的内部短路开关电路120的具体实现被配置为产生受控短路电流以使具有机械ac气隙开关的常规断路器跳闸,其提供了一种在ac干线电源10的线路火线11与负载20之间的电气路径中形成气隙的机制,从而提供ac干线电源10与负载20的完全隔离,并防止电流从线路火线11流向负载20,以及防止在双向固态开关101/102处于断开状态时可能由双向固态开关101/102产生的泄漏电流的流动。这使得能够符合电气规范,当分支电路中发生故障状况时,这些电气规范要求在ac干线电源与分支电路之间的电气路径中具体实施气隙。
62.尽管本文已经参照附图描述了示例性实施例,但是应当理解,本公开不限于那些精确的实施例,并且本领域技术人员可以在不脱离所附权利要求范围的情况下在其中做出各种其他变化和修改。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1