电压互感器内吸附剂吸湿性能的检测方法与流程

文档序号:30260533发布日期:2022-06-02 03:03阅读:170来源:国知局
电压互感器内吸附剂吸湿性能的检测方法与流程

1.本发明涉及电器元件技术领域,尤其是涉及一种电压互感器内吸附剂吸湿性能的检测方法。


背景技术:

2.电压互感器是气体绝缘全封闭组合电器(gis)中的一种重要部件,其主要作用是用来变换电器设备的电压,进而对电器设备的线路起到良好的保护效果,提高电器设备工作的稳定性。
3.为了保持电压互感器的性能,常常会在其内部加入sf6气体。sf6气体可以为电压互感器内部提供良好的绝缘环境,避免出现短路问题。但是随着电器设备使用时间的延长,sf6气体的引入难以避免地会带来电压互感器内部湿度变大的问题。当湿度达到一定的程度之后,电压互感器出现故障的风险将会大大提高。
4.在电压互感器的使用中,为了降低其内部的湿度,吸附剂的使用是效果较好的一种方法。通过在电压互感器内设置吸附剂,进而可以对电压互感器内的水气进行吸附,降低电压互感器内部的湿度。但是,关于吸附剂的性能检测,传统的方法通常只能够对吸附剂的自身性能进行检测,而难以对吸附剂在电压互感器内的使用性能进行检测。


技术实现要素:

5.基于此,有必要提供一种能够对吸附剂在电压互感器内的吸湿性能进行检测的方法,进而丰富吸附剂的性能数据库,为吸附剂的选择提供更多的依据。
6.为了解决以上技术问题,本发明的技术方案为:
7.一种电压互感器内吸附剂吸湿性能的检测方法,包括如下步骤:
8.提供测试电压互感器,所述测试电压互感器包括壳体、湿度传感器以及吸附器,所述湿度传感器和所述吸附器均设于所述壳体内部,所述湿度传感器用于检测所述壳体内部的湿度,所述吸附器用于放置待检测吸附剂;
9.将待检测吸附剂放置在所述吸附器内,通过所述湿度传感器对所述壳体内部的湿度进行检测,记录所述壳体内部的湿度随时间的变化关系。
10.在其中一个实施例中,通过所述湿度传感器对所述壳体内部的湿度进行检测,控制检测周期逐渐延长。
11.在其中一个实施例中,通过所述湿度传感器对所述壳体内部的湿度进行检测,控制检测周期为10s以上;和/或,
12.通过所述湿度传感器对所述壳体内部的湿度进行检测,控制检测周期为2h以下。
13.在其中一个实施例中,通过所述湿度传感器对所述壳体内部的湿度进行检测,控制检测周期依次为10s、30s、1min、5min、10min、30min、1h以及2h;和/或,
14.通过所述湿度传感器对所述壳体内部的湿度进行检测,控制检测的时间为10个月以上。
15.在其中一个实施例中,所述测试电压互感器还包括中空连接管、支撑板、定位板、密封法兰以及电连接端子;
16.所述壳体上设有通孔,所述中空连接管自所述壳体的表面伸出,所述中空连接管的空腔与所述通孔相贯通;所述支撑板固定于所述中空连接管的内壁,所述支撑板上设有导槽,所述定位板设于导槽内,所述湿度传感器固定于所述定位板上,所述定位板能够沿所述导槽移动以用于带动所述湿度传感器在所述中空连接管的空腔内运动;
17.所述密封法兰连接于所述中空连接管的远离所述壳体的一端以用于密封所述中空连接管;所述电连接端子设于所述密封法兰上,所述电连接端子具有功能端和控制端,所述功能端伸入所述中空连接管的空腔内,所述控制端沿远离所述中空连接管的方向伸出,所述功能端与所述湿度传感器电性连接,所述控制端用于与外接控制器电性连接。
18.在其中一个实施例中,所述吸附器较所述通孔更加靠近所述壳体的顶部。
19.在其中一个实施例中,所述支撑板具有安装部和支撑部,所述安装部固定于所述中空连接管的内壁,所述支撑部自所述安装部伸出以用于支撑所述定位板,所述导槽设于所述支撑部。
20.在其中一个实施例中,所述支撑部与所述中空连接管的轴线平行。
21.在其中一个实施例中,所述定位板上设有定位卡槽,所述湿度传感器卡接于所述定位卡槽内。
22.在其中一个实施例中,所述定位卡槽的槽壁与所述中空连接管的轴线垂直。
23.上述电压互感器内吸附剂吸湿性能的检测方法包括如下步骤:提供测试电压互感器,测试电压互感器包括壳体、湿度传感器以及吸附器,湿度传感器和吸附器均设于壳体内部,湿度传感器用于检测壳体内部的湿度,吸附器用于放置待检测吸附剂。将待检测吸附剂放置在吸附器内,通过湿度传感器对壳体内部的湿度进行检测,记录壳体内部的湿度随时间的变化关系。通过上述检测方法能够通过壳体内部的湿度表征待检测吸附剂的吸湿性能,得到待检测吸附剂随时间的变化关系,进而对吸附剂的吸湿性能进行检测,进而丰富吸附剂的性能数据库,为吸附剂的选择提供更多的依据。进一步地,在检测过程中,当壳体内部的湿度高于湿度阈值时,可以判断该待检测吸附剂的吸湿性能不合格,不能用于电压互感器中。即采用上述检测方法还能够对吸附剂是否可用进行判断,及时发现不可用的吸附剂。
附图说明
24.图1为本发明一实施例中测试电压互感器的结构示意图;
25.图2为图1对应的测试电压互感器的俯视图;
26.图3为图1对应的测试电压互感器的中空连接管的内部示意图;
27.图4为图1对应的测试电压互感器的支撑板的结构示意图,其中(a)为主视图,(b)为仰视图;
28.图5为图1对应的测试电压互感器的定位板的结构示意图,其中(a)为主视图,(b)为仰视图;
29.图6为图1对应的测试电压互感器的锁紧板的结构示意图,其中(a)为主视图,(b)为仰视图;
30.图7为本发明实施例1和对比例1中壳体内部的湿度随时间的变化关系的对比图;
31.图8为本发明实施例1中壳体内部湿度与温度的关系曲线图。
32.图中标记说明:
33.100、测试电压互感器;101、壳体;102、连接法兰;1021、连接法兰固定孔;103、中空连接管;1031、固定座;104、密封法兰;1041、密封法兰固定孔;105、电连接端子;1051、功能端;106、吸附器;107、截止阀;108、自封接头;109、保护帽;110、绝缘子;201、湿度传感器;202、支撑板;2021、安装部;2022、支撑部;20221、导槽;203、定位板;2031、定位卡槽;2032、垫高部;204、锁紧板;2041、锁紧卡槽。
具体实施方式
34.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
35.在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
36.此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
37.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
38.本发明一实施例提供了一种电压互感器内吸附剂吸湿性能的检测方法。该检测方法包括如下步骤:提供测试电压互感器100,测试电压互感器100包括壳体101、湿度传感器201以及吸附器106,湿度传感器201和吸附器106均设于壳体101内部,湿度传感器201用于检测壳体101内部的湿度,吸附器106用于放置待检测吸附剂。将待检测吸附剂放置在吸附器内,通过湿度传感器对壳体内部的湿度进行检测,记录壳体内部的湿度随时间的变化关系。通过该检测方法能够通过壳体内部的湿度表征待检测吸附剂的吸湿性能,得到待检测吸附剂随时间的变化关系,进而对吸附剂的吸湿性能进行检测,进而丰富吸附剂的性能数据库,为吸附剂的选择提供更多的依据。进一步地,在检测过程中,当壳体内部的湿度高于湿度阈值时,可以判断该待检测吸附剂的吸湿性能不合格,不能用于电压互感器中。即采用该检测方法还能够对吸附剂是否可用进行判断,及时发现不可用的吸附剂。
39.在其中一个实施例中,控制检测周期逐渐延长。控制检测周期逐渐延长便于获取更加稳定的检测湿度数据。可以理解的是,检测周期表示相邻两次检测之间的时间间隔。
40.进一步地,通过湿度传感器对壳体内部的湿度进行检测,控制检测周期为10s以上。检测周期太短,则检测频率过高,可能增加湿度传感器的负荷过大。
41.再进一步地,通过湿度传感器对壳体内部的湿度进行检测,控制检测周期为2h以下。检测周期太长,则可能导致检测数据难以反映壳体内湿度变化的真实情况,导致检测准确度降低。
42.再进一步地,通过湿度传感器对壳体内部的湿度进行检测,控制检测周期依次为10s、30s、1min、5min、10min、30min、1h以及2h。
43.更进一步地,通过湿度传感器对壳体内部的湿度进行检测,控制检测的时间为10个月以上。控制检测的时间为10个月以上,可以使检测数据覆盖一年的四个季节,更加能够反映壳体内部湿度的真实情况。可选地,控制检测的时间为11个月以上。可选地,控制检测的时间为12个月以上。可以理解的是,检测的时间表示对壳体内湿度检测持续进行的时间。
44.可以理解的是,在通过所述湿度传感器对所述壳体内部的湿度进行检测之前还包括如下步骤:对湿度传感器的检测数据的可靠性进行校验。比如可以通过计量校验单位对湿度传感器的检测数据的可靠性进行校验。
45.还可以理解的是,在通过所述湿度传感器对所述壳体内部的湿度进行检测之前还包括如下步骤:对湿度传感器的检测数据的准确性进行校验。比如,通过与离线的湿度传感器的检测数据做对比,检测数据偏差在
±
5%内认为满足准确性要求。
46.请参阅图1~图6。在一个具体的示例中,测试电压互感器还包括中空连接管103、支撑板202、定位板203、密封法兰104以及电连接端子105。壳体101上设有通孔(图中未示出),中空连接管103自壳体101的表面伸出,中空连接管103的空腔与通孔相贯通;支撑板202固定于中空连接管103的内壁,支撑板202上设有导槽20221,定位板203设于导槽20221内,湿度传感器201固定于定位板203上,定位板203能够沿导槽20221移动以用于带动湿度传感器201在中空连接管103的空腔内运动。密封法兰104连接于中空连接管103的远离壳体101的一端以用于密封中空连接管103;电连接端子105设于密封法兰104上,电连接端子105具有功能端1051和控制端(图中未示出),功能端1051伸入中空连接管103的空腔内,控制端沿远离中空连接管103的方向伸出,功能端1051与湿度传感器201电性连接,控制端用于与外接控制器电性连接。
47.请再次参阅图4,在一个具体的示例中,支撑板202具有安装部2021和支撑部2022,安装部2021固定于中空连接管103的内壁,支撑部2022自安装部2021伸出以用于支撑定位板203,导槽20221设于支撑部2022。进一步地,支撑部2022与中空连接管103的轴线平行。通过安装部2021的设置,可以使支撑部2022凸出于中空连接管103的内壁,避免与中空连接管103的内壁发生干涉,有利于提高湿度传感器201安装的稳定性。再进一步地,支撑部2022与安装部2021垂直设置。
48.具体地,导槽20221的长度为75mm~85mm。即定位板203沿导槽20221的运动行程为75mm~85mm。可选地,导槽20221的长度为75mm、76mm、77mm、78mm、79mm、80mm、81mm、82mm、83mm、84mm或85mm。
49.请再次参阅图5,在一个具体的示例中,定位板203上设有定位卡槽2031,湿度传感器201卡接于定位卡槽2031内。通过定位卡槽2031的设置可以使湿度传感器201更加稳定地安装到定位板203上。进一步地,定位卡槽2031的槽壁与中空连接管103的轴线垂直。这样可
以进一步保持湿度传感器201与中空连接管103的内壁的平行设置关系,使湿度传感器201的移动更加顺畅。
50.在一个具体的示例中,定位卡槽2031延伸至壳体101的内部,湿度传感器201的检测端卡接于定位卡槽2031内。此时可以通过湿度传感器201直接对壳体101内部的湿度信息进行检测。
51.请再次参阅图5,在一个具体的示例中,定位板203具有垫高部2032,垫高部2032连接于支撑板202以用于使定位卡槽2031凸出于支撑板202。通过垫高部2032的设置可以使定位卡槽2031凸出于支撑板202,有效避免湿度传感器201在运动过程中与中空连接管103内的部件发生碰撞干涉。进一步地,垫高部2032固定连接于支撑板202的支撑部2022。可以理解的是,可以通过螺杆螺母组件的配合将垫高部2032固定连接于支撑板202的支撑部2022。
52.请再次参阅图3和图6,在一个具体的示例中,测试电压互感器100还包括锁紧板204,锁紧板204上设有锁紧卡槽2041,锁紧板204的两端固定于定位板203,锁紧卡槽2041包覆于湿度传感器201的表面。通过锁紧板204的设置可以将湿度传感器201更加稳定地固定在定位板203上。进一步地,通过锁紧卡槽2041的卡紧作用可以进一步对湿度传感器201的位置进行固定。具体地,锁紧板204的两端固定于定位板203的垫高部2032上。可以理解的是,可以通过螺杆螺母组件的配合将锁紧板204的两端固定连接于定位板203的垫高部2032上。
53.在一个具体地示例中,锁紧卡槽2041与定位卡槽2031错开设置。进一步地,锁紧卡槽2041与定位卡槽2031完全错开设置。
54.请再次参阅图1~图3,在一个具体的示例中,测试电压互感器100还包括连接法兰102,连接法兰102设于通孔的外缘且位于壳体101的外部,连接法兰102与中空连接管103的靠近壳体101的一端固定连接以用于将中空连接管103固定于壳体101。通过连接法兰102的设置可以更加方便地将中空连接管103连接到壳体101的外部。
55.进一步地,连接法兰102与中空连接管103为一体成型的结构。连接法兰102与中空连接管103为一体成型的结构便于加工成型,也能够有效提高连接法兰102和中空连接管103之间的气密性,还便于与壳体101进行连接,提高中空连接管103与壳体101之间的气密性。
56.在一个具体的示例中,中空连接管103靠近密封法兰104的一端设有固定座1031,固定座1031凸出于连接管的外缘以用于与密封法兰104连接。通过固定座1031的设置可以将中空连接管103与密封法兰104进行稳定的连接,进而将中空连接管103和密封法兰104固定连接。可以理解的是,固定座1031凸出于中空连接管103的外缘,可以更方便地与密封法兰104进行匹配连接。可选地,固定座1031的外径与密封法兰104的外径相等。
57.进一步地,固定座1031与中空连接管103为一体成型的结构。固定座1031与中空连接管103为一体成型的结构便于加工成型,也能够有效提高固定座1031和中空连接管103之间的气密性,还便于与密封法兰104进行连接,提高壳体101、中空连接管103、固定座1031以及密封法兰104的整体密封性。
58.在一个具体的示例中,密封法兰104的外径小于连接法兰102的外径。可以理解的是,在密封法兰104和连接法兰102上均设有多个用于供固定件穿过的固定孔。在密封法兰104和连接法兰102安装时,通过在固定孔内插入固定件来将连接法兰102安装到壳体101
上,通过在固定孔内插入固定件来将密封法兰104安装到连接管上。为了作为一个区分的目的,连接法兰102上的固定孔为连接法兰固定孔1021,密封法兰104上的固定孔为密封法兰固定孔1041。可以理解的是,固定件可以是螺杆、螺钉、销钉等。
59.在一个具体的示例中,连接法兰102上的连接法兰固定孔1021绕连接法兰102的中心分布,密封法兰104上的密封法兰固定孔1041绕密封法兰104的中心分布。进一步地,连接法兰102上的连接法兰固定孔1021绕连接法兰102的中心均匀分布,密封法兰104上的密封法兰固定孔1041绕密封法兰104的中心均匀分布。再进一步地,连接法兰102上的连接法兰固定孔1021为偶数个,密封法兰104上的密封法兰固定孔1041为偶数个。再进一步地,密封法兰104上的密封法兰固定孔1041的数量是连接法兰102上的连接法兰固定孔1021的数量的2倍。再进一步地,密封法兰104上相邻的两个密封法兰固定孔1041之间的距离是连接法兰102上相邻的两个连接法兰固定孔1021之间的距离的一半。再进一步地,连接法兰102上的连接法兰固定孔1021绕电连接端子105均匀分布,密封法兰104上的密封法兰固定孔1041绕电连接端子105均匀分布。
60.在图1所示的测试电压互感器100中,连接法兰102上的连接法兰固定孔1021的数量为4个,密封法兰104上的密封法兰固定孔1041的数量为8个。连接法兰102上的4个连接法兰固定孔1021绕电连接端子105均匀分布,密封法兰104上的8个密封法兰固定孔1041绕电连接端子105均匀分布。
61.在一个具体的示例中,中空连接管103的长度为18cm~25cm。可选地,中空连接管103的长度为18cm、19cm、20cm、21cm、22cm、23cm、24cm或25cm。优选地,中空连接管103的长度为20cm。可以理解的是,中空连接管103的长度可以在以上列出的长度范围和长度点值中做任意选择,即中空连接管103的长度可以是18cm~25cm中的任意长度,并不限定于18cm、19cm、20cm、21cm、22cm、23cm、24cm或25cm。
62.请再次参阅图1,在一个具体的示例中,吸附器106较通孔更加靠近壳体101的顶部。将吸附器106设置在较通孔更加靠近壳体101的顶部,便于对吸附器106进行安装,可以有效保持测试电压互感器100的安装规整度。另外,吸附器106较通孔更加靠近壳体101的顶部,位于壳体101内部没有其他电气元件的位置,不干涉其他电气元件的正常工作,更加充分地发挥吸附器106的作用。
63.请再次参阅图1,在一个具体的示例中,测试电压互感器100还包括绝缘子110,绝缘子110位于壳体101的顶部。绝缘子110位于壳体101的顶部以用于提高壳体101内部与外界环境的绝缘性。进一步地,绝缘子110为盆式绝缘子。
64.在一个具体的示例中,测试电压互感器100还包括截止阀107,截止阀107位于壳体101的外部,截止阀107用于实现壳体101的内部和外部的贯通和隔绝。通过截止阀107的设置可以用来实现壳体101内部sf6气体的加入或排出。另外,截止阀107具有较好的密封性能,能够有效保持壳体101的密封性。
65.可以理解的是,测试电压互感器100还包括自封接头108,自封接头108安装于截止阀107上。自封接头108的设置可以进一步提高截止阀107的密封性能,再进一步地,测试电压互感器还包括保护帽109。保护帽109设置于自封接头108上。保护帽109可以使自封接头108更加稳定地安装在截止阀107上。可以理解的是,保护帽109可以是但不限定为螺母。
66.可以理解的是,测试电压互感器100还包括电压互感器不可缺少的电气元件,以用
于更好地模拟电压互感器的真实使用情况。
67.还可以理解的是,测试电压互感器100还包括多个连接组件,比如螺杆螺母连接组件,通过连接组件的设置来对测试电压互感器100中需要连接的部件进行连接。
68.以下为具体实施例
69.实施例1
70.本实施例采用图1中的测试电压互感器。检测时,先对湿度传感器的检测数据的可靠性和准确性进行校验,校验结果均合格。
71.在壳体内充入0.52mpa的sf6气体。吸附剂为西安西开高压电气股份有限公司所使用的kdhf-03型吸附剂,安装量为气重的10%(0.34kg)。将吸附剂放置在吸附器内,通过湿度传感器对壳体内部的湿度进行检测,控制检测周期依次为10s、30s、1min、5min、10min、30min、1h以及2h。检测的时间为10个月以上(2013年5月17日至2014年4月10日)。
72.对比例1
73.与实施例1相比,对比例1的不同之处在于,在吸附器中不放置吸附剂。
74.实施例1和对比例1中壳体内部的湿度随时间的变化数据如表1所示,变化关系的对比图如图7所示。实施例1中壳体内部湿度与温度的关系曲线图如图8所示。
75.表1
76.[0077][0078]
由图7和图8可以看出:
[0079]
(1)实施例1和对比例1壳体内部的起始湿度数据相近,但实施例1的湿度急剧下降,五天后从最初的110μl/l降至20μl/l以下,一个月后基本稳定在10μl/l左右,2013年6月25日至2014年4月10日,湿度稳定在6~11μl/l之间。而对比例1壳体内部的湿度变化不大,略有下降,从最初的137.31μl/l降至110μl/l左右,气室温度介于19~29℃之间,湿度介于100~110μl/l之间。这表明实施例1中的吸附剂具有较好的吸湿性能。
[0080]
(2)壳体内部温度对于湿度的影响较大,壳体内部温度增加,湿度增大,湿度较大时尤为明显。以实施例1为例,壳体内部温度为9.2℃时,湿度为60.11μl/l。而壳体内部温度为19.2℃时,湿度为103μl/l。壳体内部温度增加10℃,湿度增加70%。因此,电压互感器的
湿度试验时,应充分考虑温度对湿度的影响。这也印证了温度升高,壳体内部绝缘材料水分会释放出来从而导致湿度增加。
[0081]
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
[0082]
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1