半导体电子元件检测装置及方法与流程

文档序号:30950126发布日期:2022-07-30 07:09阅读:93来源:国知局
半导体电子元件检测装置及方法与流程

1.本发明涉及测试设备技术领域,尤其是涉及一种半导体电子元件检测装置及方法。


背景技术:

2.随着ic(integrated circuit chip,微型电子元器件)功能模块逐渐复杂化,ic的测试压力及测试时间呈逐渐增长趋势,针对测试时间较长的ic,分选机单次测试ic工位数量的增多,整体测试成本将相应减小,因此多工位大压力测试机需求应运而生。
3.传统的多工位测试装置通常包含两套机构一致的ic测试手臂,其中测试手臂居中布局,每套测试手臂有自己独立的水平及垂直驱动系统。两套测试手臂的垂直驱动系统以测试手臂为对称中心,两侧对称分布,垂直驱动系统安装有水平导轨,水平导轨连接测试手臂。水平驱动系统与垂直驱动系统不同,两套测试手臂的水平驱动系统共用两根双导轨导向。整个测试过程中,水平和垂直驱动系统协同作用驱动测试手臂水平及垂直两个方向并行运动,因此可以取放ic并进行下压测试。
4.然而上述多工位测试装置具有以下缺点:
5.1)、测试手臂给予ic的下压力与垂直驱动系统的驱动力直接相关,如需要实现测试手臂的大压力加载,则要求垂直驱动系统的驱动器具有极大功率输出,这便会造成驱动器的体积、重量过大,增加了水平驱动系统的负载,影响水平驱动系统的响应速度,降低测试效率。
6.2)、由于垂直驱动系统位于测试手臂两侧,因此测试手臂垂直下压测试的时候受侧边垂直驱动系统驱动力及测试ic反作用力两个力作用,两个作用力不同轴,整体形成弯矩负载作用,导致测试ic的时候测试手臂有结构变形发生倾斜等问题,引发ic测试压力不均匀,影响ic测试关键指标以及测试良率。
7.3)、现有方案垂直驱动系统与测试手臂联动结构复杂,安装时需要首先调试垂直驱动系统单独模块的丝杆、导轨精度;随后需要调试测试手臂导轨精度;最后需要将测试手臂与垂直驱动系统关联连接起来后调试整体精度,整体结构复杂,装配精度低。


技术实现要素:

8.本发明的目的在于提供一种半导体电子元件检测装置,可适用于高速运行测试环境,且移动压杆机构不会受到弯矩负载,有效缓解测试压力不均匀带来的测试良率低的问题。
9.为实现上述目的,本发明提供以下技术方案:
10.第一方面,本发明提供一种半导体电子元件检测装置,包括检测平台、下压测试机构和至少一个移动压杆机构;
11.所述移动压杆机构安装于所述检测平台上并用于转运以及压测电子元件,所述移动压杆机构具有受压面和用于压测所述电子元件的第一加压面,所述第一加压面位于所述
受压面的正下方;
12.所述下压测试机构安装于所述检测平台上且可相对于所述检测平台往复运动,所述下压测试机构具有第二加压面,所述下压测试机构用于通过所述第二加压面向所述移动压杆机构的受压面施加向下的压力,所述移动压杆机构上的压力沿所述受压面指向所述第一加压面的方向传递。
13.进一步地,所述下压测试机构具有所述第二加压面的端部与所述移动压杆机构具有所述受压面的端部中的一者设有电磁件,另一者设有用于与所述电磁件相吸附的磁吸件。
14.进一步地,所述下压测试机构包括第一支架组件、第一驱动组件和压杆,所述第一支架组件安装于所述检测平台上,所述压杆沿竖直方向与所述第一支架组件滑动连接,所述压杆的底端具有所述第二加压面,所述第一驱动组件安装于所述第一支架组件上并与所述压杆的顶端连接,所述第一驱动组件用于带动所述压杆相对于所述第一支架组件移动。
15.进一步地,所述第一驱动组件包括第一动力组件和第一传动结构;
16.所述第一动力组件安装于所述第一支架组件上;
17.所述第一传动结构包括与所述第一动力组件传动连接的第一转杆,所述第一转杆转动连接于所述第一支架组件上并与所述压杆螺纹连接。
18.进一步地,所述下压测试机构与所述检测平台之间形成有一通道,所述移动压杆机构配置为偶数个且被分成两列,两列移动压杆机构对称地安装于所述检测平台上并贯穿所述通道。
19.进一步地,所述移动压杆机构包括第二驱动组件、第二支架组件、第三驱动组件和移动构件;
20.所述第二驱动组件安装于所述检测平台上;
21.所述第二支架组件与所述第二驱动组件连接,所述第二支架组件与所述检测平台平行滑动连接;
22.所述第三驱动组件安装于所述第二支架组件上且与所述移动构件连接;
23.所述移动构件的顶端具有所述受压面,所述移动构件的底端具有所述第一加压面,所述移动构件沿竖向与所述第二支架组件滑动连接,所述第三驱动组件用于带动所述移动构件相对于所述第二支架组件滑动。
24.进一步地,所述第二驱动组件包括第二动力组件和第二传动结构;
25.所述第二动力组件安装于所述检测平台上;
26.所述第二传动结构包括第二转杆以及与所述第二转杆螺纹连接的第二套设件,所述第二转杆转动连接于所述检测平台上,所述第二套设件固装于所述第二支架组件上。
27.进一步地,所述检测平台上沿纵向设置有多条滑轨或滑槽,每一个所述移动压杆机构中的第二套设件通过所述第二支架组件与各条所述滑轨或者所述滑槽滑动连接。
28.进一步地,所述第三驱动组件包括第三动力组件、第五传动组件和第六传动组件;
29.所述第三动力组件安装于所述第二支架组件的顶端;
30.所述第六传动组件位于所述第三动力组件的侧方,所述第六传动组件包括移动杆以及与所述移动杆螺纹连接的旋转件,所述旋转件与所述第二支架组件转动连接,所述移动杆固装于所述移动构件上;
31.所述第五传动组件连接于所述第三动力组件和所述旋转件之间,用于将所述第三动力组件的动力传递至所述旋转件。
32.进一步地,所述移动构件包括手臂本体、转接块和转接板,所述移动杆与所述手臂本体固接,所述手臂本体具有一安装通道,所述第六传动组件和至少部分所述第五传动组件位于所述安装通道内,所述手臂本体的底端通过所述转接块与所述转接板连接,所述转接板的底面为所述第一加压面。
33.本发明第二方面提供一种半导体电子元件检测方法,采用了上述半导体电子元件检测装置,所述半导体电子元件检测装置包括多个所述移动压杆机构,包括:
34.各个所述移动压杆机构依次将待测试的所述电子元件转运至测试区,测试时所述下压测试机构每次下压一个所述移动压杆机构;
35.或者各个所述移动压杆机构同时将待测试的所述电子元件转运至测试区,测试时所述下压测试机构同时下压各个所述移动压杆机构。
36.本发明提供的半导体电子元件检测装置及方法能产生如下有益效果:
37.在使用上述半导体电子元件检测装置时,移动压杆机构可发生移动,从而将待测试的电子元件转运至测试区,在上述过程中下压测试机构可以逐渐下移,直至第二加压面与受压面相接触,随后下压测试机构持续给予受压面一向下的压力,该压力沿受压面指向第一加压面的方向传递给第一加压面,第一加压面下压电子元件进行测试。
38.相对于现有技术来说,一方面本装置设置有下压测试机构,下压测试机构可为移动压杆机构提供强大的下压力,同时也可以配合移动压杆机构共同对电子元件进行加压,实现大压力检测,且对移动压杆机构中驱动器的功率要求较低,减轻移动压杆机构的负载,可适用于高速运行测试环境;另一方面由于移动压杆机构上压力的传递方向沿受压面指向第一加压面的方向,测试时,下压测试机构给予移动压杆机构的压力与移动压杆机构受到的电子元件反作用力同轴且反向,移动压杆机构不会受到弯矩负载,从而使得测试压力更加均匀的作用于电子元件上,有效缓解测试压力不均匀带来的测试良率低的问题。
39.本发明第二方面提供的半导体电子元件检测方法,具有两种使用状态,下压测试机构可以对各个移动压杆机构逐个加压,也可以对各个移动压杆机构同时加压,从而实现电子元件的逐个检测和批量检测。
附图说明
40.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
41.图1为本发明实施例提供的一种半导体电子元件检测装置的三维结构示意图;
42.图2为本发明实施例提供的一种下压测试机构的三维结构示意图;
43.图3为本发明实施例提供的一种下压测试机构(无第二支撑架)的压杆剖视图;
44.图4为本发明实施例提供的一种第二驱动组件的三维结构示意图;
45.图5为本发明实施例提供的一种移动压杆机构(无第二驱动组件)的三维结构示意图;
46.图6为本发明实施例提供的一种移动压杆机构(无第二驱动组件)的臂剖视图;
47.图7为本发明实施例提供的两个移动压杆机构轮流对电子元件进行测试时初始化位置的俯视图;
48.图8为图7所示状态下的三维结构示意图;
49.图9为本发明实施例提供的第一移动压杆机构携带电子元件测试及第二移动压杆机构携带电子元件等待状态下的俯视图;
50.图10为图9所示状态下的三维结构示意图;
51.图11为本发明实施例提供的第二移动压杆机构携带电子元件测试及第一移动压杆机构携带电子元件等待状态下的俯视图;
52.图12为图11所示状态下的三维结构示意图;
53.图13为本发明实施例提供的第一移动压杆机构与第二移动压杆机构同时取料电子元件状态下的三维结构示意图;
54.图14为本发明实施例提供的第一移动压杆机构与第二移动压杆机构同时下压电子元件状态下的三维结构示意图。
55.图标:1-检测平台;11-滑轨;12-电机座;13-电机钣金;14-第一垫块;15
‑ꢀ
第二垫块;16-限位块;17-支撑块;2-下压测试机构;21-第一支架组件;211
‑ꢀ
第一安装板;212-第一支撑架;213-第二安装板;214-第二支撑架;215-第一固定板;216-限位件;217-第一轴承;218-安装块;219-滑块;22-压杆;221-第二加压面;222-导轨;23-第一动力组件;24-第一传动组件;241-第二主动轮; 242-第二同步带;243-第二从动轮;25-第一转杆;26-第一套设件;3-移动压杆机构;3a-第一移动压杆机构;3b-第二移动压杆机构;31-第二驱动组件;311
‑ꢀ
第二动力组件;312-第三传动组件;313-第二转杆;314-第二套设件;3141-连接板;32-第二支架组件;321-第四安装板;322-滑块固定板;323-第二固定板; 33-第三驱动组件;331-第三动力组件;332-第五传动组件;3321-第一主动轮; 3322-第一同步带;3323-第一从动轮;333-移动杆;334-旋转件;34-移动构件; 341-手臂本体;3411-受压面;3412-安装通道;342-转接块;343-转接板;3431
‑ꢀ
第一加压面;4-电磁件;5-磁吸件;6-通道;7-横向入料组件;7a-第一横向入料组件;7b-第二横向入料组件;8-测试区。
具体实施方式
56.下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
57.在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
58.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是
两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
59.以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
60.本发明第一方面的实施例在于提供一种半导体电子元件检测装置,如图1 所示,包括检测平台1、下压测试机构2和至少一个移动压杆机构3;移动压杆机构3安装于检测平台1上并用于转运以及压测电子元件,移动压杆机构3具有受压面3411和用于压测电子元件的第一加压面3431,第一加压面3431位于受压面3411的正下方;下压测试机构2安装于检测平台1上且可相对于检测平台 1往复运动,下压测试机构2具有第二加压面221,下压测试机构2用于通过第二加压面221向移动压杆机构3的受压面3411施加向下的压力,移动压杆机构 3上的压力沿受压面3411指向第一加压面3431的方向传递。
61.在使用时,移动压杆机构3可以通过水平移动以及竖向移动实现电子元件的拾取、转运至测试区以及下放电子元件,下压测试机构2通过竖向移动对移动压杆机构3进行加压,实现大压力测试,从而对移动压杆机构3中实现竖向移动的驱动器的功率要求较低,可配置为小型驱动器,适用于高速运行测试环境。另外,由于移动压杆机构3上的压力沿受压面3411指向第一加压面3431的方向传递,下压过程中移动压杆机构3不会发生弯曲,测试压力可均匀的作用于电子元件上,保证测试准确率。
62.在上述过程中,下压测试机构2与移动压杆机构3可以共同对电子元件进行加压,也可以移动压杆机构3处于停机状态,仅使用下压测试机构2提供下压力。
63.在一些实施例中,下压测试机构2具有第二加压面221的端部与移动压杆机构3具有受压面3411的端部中的一者设有电磁件4,另一者设有用于与电磁件4 相吸附的磁吸件5,当第二加压面221与受压面3411接触时,电磁件4与磁吸件5可以相互吸附,保证下压测试机构2与移动压杆机构3连接稳定性,特别是当移动压杆机构3与测试区8之间具有一定高度差时,如移动压杆机构3发生故障导致竖向移动的驱动器断电,电磁件4与磁吸件5之间的吸附力能够有效避免移动压杆机构3掉落。
64.作业人员可以通过控制电磁件4的通电状态来控制电磁件4是否吸附磁吸件 5,从而实现下压测试机构2与移动压杆机构3的快速吸合与分离。
65.根据吸附面积大小以及吸附强度,电磁件4和磁吸件5可以配置为一个或多个,为减小电磁件4和磁吸件5所占用的空间,电磁件4和磁吸件5可采用嵌入式安装。
66.在至少一个实施例中,电磁件4可以为电磁铁,磁吸件5可以为铁块。
67.以下对下压测试机构2的结构进行具体说明:
68.在一些实施例中,如图2所示,下压测试机构2包括第一支架组件21、第一驱动组件和压杆22;第一支架组件21安装于检测平台1上,第一支架组件21 起到支撑抬高第一驱动组件和压杆22的作用;压杆22沿竖直方向与第一支架组件21滑动连接,从而保证压杆22移动过程的稳定性,压杆22的底端具有第二加压面221;第一驱动组件安装于第一支架组件21上并与压杆22的顶端连接,第一驱动组件用于带动压杆22相对于第一支架组件21移动。上述下压测试机构 2结构简单,可为移动压杆机构提供定向的下压力。
69.其中,第一支架组件21可以包括第一安装板211、第一支撑架212、第二安装板213和第二支撑架214,第一安装板211位于第二安装板213的上方,且二者之间通过两个间隔设
置的第一支撑架212连接,第二支撑架214的顶端连接于第二安装板213背离第一支撑架212的一侧,第二支撑架214的底端固装于检测平台1上。
70.具体地,第一支撑架212呈板状结构,且第一支撑架212竖向设置,为减轻其重量,其设有镂空结构;第二支撑架214呈“几”字型结构,且为保证自身结构稳定性,其两侧安装有加强板。
71.需要说明的是,凡是能够带动压杆22相对于第一支架组件21移动的结构都可以是上述实施例所提及的第一驱动组件。例如:第一驱动组件为液压缸、直线电机等直线运动单元,第一驱动组件还可以为电机等做旋转运动的单元与连杆或丝杠螺母等单元的结合,连杆或丝杠螺母等单元能够将电机的旋转运动转化为直线运动。
72.在一些实施例中,如图2所示,第一驱动组件包括第一动力组件23和第一传动机构,第一动力组件23安装于第一支架组件21上;第一传动结构包括与第一动力组件23传动连接的第一转杆25,第一转杆25转动连接于第一支架组件 21上并与压杆22螺纹连接。在使用时,第一动力组件23可以驱动第一转杆25 转动,从而带动压杆22相对于第一支架组件21移动。
73.其中,第一动力组件23可以为电机,具体可以安装于第一安装板211上的第一固定板215上,第一固定板215固装于第一安装板211的顶面,第一动力组件23的外壳自第一固定板215延伸至第一安装板211的下方,第一动力组件23 的动力输出轴穿过第一固定板215延伸至第一安装板211的上方。
74.第一传动机构可以包括第一传动组件24和第二传动组件,其中:
75.第二传动组件位于第一动力组件23的侧方,第二传动组件包括第一转杆25 以及与第一转杆25螺纹连接的第一套设件26,第一转杆25转动连接于第一支架组件21上,第一套设件26固装于或一体成型于压杆22上,即第一转杆25 通过第一套设件26与压杆22螺纹连接。当第一转杆25相对于第一支架组件21 转动时,第一套设件26相对于第一转杆25转动同时沿竖直方向相对于第一转杆 25移动,从而实现压杆22的上下移动。
76.具体地,如图3所示,第一安装板211上安装有限位件216,第一转杆25 的顶端贯穿限位件216与第一传动组件24连接。第二安装板213上固装有安装块218,安装块218沿垂直于压杆22滑动的方向贯穿压杆22,从而可限定压杆 22的滑动行程。第一转杆25的底端可伸入压杆22内并通过第一轴承217与安装块218转动连接,由于安装块218固装于第二安装板213上,第一轴承217 的设置可减小第一转杆25转动时与安装块218的摩擦,而上述安装块218还可以与限位件216配合共同实现第一转杆25的轴向限位。
77.具体地,第一套设件26可以为螺母,第一转杆25可以为丝杆,丝杆在压杆 22上中居中布置。
78.第一传动组件24连接于第一动力组件23和第一转杆25之间,用于将第一动力组件23的动力传递至第一转杆25,从而使得第一动力组件23的动力输出轴和第一转杆25可以不同轴设置,可更合理的布置第一动力组件23以及第一转杆25的安装位置,例如图2所示,使得下压测试机构2的轴向尺寸更小,结构更加紧凑。
79.需要说明的是,凡是能够将第一动力组件23的动力传递至第一转杆25的结构都可以是上述实施例所提及的第一传动组件24,例如:第一传动组件包括齿轮传动单元、带传动单元、链传动单元等。
80.以图2为例进行具体说明,第一传动组件24包括第二主动轮241、第二同步带242和第二从动轮243,第二主动轮241与第一动力组件23的动力输出轴固接,第二从动轮243与第一转杆25固接,第二同步带242连接于第二主动轮 241和第二从动轮243之间,当第一动力组件23的动力输出轴转动时,第二主动轮241随之转动并通过第二同步带242带动第二从动轮243转动,最终实现第一转杆25的转动。
81.压杆22可以通过多种方式与第二支撑架214滑动连接,在一些实施例中,第二支撑架214上固装有两个对称设置的第三安装板,第三安装板与压杆22中的一者设置有至少一根导轨222,另一者设置有至少一个滑块219。
82.以图2为例进行具体说明,每个第三安装板上设置有两个滑块219,共四个滑块219,压杆22的外表面设置有与四个滑块219一一对应滑动连接的四根导轨222,四根导轨222分别位于压杆22的左右两侧面上。
83.在一些实施例中,与移动压杆机构3的受压状态类似,第一套设件26作用于压杆22的压力在压杆22上的传递方向垂直于第二加压面221,下压时,第一套设件26作用于压杆22的压力与受压面3411的反作用力反向,使得压杆22 不会受到弯矩负载。
84.具体地,第二加压面221具有几何中心,第一转杆25的轴线经过第二加压面221的几何中心,使得第二加压面221自几何中心处均匀向受压面3411施力。
85.另外,如图3所示,压杆22的第二加压面221嵌设有电磁件4,电磁件配置为三个,三个电磁件4呈直线型均匀间隔分布,且位于中间的电磁件4处于第二加压面221的几何中心处。
86.在一些实施例中,如图1所示,下压测试机构2与检测平台1之间形成有一通道6,移动压杆机构3配置为偶数个且被分成两列,两列移动压杆机构3对称地安装于检测平台1上并贯穿通道6。上述设置使得下压测试机构2架设于两列移动压杆机构3的上方,从而可更稳定且更便于向移动压杆机构3施加压力。
87.在作业时,两个移动压杆机构3可以轮流移动至下压测试机构2的正下方,下压测试机构2对某一个移动压杆机构3进行加压,也可以两个移动压杆机构3 同时移动至下压测试机构2的正下方,下压测试机构2同时对两个移动压杆机构 3进行加压。当移动压杆机构3配置为三个、四个、五个等时,加压方式同上。
88.以下对移动压杆机构3的结构进行具体说明:
89.在一些实施例中,如图1所示,移动压杆机构3包括第二驱动组件31、第二支架组件32、第三驱动组件33和移动构件34;第二驱动组件31安装于检测平台1上;第二支架组件32与第二驱动组件31连接,第二支架组件32与检测平台1平行滑动连接,滑动方向可以垂直于下压测试机构2的下压方向,第二驱动组件31用于带动第二支架组件32相对于检测平台1滑动,以使得移动构件 34的底端正对测试区8或者取料区;第三驱动组件33安装于第二支架组件32 上且与移动构件34连接;移动构件34的顶端具有受压面3411,移动构件34的底端具有第一加压面3431,移动构件34沿竖向与第二支架组件32滑动连接,第三驱动组件33用于带动移动构件34相对于第二支架组件32滑动,以使得移动构件34能够实现取放电子元件。
90.在上述移动压杆机构3中,在水平方向上,其可以进行纵向移动,因此电子元件可通过横向入料组件7横向上料,不需要在检测平台1上安装横向驱动机构,极大程度上简化的装置结构,提高响应速率,更适用于高速运行测试环境。
91.在一些实施例中,检测平台1上沿纵向设置有多条滑轨11或滑槽,每一个移动压杆机构3中的第二支架组件32均与各条滑轨11或者滑槽滑动连接,滑轨 11以及滑槽能够对第二支架组件32的运动起到导向的作用,从而保证移动压杆机构3沿纵向移动时的稳定性。
92.在至少一个实施例中,检测平台1上沿纵向设置有两条滑轨11,移动压杆机构3配置为两个,每一个移动压杆机构3中的第二支架组件32均与两条滑轨 11滑动连接,两条滑轨11能够稳定的对第二支架组件32进行支撑,同时两条滑轨11之间的检测平台1上可以开设有通孔,两个移动压杆机构3可穿过通孔下延至检测平台1的下方。
93.另外,由于上述实施例中的检测装置设置有下压测试机构2,下压测试机构 2可为移动压杆机构3提供强大的下压力,从而对移动压杆机构3中第三驱动组件33的驱动功率要求较低,减轻移动压杆机构3的负载,同时由于移动压杆机构3中的第二支架组件32可与检测平台1上的多条滑轨11或滑槽滑动连接,第二支架组件32上的第三驱动组件33和移动构件34的重量直接作用于多条滑轨 11或滑槽之间,移动压杆机构3的重心稳定,运行平稳,移动压杆机构3结构可配置的更加简单,不需要额外配置辅助的机构。
94.以下对第二驱动组件31的结构进行具体说明:
95.需要说明的是,凡是能够带动第二支架组件32相对于检测平台1滑动的结构都可以是上述实施例所提及的第二驱动组件31,例如:第二驱动组件31为液压缸、直线电机等直线运动单元,第二驱动组件31还可以为电机等做旋转运动的单元与连杆或丝杠螺母等单元的结合,连杆或丝杠螺母等单元能够将电机的旋转运动转化为直线运动。
96.在一些实施例中,如图4所示,第二驱动组件31包括第二动力组件311和第二传动结构,第二动力组件311安装于检测平台1上;第二传动结构包括第二转杆313以及与第二转杆313螺纹连接的第二套设件314,所述第二转杆313转动连接于检测平台1上,所述第二套设件314固装于第二支架组件32上。在使用时,第二动力组件311驱动第二转杆313转动,从而使得第二套设件314带动第二支架组件32相对于检测平台1滑动。
97.其中,第二动力组件311可以为电机,检测平台1上固装有电机座12,电机座12上固装有电机钣金13,电机钣金13沿横向相对于电机座12的位置可调,第二动力组件311的法兰面固定在电机钣金13上。
98.第二传动结构可以包括第三传动组件312和第四传动组件,其中:
99.第四传动组件位于第二动力组件311的侧方,第四传动组件包括第二转杆 313以及与第二转杆313螺纹连接的第二套设件314,第二转杆313转动连接于检测平台1上,第二套设件314固装于第二支架组件32上,每一个移动压杆机构3中的第二套设件314可以通过第二支架组件32与各条滑轨11或者滑槽滑动连接。当第二转杆313相对于检测平台1转动时,第二套设件314相对于第二转杆313转动同时沿纵向相对于第二转杆313移动,从而实现第二支架组件32的上下移动。
100.在至少一个实施例中,检测平台1上固装有多条滑轨11,第二支架组件32 上可以凹设有与滑轨11配合的滑槽,或者第二支架组件32上可以固装有滑块,滑块上凹设有与滑轨11配合的滑槽。
101.另外,如图4所示,检测平台1上安装有第一垫块14和第二垫块15,第一垫块14上固装有限位块16,第二垫块15上固装有支撑块17,第二转杆313的一端插装于限位块16内且与限位块16转动连接,限位块能够限定第二转杆313 的轴向位置,第二转杆313的另一端插装
于支撑块17内并与支撑块17转动连接,支撑块17主要起到支撑第二转杆313的作用,从而保证第二转杆313转动稳定性。
102.第二转杆313可以为丝杆,第二套设件314可以为螺母,螺母上可以固接有连接板3141,螺母通过连接板3141与第二支架组件32固接。
103.第三传动组件312连接于第二动力组件311和第二转杆313之间,用于将第二动力组件311的动力传递至第二转杆313,第三传动组件312的结构以及作用与第一传动组件24的结构以及作用相类似,为节省篇幅,在此不再详细赘述。
104.以下对第二支架组件32的结构进行具体说明:
105.第二支架组件32包括第四安装板321、滑块固定板322和第二固定板323,滑块固定板322固装于第四安装板321的底面,滑块固定板322可以配置为两个,第二固定板323固装于第四安装板321的顶面。以下对第三驱动组件33的结构进行具体说明:
106.第三驱动组件33的可选结构类型与第一驱动组件的可选结构类型类似,为节省篇幅,在此不再一一举例说明。
107.在一些实施例中,如图5所示,第三驱动组件33包括第三动力组件331、第五传动组件332和第六传动组件,其中:
108.第三动力组件331安装于第二支架组件32的顶端,具体可以通过第二固定板323安装于第四安装板321上,第三动力组件331的外壳位于第二固定板323 的上方,第三动力组件331的的动力输出轴穿过第二固定板323与第四安装板 321上方的第五传动组件332连接。
109.如图6所示,第六传动组件位于第三动力组件331的侧方,第六传动组件包括移动杆333以及与移动杆333螺纹连接的旋转件334,旋转件334与第二支架组件32转动连接,移动杆333固装于移动构件34上,当旋转件334相对于第二支架组件32转动时,移动杆333相对于旋转件334转动同时沿竖直方向相对于旋转件334移动,从而实现移动构件34的上下移动。
110.具体地,旋转件334可以与第四安装板321转动连接,旋转件334可以为螺母,移动杆333可以为丝杆,丝杆在移动构件34上中居中布置。
111.受压面3411和第一加压面3431均具有几何中心,移动杆333的轴线经过受压面3411和第一加压面3431的几何中心,使得第一加压面3431自几何中心处均匀向电子元件施力,克服测试压力不均匀带来的测试良率低的问题。
112.第五传动组件332连接于第三动力组件331和旋转件334之间,用于将第三动力组件331的动力传递至旋转件334,第五传动组件332的设置可使得第三动力组件331的布置更加的灵活,从而使得移动压杆机构3的结构更加的紧凑。
113.上述第三驱动组件33采用旋转件334与第二支架组件32转动连接,移动杆 333与旋转件334配合进行上下移动的方式,可避让出移动构件34的顶端,使得移动构件34的顶端可与下压测试机构2接触,以第三动力组件331固装的安装面为基面,由于移动构件34移动过程中其顶端可高于基面,因此第三动力组件331在检测平台1上的安装高度可设置的更低,便于上方下压测试机构2的布置。
114.第五传动组件332的可选结构类型与第一传动组件24的可选结构类型类似,为节省篇幅,在此不再一一举例说明。
115.在一些实施例中,如图5和图6所示,第五传动组件332包括第一主动轮 3321、第一同步带3322和第一从动轮3323,第一主动轮3321与第三动力组件 331的动力输出轴固接,第一从动轮3323与旋转件334固接并具有用于移动杆 333贯穿的通孔,第一从动轮3323可以位于旋转件334的上方,第一同步带3322 连接于第一主动轮3321和第一从动轮3323之间,当第一动力组件23的动力输出轴转动时,第一主动轮3321随之转动并通过第二同步带242带动第一从动轮 3323转动,最终实现旋转件334的转动。
116.移动构件34可以与第二支架组件32中的滑块固定板322滑动连接,移动构件34与滑块固定板322的滑动连接结构相似于压杆22与第一支架组件21的滑动连接结构,为节省篇幅,在此不再详细说明。
117.在一些实施例中,如图6所示,移动构件34包括手臂本体341、转接块342 和转接板343,手臂本体341的底端通过转接块342与转接板343连接,转接板 343的底面为第一加压面3431,受压面3411上可以嵌设有磁吸件5。
118.转接块342可以位于手臂本体341的侧方,转接块342的侧面可通过螺栓等连接件与手臂本体341固接,转接块342的顶面可通过螺栓等连接件与转接板343固接,如此设置可便于转接板343与手臂本体341的连接。
119.转接块342可以包括主板体以及沿自两个方向从主板体斜向下延伸出的支板,两个支板关于矩形板对称设置,矩形板的侧面通过连接件与手臂本体341 固接,支板的顶面通过连接件与转接板343固接。
120.在上述实施例的基础上,为使得移动压杆机构3的结构更加的紧凑,第六传动组件与手臂本体341固接,手臂本体341具有一安装通道3412,第六传动组件与至少部分第五传动组件332位于安装通道3412内。具体地,如图6所示,可以移动杆333、旋转件334和第一从动轮3323位于安装通道3412内。
121.以下对半导体电子元件检测装置的另一种方案进行说明:
122.在一些实施例中,如图1所示,检测平台1的下方设置有至少一组横向入料组件7,横向入料组件7与移动压杆机构3一一对应配合,横向入料组件7的入料方向垂直于纵向。
123.横向入料组件7可以包括轨道以及用于承载电子元件的转运板,轨道上可以滑动连接有两个转运板,从而实现电子元件的连续上料。
124.在至少一个实施例中,横向入料组件7配置为两组,两组横向入料组件7 分别位于测试区8的两侧。在作业时,横向入料组件7可以将待测试的电子元件移动至测试区8的两侧或者将完成测试的电子元件及时移走,移动压杆机构3 可将横向入料组件7上的电子元件转运至测试区8或者将测试完毕的电子元件转运至横向入料组件7上,两个移动压杆机构3可以轮流对电子元件进行测试,也可以同时对电子元件进行测试。
125.综上,上述实施例所提供的半导体电子元件检测装置具有以下优点:
126.1)、设置有下压测试机构2,下压测试机构2可为移动压杆机构3提供强大的下压力,同时也可以配合移动压杆机构3共同对电子元件进行加压,实现大压力检测,且对移动压杆机构3中驱动器的功率要求较低,减轻移动压杆机构3 的负载,可适用于高速运行测试环境;
127.2)、由于移动压杆机构3上压力的传递方向沿受压面3411指向第一加压面 3431的方向,第一套设件26作用于压杆22的压力在压杆22上的传递方向垂直于第二加压面221,测
试时下压测试机构2、移动压杆机构3均不会受到弯矩负载,从而使得测试压力更加均匀的作用于电子元件上,解决测试压力不均匀带来的测试良率低的问题。
128.3)、上述实施例所提供的半导体电子元件检测装置的检测平台1上并未设置固定侧板结构,第一转杆25在压杆22上中居中布局,移动杆333在移动构件 34上中居中布局,取消了现有测试装置中垂直驱动系统与测试手臂连接的水平导轨,改为丝杆与移动构件34以及压杆22直接相连接。此种方式一者可以减少原有侧板结构组件,减少导轨数量,减少工作量;二者现有测试装置需要单独将各个模块组装好,再搬运至整个测试模块基础框架上,最后继续调试各个模块之间的配合精度,上述实施例提供的半导体电子元件检测装置中由于丝杆直接与移动构件34以及压杆22相连接,丝杆与移动构件34以及压杆22集成在一起,组装好单个模块后直接安装到基础框架上即可,具有结构简单、便于装配的优点,有助于提高整体装配精度。
129.本发明第二方面的实施例在于提供一种半导体电子元件检测方法,包括:
130.各个移动压杆机构3依次将待测试的电子元件转运至测试区,测试时下压测试机构2每次下压一个移动压杆机构3;
131.或者各个移动压杆机构3同时将待测试的电子元件转运至测试区,测试时下压测试机构2同时下压各个移动压杆机构3。
132.本发明第二方面的实施例所提供的半导体电子元件检测方法具有两种使用状态,下压测试机构2可以对各个移动压杆机构3逐个加压,也可以对各个移动压杆机构3同时加压,从而实现电子元件的逐个检测和批量检测。
133.以下对半导体电子元件检测装置的作业过程进行详细的说明。
134.单手臂轮流下压测试过程如下:
135.第一步:各个组件运动至初始化位置。
136.整个测试装置启动前,第一移动压杆机构3a和第二移动压杆机构3b上抬运动至垂直初始化位置,之后第一横向入料组件7a和第二横向入料组件7b水平运动到各自初始化位置,分别称为第一横向入料组件入料位、第二横向入料组件入料位,下压测试机构2待启动。初始化位置如图7和图8所示。
137.第二步:第二移动压杆机构3b携带待测电子元件进行测试。
138.第一横向入料组件7a运动至放料位,之后第二移动压杆机构3b垂直向下运动至第二横向入料组件7b上吸取待测试的电子元件。接着第二移动压杆机构3b 的移动构件34垂直向上运动至安全高度后,第二移动压杆机构3b中的第二驱动组件31开启运动,将第二移动压杆机构3b水平移动对准测试区8后,第二移动压杆机构3b开始运动下降到测试区8,在水平运动的同时下压测试机构2垂直向下运动,待第二移动压杆机构3b和下压测试机构2相接触后开始进行测试。其中在第二移动压杆机构3b水平移动对准测试区8的过程中,第二横向入料组件7b将运动至初始入料位待料,同时,第一移动压杆机构3a将完成从第一横向入料组件7a中吸取待测电子元件的动作过程,并停留第一横向入料组件7a上方等待第二移动压杆机构3b完成电子元件测试。测试过程示意图如图9和图10 所示。
139.第三步:第一移动压杆机构3a携带待测电子元件进行测试。
140.第二移动压杆机构3b测试完成后,下压测试机构2垂直方向运动上升,同时第二移动压杆机构3b也上升,携带测试完成的电子元件离开测试区8,水平运动至第二横向入料组
件7b上方并下降放置完成测试的电子元件,第二横向入料组件7b将完成测试的电子元件运送至出料位,同时将下一轮待测电子元件运送到第二移动压杆机构3b正下方。与此同时,第一移动压杆机构3a携带待测试的电子元件运行至测试区8进行测试,第二移动压杆机构3b从第二横向入料组件7b中吸取待测的电子元件并等待第二轮电子元件测试。测试过程如图11和图 12所示。
141.第四步:重复以上第二、第三步骤,将可以进行循环测试。
142.双手臂同时下压并测过程如下:
143.第一步:各个组件运动至初始化位置。
144.整个测试装置启动前,第一移动压杆机构3a和第二移动压杆机构3b上抬运动至垂直初始化位置,之后第一横向入料组件7a和第二横向入料组件7b水平运动到各自初始化位置,分别称为第一横向入料组件入料位、第二横向入料组件入料位。此时,第一移动压杆机构3a位于第一横向入料组件7a的正上方,第二移动压杆机构3b位于第二横向入料组件7b的正上方,初始化位置如图7和图8 所示。
145.第二步:第一移动压杆机构3a和第二移动压杆机构3b同时取料电子元件,并同时运行到测试区8下压测试。
146.第一横向入料组件7a和第二横向入料组件7b携带待测电子元件运行到两组移动压杆机构的取料位,第一移动压杆机构3a和第二移动压杆机构3b同时下降吸取电子元件,随后抬起,再经过两个第二驱动组件31分别驱动运行到测压位置,在两组移动压杆机构水平运行的过程中,下压测试机构2首先下降,随后第二移动压杆机构3b和第一移动压杆机构3a开始下降,当两组移动压杆机构到达测压位置后,下压测试机构2与两组压杆组件刚好完成对接并下压测试电子元件,与此同时,第一横向入料组件7a和第二横向入料组件7b同时回到各自初始位置取料,并接收等待测试完成的电子元件。示意图如图13和图14所示。
147.第三步:第一移动压杆机构3a和第二移动压杆机构3b同时将测试完成的电子元件搬运至第一横向入料组件7a和第二横向入料组件7b上,并吸取新的待测电子元件。
148.之后整体重复第二步至第三步的步骤进行循环测试。
149.最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1