基于微纳光纤中气体光热效应的全光相位调制系统

文档序号:31853810发布日期:2022-10-19 02:03阅读:99来源:国知局
基于微纳光纤中气体光热效应的全光相位调制系统

1.本发明涉及光相位调制技术领域,尤其涉及的是基于微纳光纤中气体光热效应的全光相位调制系统。


背景技术:

2.光相位调制器是光纤通信及传感领域的重要器件,传统光相位调制器多基于晶体材料的电光效应的原理制造。石英光纤与晶体材料间的异质特点,使得传统光相位调制器的插入损耗大、集成度低、封装体积大、工艺复杂。
3.现有的相位调制器通常采用的固态热敏材料,如石墨烯、过渡金属硫族化物和黑磷等,具有散射损耗大、光损伤阈值低和制备工艺复杂的缺点。
4.因此,现有技术还有待于改进和发展。


技术实现要素:

5.鉴于上述现有技术的不足,本发明的目的在于提供一种基于微纳光纤中气体光热效应的全光相位调制系统,基于微纳光纤倏逝场中气体的光热效应,具有散射损耗小、产热均匀以及制备过程简单的优点。
6.本发明的技术方案如下:
7.一种基于微纳光纤中气体光热效应的全光相位调制系统,包括:
8.信号光源,信号光源用于产生信号光;
9.第一耦合器,第一耦合器连接信号光源,并将信号光从第一输出端和第二输出端分别输出;
10.相位调制器,相位调制器连接在第一输出端,相位调制器包括泵浦光源,以及光纤气室,泵浦光源用于发出控制光;光纤气室包括密封内腔,以及位于密封内腔中的微纳光纤,微纳光纤的外部填充有吸收性气体,微纳光纤接收控制光与信号光,并通过控制光改变吸收性气体的温度和折射率以引起信号光的相位变化;
11.匹配臂组件,匹配臂组件的输入端连接第二输出端;
12.第二耦合器,第二耦合器的第一输入端连接相位调制器,且第二输入端连接匹配臂组件的输出端;
13.探测组件,探测组件连接第二耦合器的输出端。
14.进一步,匹配臂组件包括:压电光纤拉伸器,压电光纤拉伸器连接在第二输出端;
15.偏振控制器,偏振控制器连接在压电光纤拉伸器的出光端,并连接第二耦合器。
16.进一步,匹配臂组件还包括:伺服控制器,伺服控制器连接探测组件和压电光纤拉伸器,压电光纤拉伸器通过伺服控制器的驱动而将输出信号锁定在最大斜率点。
17.进一步,相位调制器还包括:
18.波分复用器,波分复用器的第一进光端设置在泵浦光源的出光端并用于输入控制光,且第二进光端用于输入信号光;以及
19.光纤布拉格光栅,光纤布拉格光栅设置在光纤气室的出光端,并用于输出信号光而反射控制光;
20.微纳光纤包括:纤尾区,以及锥区;纤尾区位于锥区的两端。
21.进一步,微纳光纤由单模光纤拉锥制成;
22.锥区直径为0.1-10微米,锥区长度为0.1-10厘米。
23.进一步,泵浦光源与波分复用器之间通过光纤连接。
24.进一步,泵浦光源包括:泵浦光激光器,泵浦光激光器用于发射控制光;
25.放大器,放大器设置在泵浦光激光器的出光端,并用于放大控制光;
26.声光调制器,声光调制器设置在放大器的出光端,并用于对控制光的强度进行调制。
27.进一步,泵浦光源与波分复用器之间设置有环形器。
28.进一步,光纤布拉格光栅的反射带宽为0.1-10纳米,中心波长与控制光的波长相对应,反射率为99%。
29.进一步,吸收性气体包括:乙炔、甲烷或/和二氧化碳。
30.有益效果:与现有技术相比,本发明提出的一种基于微纳光纤中气体光热效应的全光相位调制系统,其中通过泵浦光源产生控制光,通过信号光源产生信号光,信号光通过第一耦合器分为两路,其中一路将控制光和泵浦光共同输入到相位调制器中的光纤气室中,控制光在微纳光纤的倏逝场与模场范围内的吸收性气体相互作用所产生的热光效应,并引起吸收性气体和微纳光纤的温度升高,该温度变化通过热光效应导致微纳光纤的折射率变化,进而改变沿微纳光纤传输的信号光的相位;另一路信号光通过匹配臂组件通过匹配臂组件调节,通过第二耦合器后使两路信号光共同输入到探测组件,两路信号光在合波时产生干涉光,从而出现了干涉条纹,当两条光纤中传输光的相位差发生变化,从而引起干涉条纹的移动。光探测组件接收到干涉条纹的变化信息,并输入到适当的数据处理系统,最后得到信号光的相位调制,本方案采用基于微纳光纤的中气体光热效应实现对信号光的相位调制,相比于现有调制器而言具有更高的模场能量密度、散射损耗小以及制备过程简单的优点。
附图说明
31.图1为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的结构原理框图;
32.图2为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的相位调制器的结构原理框图;
33.图3为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的微纳光纤的截面示意图;
34.图4为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的微纳光纤的倏逝场分布图;
35.图5为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的实施例的相位调制时域信号图;
36.图6为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的
控制光功率响应曲线;
37.图7为本发明一种基于微纳光纤中气体光热效应的全光相位调制系统的实施例的调制频率响应曲线。
38.图中各标号:10、相位调制器;110、泵浦光源;111、泵浦光激光器;112、放大器;113、声光调制器;120、波分复用器;130、光纤气室;131、密封内腔;132、微纳光纤;133、纤尾区;134、锥区;135、倏逝场;140、光纤布拉格光栅;150、环形器;20、信号光源;30、第一耦合器;40、匹配臂组件;410、压电光纤拉伸器;420、偏振控制器;430、伺服控制器;50、第二耦合器;60、探测组件;610、光探测器;620、示波器。
具体实施方式
39.本发明提供了一种基于微纳光纤中气体光热效应的全光相位调制系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
40.对信号光进行调制的方案很多,其中原理是利用热敏材料对控制光倏逝场的吸收产生热量,从而引起波导折射率的改变,对波导中信号光相位产生调制。但受限于热敏材料本征吸收以及不完美涂覆引起的散射效应,插入损耗高达10db,通光波段较窄;受限于空气的缓慢散热,调制带宽通常低于100hz。且热敏材料由于需要波导后处理以及材料涂覆,制备较为复杂,长期可靠性难以满足实用需求。而为解决热敏材料的局限性问题,可以采用全光相位调制技术进行改善,因此,本实施例提出一种基于微纳光纤中气体光热效应的全光相位调制系统,以改善上述问题。
41.本实施例的具体结构如下:
42.如图1所示,本实施例提出一种基于微纳光纤中气体光热效应的全光相位调制系统,并通过控制光与吸附性气体所产生的光热效应对信号光进行调制。全光相位调制系统包括:信号光源20,第一耦合器30,相位调制器10,匹配臂组件40,第二耦合器50,以及探测组件60。信号光源20用于产生信号光,第一耦合器30连接信号光源20,并将信号光从第一耦合器30的第一输出端和第二输出端分别输出;相位调制器10连接在第一输出端,相位调制器10包括泵浦光源110,以及光纤气室130,泵浦光源110用于发出控制光;光纤气室130包括密封内腔131,以及位于密封内腔131中的微纳光纤132,微纳光纤132的外部填充有吸收性气体,微纳光纤132接收控制光与信号光,并通过控制光改变吸收性气体的温度和折射率以引起信号光的相位变化;匹配臂组件40的输入端连接第一耦合器30的第二输出端;第二耦合器50的第一输入端连接相位调制器10,且第二输入端连接匹配臂组件40的输出端;探测组件60连接第二耦合器50的输出端。通过泵浦光源110产生控制光,通过信号光源20产生信号光,信号光通过第一耦合器30分为两路,其中一路将信号光和控制光共同输入到相位调制器10中的光纤气室130中,控制光在微纳光纤132的倏逝场135与模场范围内的吸收性气体相互作用所产生的热光效应,并引起吸收性气体和微纳光纤132的温度升高,该温度变化通过热光效应导致微纳光纤132的折射率变化,进而改变沿微纳光纤132传输的信号光的相位;另一路信号光通过匹配臂组件40调节,通过第二耦合器50后使两路信号光共同输入到探测组件60,两路信号光在合波时产生干涉光,从而出现了干涉条纹,当两条光纤中传输光的相位差发生变化,从而引起干涉条纹的移动。光探测组件60接收到干涉条纹的变化信息,
并输入到适当的数据处理系统,最后得到信号光的相位调制,本方案采用基于微纳光纤132的中气体光热效应实现对信号光的相位调制。
43.如图1、图2所示,本实施例中的相位调制器10的具体结构还包括:波分复用器120,以及光纤布拉格光栅140。本实施例中的泵浦光源110用于发出控制光,控制光射入波分复用器120;波分复用器120具有第一进光端和第二进光端,以及用于输出的公共端;波分复用器120的第一进光端设置在泵浦光源110的出光端并用于输入控制光,且第二进光端用于输入需要调制的信号光,该信号光为第一耦合器所分出的第一路信号光,通过波分复用器120可以将控制光和该信号光进行合波。光纤气室130连接在波分复用器120的公共端,从波分复用器120输出合波后的控制光以及信号光;光纤气室130中通过控制光改变吸收性气体的温度和折射率以引起信号光的相位变化。光纤布拉格光栅140设置在光纤气室130的出光端,从光纤气室130所输出的控制光与信号光进入光纤布拉格光栅140,光纤布拉格光栅140用于输出信号光而反射控制光,从而得到调制后的信号光,而被光纤布拉格光栅140所反射的控制光,从微纳光纤132的另一端进入到光纤气室130,继续作用于吸收性气体,产生光热效应,这样使光纤气室130的两端均能进行光热效应,在微纳光纤132的传输方向上的光热效应温和。
44.本实施例中通过泵浦光源110产生控制光,再通过波分复用器120将控制光和泵浦光共同输入到光纤气室130中,控制光在微纳光纤132的倏逝场135与模场范围内的吸收性气体相互作用所产生的热光效应,并引起吸收性气体和微纳光纤132的温度升高,该温度变化通过热光效应导致微纳光纤132的折射率变化,进而改变沿微纳光纤132传输的信号光的相位,实现信号光的相位调制,本方案采用基于微纳光纤132的中气体光热效应实现对信号光的相位调制,相比于现有调制器而言具有更高的模场能量密度;通过光纤布拉格光栅140所反射的控制光从微纳光纤132的另一端进入到光纤气室130,继续作用于吸收性气体,产生光热效应,这样使光纤气室130的两端均能进行光热效应,在微纳光纤132的传输方向上的两端实现均匀的产热、且采用气体的光热效应不同于现有的固体光热材料,气体分子仅在离散的窄吸收线处有较强吸收,在吸收线外的信号光波长则几乎无吸收,避免了材料本征吸收以及不完美涂覆引起的散射效应的问题,减小了散射损耗;且本方案可将波分复用器120、光纤气室130、以及光纤布拉格光栅140进行集成化设置,集成度高、制备过程简单;可广泛应用于光纤通信和光纤传感领域。
45.如图3、图4所示,本实施例中的微纳光纤132具体包括纤尾区133,以及锥区134;纤尾区133位于锥区134的两端。纤尾区133作为光进出光纤的区,锥区134作为微纳光纤132的主要功能区,其具有直径细小的特点,且其倏逝场135比较强,便于与吸收性气体产生光热效应;锥区134位于密封内腔131的中间位置,能使倏逝场在密封内腔131中均匀分布,与吸收性气体均匀作用。通过调控微纳光纤132的色散可以降低控制光的功率阈值,减小非线性相互作用长度;倔强系数小,从而便于拉伸制作。本实施例中利用微纳光纤132中传输的控制光在光纤外部所激发的倏逝场来产生光和吸收性气体的相互作用,相比于其他光纤调制器而言具有更高的模场能量密度。本实施例中的微纳光纤132由单模光纤拉锥制成,锥区134直径为0.1-10微米,锥区134长度为0.1-10厘米。在微纳光纤132中,根据锥区134直径的不同,会有不同百分比的光场在光纤之外以倏逝波的形式传播,这部分倏逝场将可以与吸收性气体反应,例如锥区134直径在0.2微米时,光纤外的倏逝场占80%。这样有利于与吸收
性气体进行快速作用。采用上述形式的微纳光纤132,使具有极低的光纤到器件再到光纤的耦合损耗,粗糙度极低的波导表面,高折射率差的强限制光场,大百分比的倏逝场,极轻的质量及灵活的色散特性。
46.本实施例中的泵浦光源110与波分复用器120之间通过光纤连接,这样控制光直接通过光纤传导至光纤气室130进行反应,具有传输损耗小的优点,且能将泵浦光源110远离光纤气室130设置,通过远程注入控制光控制沿微纳光纤132传输的信号光的相位,具有体积小、抗电磁干扰、抗高温的优点。
47.本实施例中的微纳光纤132的两端可以直接通过光纤链路进行焊接,从而使波分复用器120与光纤气室130之间通过光纤连接,光纤布拉格光栅140与光纤气室130之间通过该光纤连接,从而利于控制光和信号光的稳定传输,具有极低的耦合损耗,同时还具有光吸收温和、产热均匀、散射损耗小的优点。本结构具有易于与光纤链路进行低插损耦合和抗电磁干扰能力强的优点。
48.如图2所示,本实施例中的泵浦光源110包括:泵浦光激光器111,放大器112,以及声光调制器113。泵浦光激光器111用于发射控制光,泵浦光源110所产生的控制光的波长与吸收性气体(乙炔气体)的任意一条吸收谱线相对应。本实施例中控制激光器可以产生波长为1532.83nm的单频控制光,该波长对应乙炔气体的p13吸收线。放大器112为光纤放大器112,设置在泵浦光激光器111的出光端,并用于放大控制光;声光调制器113设置在放大器112的出光端,并用于对控制光的强度进行调制。控制光的功率被光纤放大器112放大,再由声光调制器113对其进行调制,本实施例中的声光调制器113对控制光的调整可以是正弦波调制、三角波调制、锯齿波调制、脉冲调制等。通过调制后的控制光与信号光再输出到光纤气室130,在光纤气室130内通过吸收性气体的光热效应而对信号光进行调制。
49.本实施例中的泵浦光源110与波分复用器120之间设置有环形器150,具体为声光调制器113与波分复用器120之间设置有环形器150。通过环形器150使控制光可以在环形器150内单向传送,当被光纤布拉格光栅140的反射的控制光从光纤气室130内射出后,剩余的控制光再经波分复用器120的公共端和第一进光端反向回到环形器150内,再从环形器150的另外端口输出。
50.本实施例中的光纤布拉格光栅140的反射带宽为0.1-10纳米,中心波长与控制光的波长相对应,反射率为99%,其反射率接近100%。信号光通过光纤布拉格光栅140后输出,而控制光被反射回微纳光纤132中再次被吸收,这样使控制光在微纳光纤132的另一端进入而产生光热效应,同时从两端进行温度改变,增强相位调制幅度。
51.本实施例中的密封内腔131中还填充有缓冲气体。缓冲气体包括:氮气或/和氩气等惰性气体,缓冲气体可以对控制光和信号光的输送起到更稳定的作用,在混合气体中的吸收性气体体积分数不低于1%。
52.本方案中的吸收性气体包括:乙炔、甲烷或/和二氧化碳。本实施例中吸收性气体可以采用乙炔气体,乙炔气体具有优异的光热系数,密闭气室中的乙炔气体能够高效率地吸收倏逝场的能量并产生热量,受热的微纳光纤132通过热光效应对信号光产生相位调制。
53.如图1所示,第一耦合器30所分出的另一路信号光进入到匹配臂组件40,本实施例中的匹配臂组件40具体包括:压电光纤拉伸器410,以及偏振控制器420。所述压电光纤拉伸器410连接在第二输出端,偏振控制器420连接在压电光纤拉伸器410的出光端,并连接第二
耦合器50,通过压电光纤拉伸器410可以调节该路的光纤长度,通过偏振控制器420用于调节匹配臂组件40中信号光的偏振,当从相位调制器10所调制后的一路信号光与匹配臂组件40中第二路信号光交汇时,以获得最大的干涉信号。
54.如图1所示,本实施例中的匹配臂组件40还包括伺服控制器430,伺服控制器430连接探测组件60和压电光纤拉伸器410,压电光纤拉伸器410通过伺服控制器430的驱动而将干涉仪的输出信号锁定在最大斜率点。这样就更利于探测组件60对干涉信号的收集与处理。由于环境噪声很容易使得本系统的工作点产生漂移,一点微小的震动如人在附近走路可能导致工作点产生几十上百个周期的漂移,所以需要进行工作点的锁定,让它保持在最大斜率点。锁定的方式依靠伺服控制器430和压电光纤拉伸器410,在进行锁定时,光探测器610将检测到的光信号输入到伺服控制器430,伺服控制器430接收到的信号中包含工作点由于噪声引起的漂移,伺服控制器430通过滤波提取出噪声强度信号,并通过比例积分算法产生与噪声信号相对应的电信号,并将该电信号输入给压电光纤拉伸器410。压电光纤拉伸器410改变光纤的臂长,从而能够根据噪声信号实时地调整工作点,使得压电光纤拉伸器410引入的工作点漂移能够与噪声引起的工作点漂移相抵消,从而使得工作点能够稳定在斜率最大点处。
55.如图1所示,本实施例中的探测组件60包括光探测器610,以及示波器620。光探测器610接收到调制后的信号光的干涉条纹的变化信息,并输入到示波器620进行数据处理并显示,从而得到测量结果。
56.图5所示为控制光功率为61mw,调制频率为1khz时,全光相位调制系统的输出信号。其中信号光的波长为1550nm。可见,此时本全光相位调制系统对信号光的相位调制幅度为2π。此外,实验证实了控制光功率与光热相位调制幅度的正比关系,其结果如图6所示。实验中,控制光的调制频率为1khz。此外,演示了本相位调制器对c+l波段内不同波长,即1529、1550、1590和1625nm,信号光的相位调制幅度以及频率响应,其结果如图7所示,其中控制光功率为148mw,随着控制光调制频率的减小,本调制器对信号光的相位调制幅度增大。
57.综上所述,本方案所提出的一种基于微纳光纤中气体光热效应的全光相位调制系统,通过相位调制器10的泵浦光源110产生可以调制的控制光,通过信号光源产生信号光,信号光通过第一耦合器分为两路,其中一路将信号光和控制光通过波分复用器120将控制光与待调制的信号光合束,再将两束光经波分复用器120的公共端输入到光纤气室130内的微纳光纤132。由于倏逝场能量分布在微纳光纤132的外部,使用气密性良好的密封内腔131将微纳光纤132封装在充满固定浓度的乙炔及缓冲气体的环境中。此光纤气室130能够保护微纳光纤132在使用中可能遇到的机械性损伤,同时避免外界环境中的灰尘或空气等物质参与微纳光纤132中的倏逝场和外界环境的相互作用,使得光热效应中吸收性气体的产热效率和折射率随热量的变化率固定。控制光和信号光由微纳光纤132的尾纤输入,在微纳光纤132的锥区134处,控制光通过其倏逝场被吸收性气体(乙炔气体)吸收,并通过光热效应加热微纳光纤132。微纳光纤132及沿微纳光纤132传输的控制光的倏逝场的能量分布如图3所示,微纳光纤132的波导结构使得原本在光纤内部传输的能量能够泄露到光纤外部形成倏逝场并沿着光纤传输,并且泄露到光纤外部的能量密度较高,能够充分与气室中的乙炔气体进行相互作用。乙炔气体具有优异的光热系数,密闭气室中的乙炔气体能够高效率地
吸收倏逝场的能量并产生热量,受热的微纳光纤132通过热光效应对信号光产生相位调制。将微纳光纤132的锥区134及乙炔气体封装于密封内腔131内。控制光和受调制的信号光从微纳光纤132的尾纤输出,再进入光纤布拉格光栅140,使控制光被反射回微纳光纤132中再次被吸收,并增强相位调制幅度。剩余的控制光再经波分复用器120的公共端和第一进光端后回到环形器150端口,再从环形器150的另一端口输出。另一路信号光通过匹配臂组件调节,通过第二耦合器后使两路信号光共同输入到探测组件,两路信号光在合波时产生干涉光,从而出现了干涉条纹,当两条光纤中传输光的相位差发生变化,从而引起干涉条纹的移动。光探测组件接收到干涉条纹的变化信息,并输入到适当的数据处理系统,最后得到信号光的相位调制,本方案采用基于微纳光纤的中气体光热效应实现对信号光的相位调制。本方案采用基于微纳光纤132的中气体光热效应实现对信号光的相位调制,相比于现有调制器而言具有更高的模场能量密度、光吸收温和、产热均匀、散射损耗小以及制备过程简单的优点。
58.应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1