一种基于目标识别的分布式输电线路故障诊断方法及系统与流程

文档序号:31478287发布日期:2022-09-10 01:04阅读:134来源:国知局
一种基于目标识别的分布式输电线路故障诊断方法及系统与流程

1.本发明属于分布式输电线路故障诊断技术领域,尤其涉及一种基于目标识别的分布式输电线路故障诊断方法及系统。


背景技术:

2.本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
3.输电线路的稳定运行对电力系统的安全起到重要作用,但是每当遇到雷击、树障、动物触电和吊车触线等问题时输电线路就会发生故障并引发出输电线路跳闸事件,通常输电线路跳闸时电流会持续至少2个周波的稳定的升高突变,跳闸结束后电流又会有降低并且稳定的突变,而对于电压波形,跳闸前后电压的波形会有明显的突变,根据电流和电压的波形突变特征可以将其作为诊断是否是故障波形的准则。通过分布式装置采集跳闸事件产生的特定的电流和电压波形并经波形识别算法识别出来跳闸波形以此实现故障的诊断。当前处理输电线路上的波形识别主要依靠傅立叶变换方法、全局阈值方法、小波变换方法等。
4.他们的不足之处在于:1、无法从时序上找到或者判定电流波形突变时刻以及该时刻处的波形是否是稳定的突变体而不是脉冲引起的突变体;2、无法利用电流突变体的时序信息找到对应时刻附近的电压波形的幅值来判断跳闸前后电压是否也发生突变,因此波形识别时会误判其他形状的波形为跳闸波形从而错误诊断了线路运行的状态,增加了误判率。


技术实现要素:

5.为了解决上述背景技术中存在的技术问题,本发明提供一种基于目标识别的分布式输电线路故障诊断方法及系统,一方面可以识别稳定的突变体不受冲击脉冲的影响,另一方面通过灵活设置局部阈值处理各个目标识别神经网络识别得到突变体,克服不同时序处的突变体的差异性引起的误判。
6.为了实现上述目的,本发明采用如下技术方案:本发明的第一个方面提供一种基于目标识别的分布式输电线路故障诊断方法。
7.一种基于目标识别的分布式输电线路故障诊断方法,包括:获取工频电流波形数据,采用目标识别神经网络,寻找所有发生波形突变的突变体;将所有发生波形突变的突变体,按照时间先后顺序进行排序;遍历每个突变体,筛选波形幅值满足第一阈值的突变体,以此得到电流突变体数目;根据电流突变体的时序位置寻找对应的目标电压波形,并求取目标电压波形各时序对应位置上的幅值;根据目标电压波形各时序对应位置上的幅值变化是否满足第二阈值,判断电压是
否发生突变,以此得到电压突变体数目;根据电流突变体数目和电压突变体数目,诊断发生突变的波形是否属于故障波形。
8.进一步地,在训练阶段:采用历史故障波形数据,构建训练的样本集,并标注出发生波形突变的突变体,基于标记好的样本训练目标识别神经网络,得到训练好的目标识别神经网络;在诊断阶段:基于训练好的目标识别神经网络,实时监测工频电流波形数据,并获取工频电流波形数据的突变体。
9.进一步地,所述将所有发生波形突变的突变体,按照时间先后顺序进行排序具体包括:确定每个突变体的开始时刻和结束时刻,根据开始时刻按升序排序;若一个突变体的开始时刻和结束时刻包含了另一个突变体的开始时刻和结束时刻,则优先排时间跨度长的突变体。
10.进一步地,所述遍历每个突变体,筛选波形幅值满足第一阈值的突变体,以此得到电流突变体数目的具体过程包括:若电流突变体数目为0,则如果本突变体必须满足开始时刻后的1.5个周波的波形幅值的两倍小于结束时刻前的1.5个周波的波形幅值,则将电流突变体数目加1,记录本突变体的开始时刻的位置为t1;若电流突变体数目不为0,则如果本突变体的开始时刻后的1.5个周波的波形幅值的最大值和结束时刻前的1.5个周波的波形幅值的最小值的比值大于设定的第三阈值,则电流突变体数加1,更新t2为本突变体的结束时刻。
11.更进一步地,所述根据电流突变体的时序位置寻找对应的目标电压波形,并求取目标电压波形各时序对应位置上的幅值的具体过程包括:根据电流突变体的开始时刻,得到对应的第一个时序位置开始到结尾的1.5周波内的电压幅值;根据电流突变体的结束时刻,得到第二个时序位置开始到结尾的每隔4n个周波内的电压幅值,n为正整数,以此寻找与第一个时序的电压幅值的差异最大的电压幅值,作为突变幅值。
12.更进一步地,所述根据目标电压波形各时序对应位置上的幅值变化是否满足第二阈值的具体过程包括:判断突变幅值与第一个时序的电压幅值的比值,是否满足设定的第二阈值。
13.进一步地,所述根据电流突变体数目和电压突变体数目,诊断发生突变的波形是否属于故障波形的具体过程包括:若电流突变体数目和电压突变体数目均大于1,则诊断为发生突变的波形是故障波形,否则,则为非故障波形。
14.本发明的第二个方面提供一种基于目标识别的分布式输电线路故障诊断方法。
15.一种基于目标识别的分布式输电线路故障诊断系统,包括:识别模块,其被配置为:获取工频电流波形数据,采用目标识别神经网络,寻找所有发生波形突变的突变体;排序模块,其被配置为:将所有发生波形突变的突变体,按照时间先后顺序进行排
序;第一阈值判断模块,其被配置为:遍历每个突变体,筛选波形幅值满足第一阈值的突变体,以此得到电流突变体数目;计算模块,其被配置为:根据电流突变体的时序位置寻找对应的目标电压波形,并求取目标电压波形各时序对应位置上的幅值;第二阈值判断模块,其被配置为:根据目标电压波形各时序对应位置上的幅值变化是否满足第二阈值,判断电压是否发生突变,以此得到电压突变体数目;诊断模块,其被配置为:根据电流突变体数目和电压突变体数目,诊断发生突变的波形是否属于故障波形。
16.本发明的第三个方面提供一种计算机可读存储介质。
17.一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第一个方面所述的基于目标识别的分布式输电线路故障诊断方法中的步骤。
18.本发明的第四个方面提供一种计算机设备。
19.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述第一个方面所述的基于目标识别的分布式输电线路故障诊断方法中的步骤。
20.与现有技术相比,本发明的有益效果是:本发明一方面可以识别稳定的突变体不受冲击脉冲的影响,另一方面通过灵活设置局部阈值处理各个目标识别神经网络识别到的突变体,克服不同时序处的突变体的差异性引起的误判。
21.本发明可以识别波形突变体,并根据突变体发生的时序查找跳闸前后电压是否发生幅值突变,克服不同时序处的突变体的差异性引起的误判,降低了故障判断的误判率,提高故障诊断的准确性。
附图说明
22.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
23.图1是本发明实施例一示出的基于目标识别的分布式输电线路故障诊断方法的流程图;图2是本发明实施例一示出的根据电流突变体时序找对应时序位置的电压幅值以及其后位置的电压幅值的波形图;图3为本发明实施例一公开的瓶颈网络模块(bottleneck)结构图;图4为本发明实施例一公开的残差网络(reslayer)结构图;图5为本发明实施例一公开的空间金字塔池化模块(spp)结构图;图6为本发明实施例一公开的跨阶段局部网络(csp)结构图;图7为本发明实施例一公开的dark层结构图;图8为本发明实施例一公开的darknet网络结构图;图9为本发明实施例一公开的特征金字塔(fpn)结构图;图10为本发明实施例一公开的路径回溯特征金字塔(pafpn)结构图;
pyramid network,pafpn),目标识别神经网络的输入作为路径回溯特征金字塔(path feature pyramid network,pafpn)的输入,路径回溯特征金字塔的每个输出均对应连接卷积模块通道,每个卷积模块通道均包括两条双层卷积支路,其中一条双层卷积支路包括双层卷积模块(2*baseconv)和两个并行的卷积模块(baseconv),双层卷积模块的输入与路径回溯特征金字塔的输出连接,输出与两个卷积模块连接,另一条双层卷积支路包括双层卷积模块(2*baseconv)和一个卷积模块(baseconv),双层卷积模块的输入与路径回溯特征金字塔的输出连接,输出与卷积模块的输入连接,每个卷积模块通道中三个卷积模块的输出进行全连接后作为该卷积模块通道的输出,将所有卷积模块通道的输出进行全连接后,输出目标识别神经网络的识别结果。
30.路径回溯特征金字塔(pafpn)如图10所示,包括特征金字塔(fpn),路径回溯特征金字塔(pafpn)的输入作为特征金字塔(fpn)的输入,特征金字塔的第一个输出作为路径回溯特征金字塔(pafpn)的第一个输出结果,该输出还输入第一个跨阶段局部网络(csp)中,第一个跨阶段局部网络的输出输入第一个卷积模块(baseconv)中,该卷积模块(baseconv)的输出与特征金字塔(fpn)的第二个输出相连后输入第二个跨阶段局部网络(csp)中,第二个跨阶段局部网络(csp)的输出作为路径回溯特征金字塔(pafpn)的第二个输出结果,第二个跨阶段局部网络(csp)的输出还输入到第二个卷积模块(baseconv)中,该卷积模块(baseconv)的输出与特征金字塔(fpn)的第三个输出相连后输入第三个跨阶段局部网络(csp)中,第三个跨阶段局部网络(csp)输出路径回溯特征金字塔(pafpn)的第三个输出结果。
31.特征金字塔(fpn)如图9所示,包括darknet网络,特征金字塔(fpn)的输入作为darknet网络的输入,darknet网络的第三个输出作为特征金字塔(fpn)的第三个输出,且该输出还输入第一个卷积模块(baseconv)中,第一个卷积模块(baseconv)的输出进行上采样(upsample)后与darknet网络的第二个输出相连,输入第一个五层卷积模块(5*baseconv)中,第一个五层卷积模块(5*baseconv)的输出作为特征金字塔(fpn)的第二个输出,第一个五层卷积模块(5*baseconv)的输出还输入第二个卷积模块(baseconv)中,第二个卷积模块(baseconv)的输出进行上采样(upsample)后与darknet网络的第一个输出相连后输入第二个五层卷积模块(5*baseconv)中,第二个五层卷积模块(5*baseconv)的输出作为特征金字塔(fpn)的第一个输出。
32.darknet网络如图8所示,包括依次连接的第一个双层卷积模块(2*baseconv)、残差网络(reslayer)、第一个dark层、第二个dark层、第三个dark层、第四个dark层、空间金字塔池化模块(spp)和第二个双层卷积模块(2*baseconv),其中,darknet网络的输入作为第一个双层卷积模块(2*baseconv)的输入,第二个dark层还输出darknet网络的第一个输出结果,第三个dark层还输出darknet网络的第二个输出结果,第二个双层卷积模块(2*baseconv)输出darknet网络的第三个输出结果。
33.每个dark层均包括依次连接的卷积模块(baseconv)和跨阶段局部网络(csp),dark层的输入作为卷积模块(baseconv)的输入,跨阶段局部网络(csp)的输出作为dark层的输出,如图7所示。
34.跨阶段局部网络(csp)如图6所示,包括三个卷积模块(baseconv)和一个瓶颈网络模块,跨阶段局部网络(csp)的输入分别输入到第一个卷积模块(baseconv)和第二个卷积
模块(baseconv)中,第二个卷积模块(baseconv)与瓶颈网络模块(bottleneck)连接,瓶颈网络模块(bottleneck)的输出与第一个卷积模块(baseconv)的输出全连接后输入第三个卷积模块(baseconv)中,第三个卷积模块(baseconv)输出跨阶段局部网络(csp)的输出结果。
35.空间金字塔池化模块(spp)如图5所示,包括两个卷积模块(baseconv)和三个池化层,空间金字塔池化模块(spp)的输入作为第一个卷积模块(baseconv)的输入,第一个卷积模块(baseconv)的输出分别输入到三个池化层中,三个池化层的输出全连接后输入第二个卷积模块(baseconv)中,第二个卷积模块输出空间金字塔池化模块(spp)的输出结果。
36.残差网络(reslayer)如图4所示,包括卷积模块(baseconv),残差网络(reslayer)的输入输入到卷积模块(baseconv)中,卷积模块(baseconv)的输出与残差网络(reslayer)的输入进行全连接后作为残差网络(reslayer)的输出。
37.瓶颈网络模块(bottleneck)如图3所示,包括依次连接的卷积模块(baseconv)和按通道卷积+单核卷积网络(dwconv),瓶颈网络模块(bottleneck)的输入作为卷积模块(baseconv)的输入,按通道卷积+单核卷积网络(dwconv)的输出作为瓶颈网络模块(bottleneck)的输出。
38.按通道卷积+单核卷积网络(dwconv)根据输入的每个特征层分配各自的卷积核并作卷积之后,新的特征层进行卷积核大小为1的卷积后输出dwconv的输出结果。
39.卷积模块(baseconv)包括依次连接的卷积层、批归一化层和激活层。
40.步骤2:针对选出的波形突变目标根据它们出现的时序进行时间先后排序;步骤2.1:根据找到的波形突变体的发生时序进行排序,每个突变体会有开始时刻和结束时刻,首先根据开始时刻按升序排序,如果一个突变体的开始时刻和结束时刻包含了另一个突变体的开始时刻和结束时刻,那么优先排时间跨度长的突变体。
41.如图2所示在电流波形中找到了两个突变体,每个突变体被边框锁定,每个边框在时序轴(即横轴)有左边界和右边界,它们给出了突变体发生的时间范围,可以对每个边框的左边界采用冒泡排序、选择排序等排序算法把电流波形中的突变体根据边框左边界排序(即突变体发生时序),如果两边框是包含关系则优先排大的边框对应的突变体。
42.步骤3:对每一个选出的波形突变目标进行阈值设定,筛选出是否是真正的电流突变体;此处的阈值可以取值为2。
43.步骤3.1:遍历各时序上的突变体;步骤3.2:如果电流突变体数目为0,则如果本突变体必须满足开始时刻后的1.5个周波的波形幅值的2倍小于结束时刻前的1.5个周波的波形幅值,则将电流突变数加1,记录本突变体的开始时刻的位置为t1;步骤3.3:如果电流突变体数目不为0,则如果本突变体的开始时刻后的1.5个周波的波形幅值和结束时刻前的1.5个周波的波形幅值的最大值和最小值的比值大于1.2,则将电流突变体数加1,更新t2为本突变体的结束时刻。
44.步骤4:将筛选出的电流的波形突变目标,根据时序位置对应到电压的相应的时序位置并提取各对应位置上的工频电压幅值;步骤4.1:电流波形和电压波形的时序是一一对应的,根据在电流波形中记录的t1、t2时刻找到在电压波形中对应的时刻位置;
步骤4.2:在电压波形中的t1时刻至t1+1.5周波范围内取波形的幅值记为voltage1,在电压波形中的t2时刻至t2+4周波范围内取波形的幅值记为voltage2,在电压波形中的t2+4时刻至t2+8周波范围内取波形的幅值记为voltage3,

,在电压波形中的t2+4*(i-2)时刻至t2+4*(i-1)周波范围内取波形的幅值记为voltagei,直到t2+4*(i-1)大于最后录波时刻,此时记录的最后一个电压幅值记为voltage
end

45.步骤5:将提取的故障前后的电压幅值做比值,并设定一个阈值来判断故障前后的电压是否发生突变;此处的阈值可以取值为1.2。
46.步骤5.1:比较voltage2到voltage
end
的值与voltage1值,寻找其中差异最大的一个记为voltage
fit
,如果max(voltage1,voltage
fit
)大于2倍的min(voltage1,voltage
fit
),则电压突变体数目加1。
47.步骤6:根据电流发生突变的数目和电压发生突变的数目,判读是否是故障波形。
48.步骤6.1:如果电流突变体数目大于1且电压突变体数目大于1,则本波形被诊断为故障波形。
49.本实施例公开方法一方面可以稳定识别突变体不受冲击脉冲的影响,另一方面通过灵活设置局部阈值处理各个目标识别神经网络识别得到突变体,据突变体发生的时序查找跳闸前后电压是否发生幅值突变,克服不同时序处的突变体的差异性引起的误判,降低了故障判断的误判率,提高故障诊断的准确性。
50.实施例二本实施例提供了一种基于目标识别的分布式输电线路故障诊断系统。
51.一种基于目标识别的分布式输电线路故障诊断系统,包括:识别模块,其被配置为:获取工频电流波形数据,采用目标识别神经网络,寻找所有发生波形突变的突变体;排序模块,其被配置为:将所有发生波形突变的突变体,按照时间先后顺序进行排序;第一阈值判断模块,其被配置为:遍历每个突变体,筛选波形幅值满足第一阈值的突变体,以此得到电流突变体数目;计算模块,其被配置为:根据电流突变体的时序位置寻找对应的目标电压波形,并求取目标电压波形各时序对应位置上的幅值;第二阈值判断模块,其被配置为:根据目标电压波形各时序对应位置上的幅值变化是否满足第二阈值,判断电压是否发生突变,以此得到电压突变体数目;诊断模块,其被配置为:根据电流突变体数目和电压突变体数目,诊断发生突变的波形是否属于故障波形。
52.此处需要说明的是,上述识别模块、排序模块、第一阈值判断模块、计算模块、第二阈值判断模块和诊断模块与实施例一中的步骤所实现的示例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述模块作为系统的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。
53.实施例三本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述实施例一所述的基于目标识别的分布式输电线路故障诊断方法中
的步骤。
54.实施例四本实施例提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述实施例一所述的基于目标识别的分布式输电线路故障诊断方法中的步骤。
55.本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
56.本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
57.这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
58.这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
59.本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,rom)或随机存储记忆体(random accessmemory,ram)等。
60.以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1