基于表面增强拉曼散射的爆炸物RDX的检测方法

文档序号:32884564发布日期:2023-01-12 21:21阅读:35来源:国知局
基于表面增强拉曼散射的爆炸物RDX的检测方法
基于表面增强拉曼散射的爆炸物rdx的检测方法
技术领域
1.本发明涉及化学传感与检测技术领域,具体涉及一种基于表面增强拉曼散射的爆炸物rdx的检测方法。


背景技术:

2.黑索金(rdx,化学式为c3h6n6o6),化学名为环三亚甲基三硝胺,又名为旋风炸药,是一种广泛使用的炸药。它在遇到明火、高温、震动、撞击、磨擦等情况下能引起剧烈的燃烧爆炸,是一种爆炸力极强的烈性炸药,比tnt猛烈1.5倍。许多爆炸物和其降解产物都是有毒性的,如果进入土壤或水中,可以毒害动植物或者通过食物链富集从而最终危害人类。爆炸物或其残留也可造成周围水体的持续污染,可引起水生生物聚集,导致爆炸物在水生生物体内富集。一些爆炸物是致癌物,即使发生轻微的泄漏,污染物也能够逐步被放大污染整个食物链。水下炸药还能导致珊瑚大面积的死亡从而破坏珊瑚礁生态系统。目前针对爆炸物检测的主流方法如气相色谱法、质谱法、离子迁移谱法以及红外吸收光谱法等,上述方法不可避免地存在一些不足:如所用到得到仪器设备体积较大、较为昂贵,一般用于实验室操作,而无法用于野外便携检测;存在操作过程繁琐、耗费时间长、检测灵敏度低、错误率高和成本高等缺陷;对于离子迁移谱法则需要在待测区域进行擦拭检测等。因此,设计开发一种简单高效、高灵敏度的爆炸物检测方法迫在眉睫,且仍然具有很大的挑战性。目前国际上已经有一些研究基于柔性sers基底对tnt类硝基芳香爆炸物进行检测,然而针对rdx这类非芳香烃硝基爆炸物的检测较少涉及。


技术实现要素:

3.本发明要解决的技术问题是克服现有技术的不足,提供一种具有高灵敏性、高稳定性和较强的现场检测能力的基于表面增强拉曼散射的爆炸物rdx的检测方法,该方法制备的ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构并结合表面增强拉曼散射技术可以实现对非芳香族爆炸物rdx的高灵敏检测。
4.为解决上述技术问题,本发明采用以下技术方案。
5.一种基于表面增强拉曼散射的爆炸物rdx的检测方法,包括以下步骤:
6.(1)倾斜银纳米柱阵列ag nras的制备:
7.(1.1)将硅基片依次浸泡于丙酮、乙醇和水中超声清洗,将食人鱼溶液加热至88℃~128℃后加入硅基片,浸泡1h~2h;
8.(1.2)将浸泡后的基片样品放入蒸镀机的样品台上,样品台的角度θ调至8
°
,在沉积室的两个坩埚中分别加入铬颗粒和银颗粒,关闭腔门抽真空,抽至沉积室气压低于18-7
torr后,平镀铬膜,蒸镀速率为8.1nm/s~8.3nm/s,铬膜膜厚为5nm~12nm,然后靶材切换为银靶,平镀银膜,蒸镀速率为8.1nm/s~8.3nm/s,银膜膜厚为58nm~158nm;
9.(1.3)改变样品台角度θ为78
°
~82
°
,然后以8.1nm/s~8.3nm/s的蒸镀速率沉积688nm~1288nm厚的银纳米柱,得到倾斜银纳米柱阵列ag nras;
10.(2)金纳米棒au nrs的制备:
11.(2.1)将溴化十六烷基三甲胺溶液与氯金酸溶液混合并搅拌,加入nabh4溶液继续搅拌,溶液变成棕黄色,然后老化,得到金种子液;
12.(2.2)将氯金酸溶液和溴化十六烷基三甲胺溶液混合并搅拌,加入硝酸银溶液和盐酸,再加入抗坏血酸溶液,得到金纳米棒生长液;
13.(2.3)将金种子液加入金纳米棒生长液中,磁力搅拌,将所得溶液在29℃~48℃水浴下孵育12h~16h,得到金纳米棒au nrs溶液;
14.(3)倾斜银纳米柱阵列ag nras及金纳米棒au nrs上4-mba的修饰及rdx的检测:
15.(3.1)将倾斜银纳米柱阵列ag nras在4-巯基苯甲酸溶液中孵育,使4-mba的巯基与ag原子之间形成ag-s键,在银纳米柱上自组装修饰一层4-mba,得到4-mba修饰的银纳米柱阵列ag nras;
16.(3.2)将金纳米棒au nrs溶液与4-巯基苯甲酸溶液混合,经摇床振荡后,进行孵育,然后离心、去除上清液,加入水,得到au nrs@4-mba复合物溶液;将4-mba修饰的银纳米柱阵列ag nras在rdx溶液中孵育,得到ag nras@4-mba@rdx基底;
17.(3.3)将ag nras@4-mba@rdx基底浸泡在au nrs@4-mba复合物溶液中,经孵育后,用水洗涤、氮气干燥,得到ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构;
18.(3.4)制备含不同浓度rdx的ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构,用波长为785nm的拉曼光谱仪测试三明治夹心结构的拉曼光谱信号,得到拉曼光强度与rdx浓度之间的相关关系;
19.(3.5)用波长为785nm的拉曼光谱仪测试含待测rdx的ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构,获得其拉曼光谱,分析拉曼特征峰的位置,并根据相关关系得到待测rdx的浓度。
20.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(1.1)中,所述食人鱼溶液为h2o2溶液与h2so4溶液按1∶2~6的体积比混合得到,所述h2o2溶液的质量分数为48%,所述h2so4溶液的质量分数为48%,所述超声清洗的时间为18min~28min。
21.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(2.1)中,所述溴化十六烷基三甲胺溶液与氯金酸的体积比为1∶1~5,所述溴化十六烷基三甲胺溶液的浓度为8.5mm~8.2m,所述氯金酸的浓度为8.5mm~8.2m,所述搅拌的速度为788rpm~1888rpm,所述搅拌的时间为1min~3min,所述nabh4与氯金酸的体积比为1∶5~18,所述nabh4溶液的浓度为8.81m~8.85m,所述继续搅拌的时间为1min~3min,所述老化的温度为29℃~48℃,所述老化的时间为1h~2h。
22.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(2.2)中,所述所述溴化十六烷基三甲胺溶液与氯金酸溶液的体积比为1∶1~5,所述氯金酸溶液的浓度为8.5mm~8.2m,所述溴化十六烷基三甲胺溶液的浓度为8.5mm~8.2m,所述搅拌的时间为1min~3min,所述硝酸银溶液的浓度为8.5mm~8.2m,所述盐酸的浓度为8.5mm~5mm,所述抗坏血酸溶液的浓度为8.5mm~8.2m,所述硝酸银溶液与氯金酸溶液的体积比为1∶18~48,所述盐酸与氯金酸溶液的体积比为1∶18~48,所述抗坏血酸溶液与氯金酸溶液的体积比为1∶18~48。
23.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(2.3)中,所
述金种子液与金纳米棒生长液的体积比为1∶58~388,所述磁力搅拌的时间为5min~18min。
24.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(3.1)中,所述4-巯基苯甲酸溶液的浓度为18-4
m~18-8
m,所述孵育的时间为1h~2h。
25.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(3.2)中,所述金纳米棒au nrs溶液与4-mba溶液的体积比为18~58∶1,所述4-mba溶液的浓度为18-4
m~18-8
m,所述摇床振荡的时间为5min~18min,所述孵育的时间为1h~2h。
26.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(3.3)中,所述孵育的时间为1h~2h,所述洗涤的次数为3次~5次。
27.上述的基于表面增强拉曼散射的爆炸物rdx的检测方法,优选的,步骤(3.4)中,所述相关关系为线性关系,线性回归线方程为:y=783.3
×
lg(c)+1.884
×
184,其中,y为拉曼特征峰1888.1cm-1
处的强度,c为待测rdx的浓度,单位为mg/ml;相关系数r2=8.9989,rdx的检测限为18-13
mg/ml。
28.与现有技术相比,本发明的优点在于:
29.本发明提供了一种基于表面增强拉曼散射的爆炸物rdx的检测方法,由于rdx分子的拉曼散射截面极低,采用常规拉曼散射方法检测获得的信号很微弱,灵敏度极低。本发明使用4-mba分子修饰ag nras作为增强基底,采用4-mba分子修饰au nrs作为sers tag,由于4-mba分子既对rdx具有特异性捕获作用,又具有较高的拉曼信号可以作为探针分子,因此当待测物中存在rdx时,将会形成ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构,并且这种三明治夹心结构的数量与待测物rdx的数量成相关关系。银纳米柱阵列和金纳米棒之间会形成大量的sers“热点”,从而对探针分子4-mba的拉曼信号有一个极大的增强。采用便携式拉曼光谱仪可获得三明治夹心结构中的4-mba分子的拉曼光谱,即可获得待测物rdx的所有信息。该方法具有更低的检测限、更高的拉曼强度和重复性,可用于环境检测领域。
附图说明
30.图1是本发明实施例1中基于蒸镀方法制备倾斜银纳米柱阵列ag nras的工艺方法示意图。
31.图2是本发明实施例1中制备的银纳米柱阵列的扫描电镜图。
32.图3是本发明实施例1中制备的金纳米棒的透射电镜图。
33.图4是本发明实施例1中在银纳米柱阵列上修饰4-mba的工艺方法示意图。
34.图5是本发明实施例1中在金纳米棒上修饰4-mba的工艺方法示意图。
35.图6是本发明实施例1中在修饰了4-mba的ag nras固态基底上捕获爆炸物rdx的示意图。
36.图7是本发明实施例1中将已经捕获了rdx的ag nras和已经修饰了4-mba的金纳米棒连接形成三明治夹心结构的示意图。
37.图8是本发明实施例1中采用便携式拉曼光谱仪获得的不同浓度rdx的拉曼光谱图。
38.图9是本发明实施例1中采用便携式拉曼光谱仪获得的不同浓度rdx的拉曼光谱的强度和rdx浓度对数之间的线性关系图。
具体实施方式
39.以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。如无特殊说明,以下实施例中孵育的温度为29℃~48℃。
40.实施例1:
41.一种本发明的基于表面增强拉曼散射的爆炸物rdx的检测方法,包括以下步骤
42.(1)倾斜银纳米柱阵列ag nras的制备方法,具体步骤如下:
43.(1.1)将切割成1cm
×
1cm的硅片依次浸泡于丙酮、乙醇和去离子水中超声清洗各18min。然后h2o2溶液(18ml)和h2so4(48ml)溶液按1∶4的体积比混合为“食人鱼”溶液,h2o2溶液的质量分数为48%,h2so4溶液的质量分数为48%,将“食人鱼”溶液加热至88℃后放入硅片,浸泡1h。
44.(1.2)如图1所示,将硅片样品放入常规蒸镀机样品台,样品台沉积角度调至8o,在衬底上平镀金属膜。在沉积室两个坩埚中分别加入铬颗粒和银颗粒,关闭腔门开始抽真空,抽至沉积室气压低于18-7
torr后开始平镀第一层铬膜,蒸镀速率为8.1nm/s,膜厚为18nm。然后靶材切换为银靶,以8.15nm/s蒸镀速率平镀188nm银膜。
45.(1.3)将样品台转动至76
°
,然后以8.1nm/s的蒸镀速率沉积1888nm厚银纳米柱阵列,图2为所制备的银纳米柱阵列的扫描电镜图。最后将样片放在样品盒中真空密封封装后备用。
46.(2)金纳米棒au nrs的制备方法,具体步骤如下:
47.(2.1)将2ml浓度为8.2m的溴化十六烷基三甲胺溶液(ctab溶液)和4ml浓度为8.5mm的氯金酸(haucl4)混合,788rpm搅拌1min。快速加入新鲜配制的8.5ml浓度为8.81m的nabh4溶液,继续强烈搅拌1min后溶液变成棕黄色,29℃下老化1h,得到金种子液,备用。
48.(2.2)将28ml浓度为1mm的氯金酸(haucl4)和28ml浓度为8.2m的ctab溶液加入到玻璃烧瓶中制备金纳米棒生长液,搅拌1min。然后快速加入8.6ml浓度为8.81m的硝酸银溶液(agno3)和8.85ml浓度为5mm的盐酸(hcl),再加入8.72ml浓度为8.1m的抗坏血酸。
49.(2.3)将88μl的制备好的金种子液注射到16ml金纳米棒生长液中,磁力搅拌8min。溶液在29℃水浴下孵育12h,用于金纳米棒的生长。图3所示为所制备的金纳米棒透射电镜图。
50.(3)倾斜金纳米柱阵列ag nras及金纳米棒au nrs上4-mba的修饰方法及rdx的检测方法,具体步骤如下:
51.(3.1)将倾斜银纳米柱阵列(ag nras)在1ml浓度为18-6
m的4-mba溶液中孵育1h,使4-mba巯基与ag原子之间形成ag-s键,在银纳米柱上自组装修饰一层4-mba,修饰工艺方法如图4所示,得到4-mba修饰的银纳米柱阵列ag nras。
52.(3.2)将1ml的金纳米棒(au nrs)溶液和188μl浓度为18-5
m的4-mba溶液加入到离心管中,数字摇床振荡5min使其混合均匀,孵育1h后离心,去掉上清液,加入去离子,得到au nrs@4-mba复合物,修饰工艺方法如图5所示。
53.将4-mba修饰的银纳米柱阵列(ag nras)在rdx溶液中孵育1h,得到ag nras@4-mba@rdx基底,对rdx的捕获过程如图6所示。
54.(3.3)将ag nras@4-mba@rdx基底(捕获了rdx的银纳米柱阵列ag nras)浸泡在
1mlau nrs@4-mba复合物溶液中,孵育1h,用去离子水洗涤三次,在氮气中干燥。此时ag nras@4-mba与au nrs@4-mba会与rdx形成ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构。三明治夹心结构的形成过程如图7所示。
55.(3.4)制备含不同浓度rdx的ag nras@4-mba@rdx@4-mba@au nrs三明治夹心结构,用波长为785nm的拉曼光谱仪测试三明治夹心结构的拉曼光谱信号,三明治夹心结构中捕获得到的au nrs的数量与待测物rdx的数量呈相关关系。相关关系具体为线性关系,图9所示为rdx浓度对数和拉曼强度线性回归线方程图:y=783.3
×
lg(c)+1.884
×
184,y是拉曼特征峰1888.1cm-1
处的强度,c是rdx的浓度,单位为mg/ml,相关系数r2=8.9989,rdx的检测限为18-13
mg/ml。
56.(3.5)用波长为785nm的拉曼光谱仪测试待测物,获得其拉曼光谱,分析其拉曼特征峰位置和强度,即可确定待测rdx含量。图8所示为针对18-9
mg/ml、18-18
mg/ml、18-11
mg/ml、18-12
mg/ml、18-13
mg/ml不同浓度rdx所获得的拉曼谱图,拉曼强度随着浓度的增强而增强,检测限低至18-13
mg/ml。可见,本发明的方法具有更低的检测限,更高的拉曼强度,且具有更好的稳定性和抗干扰能力,可进行现场快速检测,实现对非芳香族爆炸物rdx的高灵敏检测。
57.以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1