一种非侵入式功率因数测量装置及分体式电功率测量系统的制作方法

文档序号:32165866发布日期:2022-11-12 04:31阅读:39来源:国知局
一种非侵入式功率因数测量装置及分体式电功率测量系统的制作方法

1.本发明属于电功率、功率因数测量装置技术领域,具体说是一种非侵入式功率因数测量装置及分体式电功率测量系统。
2.

背景技术:

3.传统的电能表只能测量安装处的电压电流来获得有功功率和有功电量。因此在入户侧安装一个关口表,电能计费以这个关口表为准。后面的所有用电侧安装多个子电表。因为导线有电阻,那么流过电流时导线上就会产生压降,这部分压降会消耗电能。那么后面所有子电表的电量总和必定小于关口表的电量。传统的无线互感器只能测量电流有效值并通过无线发射出去,无法测量当前线路的电压有效值和功率因数,因此无法计算有功功率和有功电量。部分无线互感器甚至通过直接输入固定功率因数的方法来计算有功功率,显然无法真实的反应各种不同功率因数的负载实际有功功率。
4.

技术实现要素:

5.针对现有技术中存在的缺陷,本发明的目的在于提供一种非侵入式功率因数测量装置及分体式电功率测量系统。
6.为达到以上目的,本发明采取的技术方案是:一种非侵入式功率因数测量装置,包括:开口式磁环、微能量管理转换单元、电流和功率因数测量单元、事件检测单元、mcu和无线通讯单元;所述开口式磁环用于采集一次侧电流和输出能源给测量装置;所述微能量管理转换单元包括ct/pt切换控制电路、低功耗电压判断切换电路和dc-dc升降压控制模块;所述微能量管理转换单元用于存储电能提供给后端电路使用,所述低功耗电压判断切换电路所使用的开关信号引出到mcu,mcu调整ct/pt切换时间、电流和电压采样周期、无线发送功率,保证整个电流范围内系统能够正常工作;所述微能量管理转换单元通过前端的超低静态电流有源同步放大电路把输入电压进行放大,获得更高的输出电压,输出电流会小于输入电流,当ct/pt切换电路切换成pt模式时启动所述超低静态电流有源同步放大电路,切换成ct模式时关闭所述超低静态电流有源同步放大电路,降低装置的静态功耗;所述电流和功率因数测量单元包括电流采样adc、感应铜箔、运算放大器和电压采样adc,所述感应铜箔紧贴导线外层,所述电流采样adc采集采样电阻上的电压信号获得电流adc数据,所述运算放大器对所述感应铜箔与模拟大地之间的电压信号进行差分放大后供电压采样adc采样,获得电压adc数据,同步采集到的电流adc数据和电压adc数据进行直流偏置自消除、高通滤波、有效值计算、fft运算和功率因数计算,最后获得电流有效值和功率因数;
所述事件检测单元包括非法开盖检测电路和导线温度上报电路;所述mcu和无线通讯单元使用lora或蓝牙ble来实现采集数据的上报,对无线发送信道和时间做分段处理,在接收到同步帧时标后,测量装置由自由监听模式进入同步监听发射模式。
7.进一步地,所述ct/pt切换控制电路用于切换所述开口式磁环是工作于采集模拟量的ct模式还是工作于收集能量的pt模式;连接在所述ct/pt切换控制电路后端的所述低功耗电压判断切换电路通过判断电压是否达到超级电容充电电压vcap,当达到vcap时,低功耗电压判断切换电路打开与超级电容相连的mos1,把多余的能量存储在超级电容中,用于一次侧无电流或低于启动电流时采集数据上报,反之则关闭mos1,打开超级电容与dcdc升降压控制电路之间的mos2;所述dc-dc升降压控制模块通过判断一次侧电流是否能够满足启动电流条件以及无电流时的定时唤醒采样发送工作来自动切换升降压模式;进一步地,所述非法开盖检测电路包括开盖检压接柱、导电橡胶、弹簧和导电触点,正常工作状态盖子盖上,盖子压下开盖检压接柱进而压住导电橡胶接触导电触点,电路导通变成低电平,当盖子被非法打开时,开盖检压接柱被弹簧顶上去,与开盖检压接柱连接的导电橡胶上升,断开与导电触点的连接,电路开路变成高电平;所述导线温度上报电路通过紧贴在导线上的ntc探头测试导线的实时温度。
8.进一步地,所述同步监听发射模式在无线发送前监听发射信道数据,通过防碰撞算法防止发射相互干扰,通过接收关口pmu在同步周期的关口电压有效值信标获得关口电压有效值,测量装置能够自己计算采样周期内的有功电量值;自由监听发射模式不计算有功电量值,并且发送数据长度比同步监听发射模式要小,减少对无线信道的冲突概率。
9.进一步地,所述开口式磁环采用开口式硅钢互感器。
10.一种分体式电功率测量系统,包括:位于关口电能表处的用于电压测量的关口pmu、位于各个子设备节点处的用于电压测量的子pmu、每个子设备安装的非侵入式功率因数测量装置和dcu,其中,所述dcu用于对非侵入式功率因数测量装置和pmu的数据采集、计算和上报云平台。
11.进一步地,所述关口pmu和子pmu均采用导轨安装,且通过级联插针给dcu供电和通讯。
12.进一步地,所述关口pmu采集跟关口电能表一样的电压有效值,通过lora或plc通讯以mesh组网方式告知所有子pmu和dcu关口电压有效值。
13.进一步地,所述dcu通过lora或ble蓝牙采集每个子设备的非侵入式功率因数测量装置的电流和功率因数,通过接收关口pmu的电压有效值,根据关口电压有效值、子设备电流有效值和子设备功率因数的乘积按时间积分计算每个子设备的有功电量;所述dcu根据关口pmu电压有效值、子pmu电压有效值、子电流有效值、子设备导线温度计算线损系数,根据计算值与设定值的比较,决定是否触发线路电压损耗异常报警和导线过热报警。
14.进一步地,所述dcu 通过上行的4g或以太网把参数上报给云平台。
15.本发明所述的非侵入式功率因数测量装置及分体式电功率测量系统,具有以下有益效果:1、不停电,不破坏绝缘层,直接往线缆上卡本无线碳耗传感器就可以检测电压,电流,功率因数,温度,有功电量和线损等参数。施工成本大大降低;
2、自供电系统,没有电池。无更换电池的麻烦,更环保;3、采用计量入户侧关口表的电压值,可以把线缆部分的线损也计算进去。传统的在单独安装几个子电表的方式无法计算从入户关口表到子电表的电线上产生的线损。而根据实际统计,这部分线损高达5%左右,对于部分线路老化或原设计功率余量预留不够的线路,线损更高;4、相比各类纯互感器或无线采集互感器只能采集电流无法采集功率因数来说,本发明实现了功率因数的测量。
16.附图说明
17.本发明有如下附图:图1本发明的分体式电功率测量系统示意图;图2本发明的非侵入式功率因数测量装置示意图。
具体实施方式
18.以下结合附图对本发明作进一步详细说明。
19.本发明采用分体式计量方式,通过pmu测量电压有效值,通过无线碳耗传感器测量电流有效值和功率因数。对于交流电的有功功率计算可以按照p=u*i*pf(有功功率=电压有效值*电流有效值*功率因数)来获得有功功率。对有功功率按时间进行积分获得有功电量。由dcu接收pmu和无线碳耗传感器上报的数据结合计算后上报各路的电压有效值、电流有效值、功率因数、有功功率、无功功率、视在功率、有功电量、无功电量、导线温度、开盖事件、线损系数、线路电压损耗异常报警和导线过热报警等参数。
20.本发明通过分体式的计量方式,各路子设备的有功电量=关口表处的电压有效值*子设备安装的无线碳耗传感器测量的子设备电流*功率因数按时间进行积分。本发明子设备累加后的总有功电量相比传统子电能表计量方式更加接近关口表的有功电量,比传统的多个子电表的方式计量获得更高的精度。
21.如图1所示,本发明所述的分体式电功率测量系统,包括位于关口表和各个子设备节点处的电压测量设备pmu、每个子设备安装的非侵入式功率因数测量装置和用于计算电能参数和上报云平台的dcu。
22.本发明的pmu负责测量当前安装节点的实时电压,并且对外部级联模块(dcu等模块)提供直流电压。根据安装位置分为关口pmu和子pmu。关口pmu安装在关口电能表处,采集跟关口电能表一样的电压有效值,通过lora或plc通讯以mesh组网方式告知所有子pmu和dcu关口电压有效值用于计算电量。通过关口pmu和子pmu的电压有效值对比可用于分析各个支路的压降情况用于线损系数计算和线路电压损耗异常报警。导轨安装的pmu直接用级联插针可以给后端设备(比如dcu)供电和通讯,无需外部接线即可实现功能模块的堆砌。
23.本发明的dcu主要负责对非侵入式功率因数测量装置和pmu的数据采集,计算和上报云平台工作。dcu通过lora或ble蓝牙采集每个子设备的非侵入式功率因数测量装置的电流和功率因数,通过接收关口pmu的电压有效值,根据子有功电量=∫(关口电压有效值*子设备电流有效值*子设备功率因数),计算每个子设备的有功电量。根据关口pmu电压有效值,
子pmu电压有效值,子电流有效值,子设备导线温度计算线损系数。根据可自定义计算规则:(关口pmu电压有效值-子pmu电压有效值)*子电流有效值*子设备导线温度计算线损系数是否》设定值,决定是否触发线路电压损耗异常报警和导线过热报警等报警事件。dcu通过上行的4g或以太网把以上参数上报给云平台。
24.如图2所示,本发明的非侵入式功率因数测量装置包括开口式硅钢互感器,微能量管理转换单元,电流和功率因数测量单元,事件检测单元,mcu和无线通讯单元。
25.开口式硅钢互感器负责采集一次侧电流和输出能源给整个系统使用。开口式硅钢互感器根据一次侧电流大小可以提供十几ua到几十ma的电流输出能力。使用硅钢片代替传统互感器的铁氧体可以获得更高的饱和电流和抗振动冲击能力。开口式卡扣设计能够方便的安装到需要测量的线路上,无需像传统电能表需要断电安装。
26.微能量管理转换单元包括ct/pt切换控制电路、低功耗电压判断切换电路和dc-dc升降压控制模块。
27.ct/pt切换控制电路用于切换开口式硅钢互感器是工作于采集模拟量的ct模式还是工作于收集能量的pt模式。通过无机械寿命问题的小体积的opmos来切换ct/pt模式。
28.前端开口式硅钢互感器输出电流小和大范围波动特点导致无法使用传统的ldo或dcdc方案直接供电,微能量管理转换单元负责把电能先存储到一定能量后再提供后端电路使用,低功耗电压判断切换使用的开关信号引出到后端mcu系统,mcu可以通过能量分析算法调整ct/pt切换时间、电流和电压采样周期和无线发送功率,保证整个电流范围内系统可以正常工作。微能量管理转换单元通过前端的超低静态电流有源同步放大电路把输入电压进行放大。获得更高的输出电压,因为能量守恒原理,输出电流会小于输入电流。当ct/pt切换电路切换成pt模式时启动这个超低静态电流有源同步放大电路,切换成ct模式时关闭,这样大大减小了整体的静态功耗。ct/pt切换电路后端连接的低功耗电压判断切换电路通过判断电压是否达到超级电容充电电压vcap,当达到vcap时,低功耗电压判断切换电路打开与超级电容相连的mos1,把多余的能量存储在超级电容中,用于一次侧无电流或低于启动电流时采集数据上报。反之则关闭mos1,打开超级电容与dcdc升降压控制电路之间的mos2。
29.dc-dc降压模式效率最高,静态电流小,但是输出电压小于等于输入电压导致无法充分利用电容存储的能量,dc-dc升压模式效率低于降压模式,静态功耗高于降压模式,但是可以尽可能的利用电容存储的能量。dc-dc升降压控制模块通过判断一次侧电流是否可以满足启动电流条件以及无电流时的定时唤醒采样发送工作来自动切换以上2种工作模式。
30.电流和功率因数测量单元采用高精度同步adc采样。处于ct模式时开口式硅钢互感器输出的电流信号和感应铜箔上通过空间耦合感应输出的工频电压信号经过运放电平转换处理后输出给同步adc采样。开口式硅钢互感器把一次侧电流信号按照匝比转换成二次侧电流信号,通过ct/pt切换电路切换成ct模式后,二次侧电流信号流过采样电阻变成电压信号,电流采样adc实时采集采样电阻上的电压信号获得电流adc数据。利用运放的电平变换和差分放大电路,把硅钢互感器本身通过与大地的空间耦合经过电平变换后作为模拟大地。运放对模拟大地和紧贴导线外层的感应铜箔之间测量得到的电压信号进行差分放大后供电压采样adc采集,获得电压adc数据。把两组同步采集到的电流adc数据和电压adc数
据进行直流偏置自消除,高通滤波,有效值计算,fft运算和功率因数计算,最后获得系统需要的电流有效值和功率因数。
31.事件检测单元包括非法拆下非侵入式功率因数测量装置的开盖检测上报功能:由开盖检压接柱,导电橡胶,弹簧,导电触点组成。正常工作状态盖子盖上,盖子压下开盖检压接柱进而压住导电橡胶接触导电触点,电路导通变成低电平。当盖子被非法打开时,开盖检压接柱被弹簧顶上去,与开盖检压接柱连接的导电橡胶上升,断开与导电触点的连接,电路开路变成高电平。mcu检测到电路开路就产生一个报警上报到dcu,再由dcu上报到云平台。通过紧贴在导线上的ntc探头测试导线的实时温度,在上报电流和功率因数的同时还上报导线温度。
32.mcu和无线通讯单元使用lora或蓝牙ble来实现采集数据的上报。对无线发送信道和时间做分段处理,通过接收到同步帧时标后,非侵入式功率因数测量装置由自由监听模式进入同步监听发射模式。同步监听发射模式非侵入式功率因数测量装置在无线发送前监听发射信道数据,通过防碰撞算法防止发射相互干扰,通过接收关口pmu在同步周期的关口电压有效值信标获得关口电压有效值,非侵入式功率因数测量装置可以自己计算采样周期内的有功电量值,减轻了dcu的计算工作量。未同步的非侵入式功率因数测量装置继续采用自由监听发射模式直到后续同步,自由监听发射模式的非侵入式功率因数测量装置不计算有功电量值,并且发送数据长度比同步监听发射模式要小,减少对无线信道的冲突概率。dcu接收到非侵入式功率因数测量装置数据后根据关口pmu测量的电压有效值计算电量。
33.本发明的分体式电功率测量系统的dcu部分集成了4g模块、蓝牙ble、wifi、以太网、lora、rs485、m-bus和超级电容模块。支持mqtt,dlt645,modbus协议,支持停电上报功能。除了与pmu和非侵入式功率因数测量装置通讯外,还支持电表,水表,支持modbus设备的数据上报功能。dcu支持脚本下发功能,可以判断不同的支路压降是否在允许范围内。
34.本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1