一种自驱动传感器及其制备方法与流程

文档序号:33147881发布日期:2023-02-03 22:10阅读:39来源:国知局
一种自驱动传感器及其制备方法与流程

1.本发明属于人机交互技术领域,具体涉及一种自驱动传感器及其制备方法。


背景技术:

2.智能手机等便携电子设备的人机交互方式经历了从实体键盘到触摸屏的演变,加之虚拟现实等新兴技术也在近年不断涌现,人机交互操作方式不断趋向于提高操作体验与便利性,更加直观、高效、多样。但是,虚拟现实等交互技术实现起来较为复杂,而且需要昂贵的分体式佩戴设备,单从使用的便利性与成本来讲,虚拟现实等技术存在本征劣势。与此同时,传统键盘与触摸屏的交互界面局限在二维平(曲)面中的点按与画线,无法向三维空间扩展,限制了更多直观交互方式的应用。因此,需要一种既超越传统键盘与触摸屏感知能力范畴,又便于实现、可广泛应用的人机交互方式。
3.摩擦电感知技术基于摩擦起电与静电感应效应的耦合,此前已广泛报道于压力传感等创新性研究。摩擦起电即为接触起电,日常生活当中无处不在的静电即由此产生,借助这一效应的普遍性,摩擦电感知技术具有非常广泛的应用范围。已有报道通常是基于两个带电物体之间的动态接触变化产生的电压输出,将这种电压输出作为自驱动感知信号,反映被测物体与传感器之间的接触压强或者压实程度,由此判断触点位置、受力分布、运动轨迹等二维平(曲)面内的信息,不具备感知被测物体三维静态位置的能力。
4.因此,目前的应用于人机交互设备的传感器设计不合理,不具备感知被测物体三维静态位置的能力。


技术实现要素:

5.本发明旨在至少解决现有技术中存在的技术问题之一,提供一种自驱动传感器及其制备方法的新技术方案。
6.根据本技术的第一方面,提供一种自驱动传感器,包括:衬底层;电极图案层,所述电极图案层包括第一电极层、第二电极层和绝缘层;所述第一电极层设置于所述衬底层的表面;所述第一电极层包括多个第一电极,多个所述第一电极沿第一方向阵列排布;所述第二电极层通过所述绝缘层设置于所述第一电极层的上方,所述第二电极层包括多个第二电极,多个所述第二电极沿第二方向阵列排布,所述绝缘层位于所述第一电极与所述第二电极相对应的位置处;电压读取单元,每个所述第一电极均连接有一个所述电压读取单元,每个所述第二电极均连接有一个所述电压读取单元;当被测物体靠近所述电极图案层的某一位置时,在静电感应的作用下,所述第一电极层和第二电极层发生电势变化并通过电压读取单元输出自驱动感知信号;其中,电势变化量与被测物体与电极图案层的距离呈正相关,且根据发生电势变化的第一电极和第二电极获取被测物体的位置信息。
7.可选地,自驱动传感器还包括保护层,所述保护层覆盖所述电极图案层远离衬底层的一侧。
8.可选地,所述保护层的材质为防水材质。
9.可选地,所述保护层的表面设置微纳米多孔结构。
10.可选地,所述第一电极包括多个依次相连的第一子电极,所述第二电极包括多个依次相连的第二子电极,所述绝缘层包括多个绝缘单元;相邻的两个第一子电极的连接处形成第一连接点,相邻的两个第二子电极的连接处形成第二连接点,每个所述第一连接点对应一个所述第二连接点,所述绝缘单元连接所述第一连接点和所述第二连接点。
11.可选地,所述第一子电极的形状为菱形、矩形、圆形或星形。例如,第一子电极在衬底层表面的投影与第二子电极在衬底层表面的投影不重叠。进一步地,在此基础上应以第一子电极和第二子电极可最大面积覆盖衬底层的传感区域为首要原则。
12.可选地,所述第一方向与所述第二方向垂直设置。
13.可选地,所述衬底层的材质为绝缘材质,且所述衬底层为柔性衬底或者硬质衬底。
14.根据本技术的第二方面,提供一种自驱动传感器的制备方法,用于制备如第一方面所述的自驱动传感器,包括如下步骤:步骤100,在衬底层上形成图案化的第一电极层;步骤200,在第一电极层上形成图案化的绝缘层,在绝缘层上形成图案化的第二电极层;步骤300,在衬底层的表面形成覆盖第一电极层以及第二电极层的保护层;步骤400,将每个第一电极层的第一电极连接电压读取单元,并将每个第二电极层的第二电极连接电压读取单元。
15.可选地,自驱动传感器的制备方法还包括:步骤500,将被测物体与保护层的表面触摸后分离,通过接触起电效应使被测物体与保护层的表面分别达到稳定的电荷分布,然后,将各个第一电极和各个第二电极分别接地一次。
16.本发明的一个技术效果在于:在本技术实施例中,当被测物体靠近电极图案层的某一位置时,在静电感应的作用下,第一电极层和第二电极层发生电势变化并通过电压读取单元输出自驱动感知信号;其中,电势变化量与被测物体与电极图案层的距离呈正相关,且根据发生电势变化的第一电极和第二电极获取被测物体的位置信息。因此,可以通过电势的变化量以及发生电势变化的第一电极和第二电极准确地感知距离该自驱动传感器一定距离范围内的各个物体在三维空间的位置及变化。
17.该自驱动传感器不仅突破传统键盘、触摸屏等人机交互界面只能感知二维面内的点按、划线等交互信息的局限;而且,结构非常简单,操作方便,其不需要类似于虚拟现实技术那样佩戴于周身的分体式复杂设备;同时,该自驱动传感器的传感功能集中在一个平面式阵列当中,且采用层状堆叠结构,易于制备和应用。
18.综上,该自驱动传感器在形式上仅为类似普通触摸屏的二维平面,但可以基于摩擦电效应感知一定距离范围内的各个物体在三维空间的位置及变化,能够作为新型的人机
交互界面,使得手势操控等交互方式以易于应用的方式扩展到三维空间,带来更加直观的操作方式和便利体验。
附图说明
19.图1为本发明一实施例的一种自驱动传感器的第一电极层的结构示意图;图2为本发明一实施例的一种自驱动传感器的绝缘层的结构示意图;图3为本发明一实施例的一种自驱动传感器的第二电极层叠置于第一电极层的俯视图;图4为本发明一实施例的一种自驱动传感器的对第一电极和第二电极编号的结构示意图;图5为被测物体靠近图4中a处的示意图;图6为图4的剖面结构示意图。
20.图中:1、衬底层;21、第一电极层;211、第一电极;2111、第一子电极;22、第二电极层;221、第二电极;2211、第二子电极;23、绝缘单元;3、电压读取单元;4、保护层;5、被测物体。
具体实施方式
21.现在将参照附图来详细描述本技术的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本技术的范围。
22.下面将详细描述本技术的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本技术,而不能理解为对本技术的限制。基于本技术中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
23.本技术的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本技术的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
24.在本技术的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术的限制。
25.在本技术的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本技术中的具体含义。
26.参见图1至图6,根据本技术的第一方面,提供一种自驱动传感器,其包括衬底层1、电极图案层和电压读取单元3。
27.具体地,所述电极图案层包括第一电极层21、第二电极层22和绝缘层;所述第一电极层21设置于所述衬底层1的表面;所述第一电极层21包括多个第一电极211,多个所述第一电极211沿第一方向阵列排布;所述第二电极层22通过所述绝缘层设置于所述第一电极层21的上方,所述第二电极层22包括多个第二电极221,多个所述第二电极221沿第二方向阵列排布,所述绝缘层位于所述第一电极211与所述第二电极221相对应的位置处。
28.在一个具体的实施方式中,第一电极层21和第二电极层22的图案相同,两者的不同之处在于,第一电极层21的排布方式和阵列方向与第二电极层22的排布方式和阵列方向不同。
29.进一步具体地,每个所述第一电极211均连接有一个所述电压读取单元3,每个所述第二电极221均连接有一个所述电压读取单元3。
30.当被测物体5靠近所述电极图案层的某一位置时,在静电感应的作用下,所述第一电极层21和第二电极层22发生电势变化并通过电压读取单元3输出自驱动感知信号;其中,电势变化量与被测物体5与电极图案层的距离呈正相关,且根据发生电势变化的第一电极211和第二电极221获取被测物体5的位置信息。
31.在本技术实施例中,该自驱动传感器能够感知物体三维位置,其可以应用于近距离感知手部静态动作等三维空间信息等能力,且该自驱动传感器的结构简单,其外观依然是二维平面形式,不需要类似于虚拟现实技术中复杂且数量众多的配套设备,可广泛应用于日常使用环境中,使用非常方便。
32.可选地,参见图6,自驱动传感器还包括保护层4,所述保护层4覆盖所述电极图案层远离衬底层的一侧。保护层4能够较好地保护电极图案层,增强自驱动传感器对环境的适应性,保证自驱动传感器安全且稳定的运行。保护层4能够大福提高第一电极211和第二电极221的耐用程度,防止外部接触引起电极损坏。
33.需要说明的是,根据接触起电效应,被测物体5比如手指等人体部位以及常见物体在日常环境中都会因为接触其他物体而带有表面电荷,电荷根据物体表面形状尽可能地分布在尖端。以人体为例,人体与地面、衣物等日常接触摩擦而带有电荷,这些电荷又因表面形状通常集中分布在手指等部位上。这些通常分布有表面电荷的带电物体或人体部位接近自驱动传感器时,通过静电感应将引起自驱动传感器的第一电极211和第二电极221的电势产生变化。同时,第一电极211和第二电极221均与电压读取单元3连接,电压读取单元3所读取的电压的变化即反映了被测物体5与自驱动传感器的距离信息。进一步地,多个第一电极211沿第一方向阵列排布,多个第二电极221沿第二方向阵列排布,每个阵列点对应一个平面坐标,综合各坐标点的电压信号即可得知自驱传感器附近带电的被测物体5的三维空间位置及变化。此外,通过在传感器表面增加疏水功能的保护层4,增强对潮湿环境的适应性。
34.可选地,所述保护层4的材质为防水材质。保护层4能够较好地增强自驱动传感器对湿度环境的适应性。使用防水材质的保护层4,或在衬底层1的表面涂敷防水涂层以形成保护层4,均可以增强自驱动传感器在湿度环境下的性能稳定。保护层4可根据透光度、装饰性、防护性等具体要求进行选择,例如,采用pdms、二维材料/防水修饰层复合材料等。
35.可选地,所述保护层4的表面设置微纳米多孔结构,或者以其他方式增强疏水性。
比如,在衬底层1的表面旋涂pdms(聚二甲基硅氧烷),pdms加热固化后形成保护层4,可采用激光刻蚀的方式在保护层4的表面形成微纳米多孔结构,从而能够较好地增强保护层4的疏水性能。
36.可选地,所述第一电极211包括多个依次相连的第一子电极2111,所述第二电极221包括多个依次相连的第二子电极2211,所述绝缘层包括多个绝缘单元23;相邻的两个第一子电极2111的连接处形成第一连接点,相邻的两个第二子电极2211的连接处形成第二连接点,每个所述第一连接点对应一个所述第二连接点,所述绝缘单元23连接所述第一连接点和所述第二连接点。
37.在上述实施方式中,第一电极211和第二电极221的结构比较简单,通过绝缘层能够将第二电极221固定在第一电极211上,同时能够保证第一电极211和第二电极221之间的绝缘。
38.可选地,所述第一子电极2111的形状为菱形、矩形、圆形或星形等,且所述第二子电极2211与所述第一子电极2111的形状可以相同,也可以不相同。这使得第一子电极2111和第二子电极2211的形状多样化,可以根据用户的需求选择第一子电极2111和第二子电极2211的形状。
39.在其他实施方式中,第一子电极2111和第二子电极2211可以为其他的形状,只要能够实现第一电极层21和第二电极层22对待测物体的位置感知即可。
40.可选地,所述第一方向与所述第二方向垂直设置。这使得第一电极层21和第二电极层22能够较好地感知待测物体的位置,从而保证自驱动传感器检测的准确性。
41.在一个具体的是方式中,第一子电极2111和第二子电极2211的形状为菱形,且第一方向与第二方向垂直设置,这使得第一子电极2111和第二子电极2211能够较好地布满衬底的整个表面,从而有助于保证自驱动传感器检测的准确性。
42.可选地,所述衬底层1的材质为绝缘材质,且所述衬底层1为柔性衬底或者硬质衬底。这使得衬底层1的材质的选择灵活,可以根据自驱动传感器具体的应用场景进行选择,使用非常方便。
43.当绝缘衬底为柔性衬底时,其可以为pet(聚对苯二甲酸乙二醇酯)、kapton(聚酰亚胺)、pdms(聚二甲基硅氧烷)等绝缘材料;当绝缘衬底为硬质衬底,其可以为氧化硅片、硬质塑料、玻璃等。
44.根据本技术的第二方面,提供一种自驱动传感器的制备方法,用于制备如第一方面所述的自驱动传感器,包括如下步骤:步骤100,在衬底层1上形成图案化的第一电极层21。
45.参见图1,第一电极211沿横向延伸并沿纵向阵列以形成第一电极层21。具体地,在清洗干净的衬底层1(例如玻璃)上旋涂光刻胶,经光刻、显影后形成第一电极层21的图案。在带有第一电极层21图案的衬底层1上磁控溅射生长ito薄膜透明电极,经去胶剥离和清洗后得到图案化的第一电极层21。
46.步骤200,在第一电极层21上形成图案化的绝缘层,在绝缘层上形成图案化的第二电极层22。
47.具体地,制备图案化的绝缘层。示例性地,第一子电极2111和第二子电极2211均为菱形,相邻两个第一子电极2111的连接处制备绝缘单元23,多个绝缘单元23构成图案化的
绝缘层,参见图2。例如,采用旋涂光刻胶后曝光、显影的方式形成绝缘层的图案,物理沉积方法生长二氧化硅薄膜,经过去胶剥离和清洗后得到图案化的绝缘层。
48.进一步地,在形成有第一电极层21和绝缘层的衬底层1上制备图案化的第二电极层22,图案化方式为光刻法。例如,形成第二电极层22的图案如图3所示;然后,沉积ito薄膜透明电极,经过去胶剥离和清洗后得到的第二电极221与第一电极211交错排列但互相绝缘。即第二电极221沿纵向延伸并沿横向阵列以形成第二电极层22。
49.步骤300,在衬底层1的表面形成覆盖第一电极层21以及第二电极层22的保护层4。保护层4能够较好地保护电极图案层。
50.步骤400,将每个第一电极层21的第一电极211连接电压读取单元3,并将每个第二电极层22的第二电极221连接电压读取单元3。
51.在上述实施方式中,自驱动传感器的制备方法非常简单,而且制得的自驱动传感器具备感知二维与三维操作信息的能力,其物理形状仅为二维平面(曲面)形式,形式简单且功能集成度高。
52.图1至图3仅是对自驱动传感器的第一电极211和第二电极221的某个样式进行展示,其不对第一电极层21或第二电极层22的图案的具体样式产生任何限制,每个第一子电极2111以及第二子电极2211的形状可以但不限于方形、矩形、圆形、星形等形状,第一电极211和第二电极221的阵列排布方式可以但不限于横平竖直、隔行/列交错等形式。第一电极层21和第二电极层22的图案化可以采用掩膜、光刻、激光直写、喷墨打印、3d打印、刻蚀等图案化方法。第一电极层21和第二电极层22的制备可采用化学法薄膜沉积、物理法薄膜沉积、导电材料转移、导电材料转印、导电材料涂敷等各种方式。
53.可选地,自驱动传感器的制备方法还包括:步骤500,将被测物体5与保护层4的表面触摸后分离,通过接触起电效应使被测物体5与保护层4的表面分别达到稳定的电荷分布,从而能够增强信号输出和自驱动传感器的性能稳定;然后,将各个第一电极211和各个第二电极221分别接地一次,便于后续第一电极211以及第二电极221的电位变化的测量。
54.在本技术实施例中,该自驱动传感器的使用与电压信号输出如下:第一电极211(横向电极)和第二电极221(纵向电极)可通过各自编号进行区分,如附图4所示,每个第一电极211和第二电极221之间互相绝缘,第一电极211和第二电极221覆盖整个传感阵列区域。每个横向电极和纵向电极各自与一个电压读取单元3通路相连接,如附图5所示。经过步骤500之后,被测物体5与自驱动传感器表面的保护层4(pdms)带有互相异号的电荷。当被测物体5再次接近自驱动传感器时,由于静电感应的存在,自驱动传感器对应位置的第一电极211和第二电极221将产生电势变化,电势变化反映被测物体5距离的远近,此外根据发生电势变化的第一电极211和第二电极221的编号则可以揭示出带电的被测物体5的具体位置。
55.参见图4和图5,当被测物体5(如手指)接近图4中a位置附近时,手指与自驱动传感器越近则自驱动传感器输出的电势变化越大,根据电势的变化可以判断手指与自驱动传感器的距离。同时,与手指距离最近的横向电极l5和纵向电极c4将产生最大的电势变化响应,由此可以判断出手指在图4中a位置的上方附近位置。当多个手指接近自驱动传感器时,则根据不同手指附近电极电势响应的大小以及第一电极211和第二电极221交点位置即可识
别手势动作悬停和变化。此外,当手指与自驱动传感器靠近过程中,两者接触时引起的电荷变化最大,因此也可用于以接触模式实现普通触摸屏的对点击、划线等二维面内操作信息的感知功能。
56.需要说明的是,该自驱动传感器具有如下应用场景:场景一:应用于智能手机等电子设备。衬底层1选用透明玻璃,电极图案层和绝缘层分别采用透明材料,则可以使智能手机的触摸屏具备三维感知能力,而不再依赖摄像头等耗能高的光学信息组件提供对用户靠近手机、用户手势识别等信息的感知,从而显著增强智能手机等电子设备操作便利性,提供更低功耗、更低成本、更便利的新型人机交互方式。
57.场景二:应用于智能机器人。智能机器人的机械手的手部活动往往复杂且自由度高,难以通过直观的方式对机械手进行控制,通过自驱动传感器能够操控智能机器人的机械手,从而将获得极大的便利性。例如,操作者只需要在自驱动传感器附近做出手势动作,自驱动传感器感知操作者的手指在三维空间的位置变化便可通过计算得出操作者的完整手势,进而指挥机械手同步跟随。
58.可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1