一种基于铝电解槽等效电路模型的极距测量系统的制作方法

文档序号:10822283阅读:329来源:国知局
一种基于铝电解槽等效电路模型的极距测量系统的制作方法
【专利摘要】本实用新型提供一种基于铝电解槽等效电路模型的极距测量系统,能够提高极距值的准确性。所述系统包括:数据采集模块,用于采集铝电解槽单个阳极导杆的频率特性数据;模型获取模块,用于依据采集的铝电解槽单个阳极导杆的频率特性数据,获取铝电解槽的等效电路模型;极距确定模块,用于根据所述铝电解槽等效电路模型中等效电容与极距的关系,得到极距的值。本实用新型适用于铝电解监测技术领域。
【专利说明】
一种基于铝电解槽等效电路模型的极距测量系统
技术领域
[0001] 本实用新型涉及铝电解监测技术领域,特别是指一种基于铝电解槽等效电路模型 的极距测量系统。
【背景技术】
[0002] 铝生产最主要的阶段是在铝电解槽中完成,因此对铝电解槽的生产管理和生产操 作就成为重要的工作之一。铝电解槽是一个多变量耦合、时变和大滞后的工业过程对象,其 自身内部复杂的物理化学过程和各种外界条件和作业的干扰,形成了复杂多变的工况特 征,这给生产操作带来了很多难题。因此对于电解槽的控制就显得尤为重要。
[0003] 在影响铝电解槽稳定的所有因素中,极距对铝电解槽电压的影响最大,极距的微 小改变将导致铝电解槽电压发生明显变化,因此减小极距将是降低铝电解槽电压,从而达 到节能的主要系统,但过分降低极距将导致阳极效应的发生,造成铝电解槽的不稳定,降低 电流效率,因此实现极距的测量对合理调整极距有重要意义。
[0004] 现有技术一,国内工业上大多数采用钎插法对极距进行测量,该系统是人工将铁 制的钎子从出铝口插入铝电解槽中,在铝电解槽中停留数分钟后拔出,此时附在铁棒上的 电解质和铝因为环境温度的突然下降而迅速凝固在铁棒上,从而在铁棒上形成两种表观不 同的凝固层,而中间的界面具有两层的共同性质,通过判断此界面的位置就可以确定极距 的大小。但此系统忽略了人为的观察误差和铝液界面波动所带来的误差,最终很难得到准 确极距值,且不能反应整个铝电解槽极距的变化情况。
[0005] 现有技术二,专利CN205079702U公开了一种测量铝电解槽极距的新型装置,其内 容包括几根长短不一的钢筋直杆,通过组装焊接成不等长,横、竖折竖型结构,粗细钢筋的 搭配延长了使用寿命,减轻了测量工具的自身重量,提高了工作效率。但其测量本质仍是 钎插法,并不能改善测量误差以及实现整体分布式测量。
[0006] 现有技术三,专利CN204714917U公开了一种铝电解槽铝液界面波动和极距在线监 测装置,它是利用一种载波装置,产生不同的载波信号,通过计算输出电压与输入电压的幅 值比计算出极距。该装置可在线获取电解槽各区域的实时极距,但其操作较为复杂,使用的 设备在铝电解厂现场难以推广。 【实用新型内容】
[0007] 本实用新型要解决的技术问题是提供一种基于铝电解槽等效电路模型的极距测 量系统,能够提高极距值的准确性。
[0008] 为解决上述技术问题,本实用新型实施例提供一种基于铝电解槽等效电路模型的 极距测量系统,包括:
[0009] 数据采集模块,用于采集铝电解槽单个阳极导杆的频率特性数据;
[0010] 模型获取模块,用于依据采集的铝电解槽单个阳极导杆的频率特性数据,获取铝 电解槽的等效电路模型;
[0011] 极距确定模块,用于根据所述铝电解槽等效电路模型中等效电容与极距的关系, 得到极距的值。
[0012] 进一步地,所述数据采集模块包括:信号发生器、示波器、工控机、铝电解槽、位于 电路板上的可调电阻及隔直电容;
[0013] 所述信号发生器依次与所述可调电阻、铝电解槽及隔直电容连接形成第一串联电 路;所述信号发生器依次与所述工控机、示波器、可调电阻连接形成第二串联电路。
[0014] 进一步地,所述工控机,用于控制所述信号发生器产生预定频率的正弦信号作为 所述数据采集模块的输入信号,还用于控制所述示波器测量所述可调电阻两端的正弦信 号,接收并存储所述示波器传回的测量的所述可调电阻两端的正弦信号。
[0015] 进一步地,所述铝电解槽包括:铝电解槽本体、与所述铝电解槽本体相连的预定根 数的阳极导杆,及与所述铝电解槽本体相连且与所述阳极导杆一一对应的阴极钢棒。
[0016] 进一步地,所述可调电阻与所述铝电解槽的一阳极导杆相连。
[0017] 进一步地,所述隔直电容与所述一阳极导杆所对应的阴极钢棒相连。
[0018] 进一步地,所述模型获取模块,具体用于根据传回所述工控机的所述可调电阻两 端的正弦信号的相位和幅值信息,获取铝电解槽的等效电路模型。
[0019] 进一步地,所述铝电解槽的等效电路模型包括:铝电解槽的阳极、铝电解槽的阴 极、第一电感、第二电感、等效电容及电阻;
[0020] 其中,所述第一电感与所述第二电感的连接点与所述铝电解槽的阳极相连;所述 第一电感与所述等效电容串联;所述第二电感与所述电阻串联;所述等效电容与所述电阻 的连接点与所述铝电解槽的阴极相连。
[0021 ]本实用新型的上述技术方案的有益效果如下:
[0022] 上述方案中,通过依据采集的铝电解槽单个阳极导杆的频率特性数据,获取铝电 解槽的等效电路模型,并根据所述铝电解槽等效电路模型中等效电容与极距的关系,得到 极距的值。这样,通过所述铝电解槽等效电路模型能够对不同工况下的极距值进行实时测 量,且能够大大提高极距值的准确性,操作过程简单,对铝电解生产管理具有指导意义。
【附图说明】
[0023] 图1为本实用新型实施例提供的基于铝电解槽等效电路模型的极距测量系统的结 构示意图;
[0024] 图2为本实用新型实施例提供的数据采集模块示意图;
[0025] 图3为本实用新型实施例提供的铝电解槽等效电路模型示意图;
[0026]图4为本实用新型实施例提供的Mul tisim中搭建的等效电路模型的仿真电路示意 图;
[0027] 图5为本实用新型实施例提供的示波器面板示意图一;
[0028] 图6为本实用新型实施例提供的示波器面板示意图二;
[0029] 图7(a)为本实用新型实施例提供的等效电路模型的MATLAB仿真相位差示意图;
[0030] 图7(b)为本实用新型实施例提供的等效电路模型的MATLAB仿真幅值比示意图;
[0031] 图8为本实用新型实施例提供的等效电路模型的Matlab仿真(Cx,f)_幅值比关系 图;
[0032] 图9为本实用新型实施例提供的等效电路模型的Matlab仿真(Cx,f)_相位差关系 图;
[0033] 图10为本实用新型实施例提供的多回路示意图;
[0034] 图11为本实用新型实施例提供的多铝电解槽的等效电路示意图;
[0035]图12 (a)为本实用新型实施例提供的多铝电解槽的等效电路的MATLAB仿真(Cx, f)_相位差关系图;
[0036]图12 (b)为本实用新型实施例提供的多铝电解槽的等效电路的MATLAB仿真(Cx, f)_幅值比关系图。
【具体实施方式】
[0037]为使本实用新型要解决的技术问题、技术方案和优点更加清楚,下面将结合附图 及具体实施例进行详细描述。
[0038] 实施例一
[0039] 参看图1所示,本实用新型实施例提供的一种基于铝电解槽等效电路模型的极距 测量系统,包括:
[0040] 数据采集模块11,用于采集铝电解槽单个阳极导杆的频率特性数据;
[0041] 模型获取模块12,用于依据采集的铝电解槽单个阳极导杆的频率特性数据,获取 错电解槽的等效电路t吴型;
[0042]极距确定模块13,用于根据所述铝电解槽等效电路模型中等效电容与极距的关 系,得到极距的值。
[0043]本实用新型实施例,例如,所述等效电路模型中等效电容与极距的关系可以表示 为:
[0045] 式中,C表示等效电容,£表示电容极板间的电介质的相对介电常数,e值保持不变, S表示铝电解槽阳极底部面积,d表示待求的极距。
[0046] 本实用新型实施例所述的基于铝电解槽等效电路模型的极距测量系统,通过依 据采集的铝电解槽单个阳极导杆的频率特性数据,获取铝电解槽的等效电路模型,并根据 所述铝电解槽等效电路模型中等效电容与极距的关系,得到极距的值。这样,通过所述铝电 解槽等效电路模型能够对不同工况下的极距值进行实时测量,且能够大大提高极距值的准 确性,操作过程简单,对铝电解生产管理具有指导意义。
[0047] 本实用新型实施例中,如图2所示,所述数据采集模块包括:信号发生器、示波器、 工控机、铝电解槽、位于电路板上的可调电阻及隔直电容;所述信号发生器依次与所述可调 电阻、铝电解槽及隔直电容连接形成第一串联电路;所述信号发生器依次与所述工控机、示 波器、可调电阻连接形成第二串联电路;其中,所述工控机,用于控制所述信号发生器产生 预定频率的正弦信号作为所述数据采集模块的输入信号,还用于控制所述示波器测量所述 可调电阻两端的正弦信号,接收并存储所述示波器传回的测量的所述可调电阻两端的正弦 信号,其中,所述正弦信号为正弦电压信号。。
[0048] 本实用新型实施例中,如图2所示,所述铝电解槽包括:铝电解槽本体、与所述铝电 解槽本体相连的预定根数的阳极导杆,及与所述铝电解槽本体相连且与所述阳极导杆一一 对应的阴极钢棒;所述铝电解槽本体包括:冰晶石-氧化铝混合的电解质层、铝液层;其中, 所述可调电阻与所述铝电解槽的一阳极导杆相连;所述隔直电容与所述一阳极导杆所对应 的阴极钢棒相连。具体的,在所述可调电阻连接铝电解槽时,将连接导线(例如,单芯铜线) 从一阳极导杆上的爆炸焊接入,从与该阳极导杆对应的阴极钢棒接出,并与所述隔直电容 相连。
[0049] 本实用新型实施例中,如图2所示,所述数据采集模块的数据采集与控制部分分别 由示波器与工控机实现,在采集铝电解槽单个阳极导杆的频率特性数据的过程中,工控机 通过发送命令控制信号发生器产生预定频率的正弦信号作为数据采集模块的输入信号,与 此同时通过工控机控制示波器测量可调电阻两端的正弦信号,并将测量的所述可调电阻两 端的正弦信号传送至工控机进行存储。在测量所述可调电阻两端的正弦信号时,示波器将 根据测量到的正弦信号频率的高低对采样频率与测量精度进行自动调整。
[0050] 本实用新型实施例中,具体的测量步骤包括:在铝电解槽的正常工作过程中,信 号发生器产生预定频率的正弦信号作为输入信号,信号流经电路板上的可调电阻后,从阳 极导杆的爆炸焊接入铝电解槽,依次穿过铝电解槽的阳极导杆、铝电解槽本体、最终从所述 阳极导杆对应的阴极钢棒流出,回到电路板,经过电路板上的隔直电容回到信号发生器的 接地端。这样,通过连接导线将铝电解槽的阳极导杆、阴极钢棒,信号发生器,示波器连接在 一起,不断更改信号发生器产生的正弦信号的频率,即可得到铝电解槽单个阳极导杆的频 率特性数据。本实用新型实施例中,采集铝电解槽单个阳极导杆的频率特性数据的操作过 程简单,能够在铝电解厂复杂的环境下亦可稳定应用。
[0051] 本实用新型实施例中,所述模型获取模块,具体用于根据传回所述工控机的所述 可调电阻两端的正弦信号的相位和幅值信息,获取铝电解槽的等效电路模型。
[0052] 本实用新型实施例中,得到的铝电解槽的等效电路模型如图3所示,所述铝电解槽 的等效电路模型包括:铝电解槽的阳极、铝电解槽的阴极、第一电感(L1)、第二电感(L2)、等 效电容(Cx)及电阻(R1);其中,所述第一电感(L1)与所述第二电感的连接点(L2)与所述铝 电解槽的阳极相连;所述第一电感(L1)与所述等效电容(Cx)串联;所述第二电感(L2)与所 述电阻(R1)串联;所述等效电容(Cx)与所述电阻(R1)的连接点与所述铝电解槽的阴极相 连。
[0053]本实用新型实施例中,若图3所示的铝电解槽的等效电路模型成立,需对等效电路 模型中的等效电容(Cx)的可测性进行分析。例如,可以使用Mul t i s im和Mat lab对等效电容 (Cx)的可测性进行仿真分析,针对铝电解槽的等效电路模型搭建的仿真电路如图4所示,图 4中,XFG1表示信号发生器,XSC1表示示波器,图5和图6为示波器的测量结果,由图5可知,所 加正弦信号周期为l〇〇〇us,可得相位差为134/1000*360 = 48.24° ;由图6可知,外串电阻R2 两端电压与所加正弦信号电压幅值之比为= 67.123/99.922 = 0.672,与图7(a)、图7(b)中 MATLAB的仿真结果一致。
[0054]本实用新型实施例中,对铝电解槽的等效电路模型进行MATLAB仿真计算中,让所 加正弦信号的频率f也为自变量,最终绘制的(Cx,f)_幅值比、(Cx,f)_相位差如图8、图9所 示。由图8、图9可知,高频时(Cx,f)-幅值比变化不明显。
[0055]本实用新型实施例中,电解铝生产中直流电源采用多个整流机组并联的方式进行 工作,每个整流机组采用了三相桥式全控同相逆并联的方式,如图10所示。进一步的,需要 分析其它铝电解槽及整流机组对测量的影响,以及大直流电流情况下载入正弦信号问题。 若只有一个铝电解槽,交流信号源可以理想地将直流供电中的电流源认为是开路,同理,对 于多铝电解槽的等效电路模型可以表示为如图11所示的多铝电解槽的等效电路。
[0056] 本实用新型实施例中,考虑到实际生产情况,由二百多个铝电解槽串联进行电解 铝生产,实际的供电整流机组亦不可等效为理想的恒流源,可以认为对于交流信号,整流机 组(直流电源)短路(最糟糕的情况),此时,每个非测量铝电解槽的等效电容在30-50UF之间 随机变化。在上述两种情况下,对图11所示的多铝电解槽的等效电路进行仿真计算,测量A0 端的电。和u。。,计算与0^的相位差和幅值比,最终绘制的被测铝电解槽内cx与 iL。、tl e0的相位差之间的关系如图12(a)所示,被测铝电解槽内Cx与tJA0、!^的幅值之 间的关系如图12(b)所示。当铝电解槽数的数目大于200个时,串联的铝电解槽及整流机组 对被测铝电解槽的影响较小。
[0057] 本实用新型实施例中,整流机组侧阻抗较大,无法通过频率大于预定赫兹的信号, 例如,30赫兹,故通过整流机组侧的回路可忽略。在交流信号作用下,其它铝电解槽对被测 铝电解槽几乎没有影响,只需考虑单铝电解槽,从而可以确认铝电解槽的等效电路模型,并 求得铝电解槽的等效电路模型的频域阻抗传递函数。
[0058]本实用新型实施例中,当铝电解槽内极距的改变时,会使铝电解槽等效电路模型 中的参数发生改变,从而能够精确的等效铝电解槽。
[0059]以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术 人员来说,在不脱离本实用新型所述原理的前提下,还可以作出若干改进和润饰,这些改进 和润饰也应视为本实用新型的保护范围。
【主权项】
1. 一种基于铝电解槽等效电路模型的极距测量系统,其特征在于,包括: 数据采集模块,用于采集铝电解槽单个阳极导杆的频率特性数据; 模型获取模块,用于依据采集的铝电解槽单个阳极导杆的频率特性数据,获取铝电解 槽的等效电路t吴型; 极距确定模块,用于根据所述铝电解槽等效电路模型中等效电容与极距的关系,得到 极距的值。2. 根据权利要求1所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述数据采集模块包括:信号发生器、示波器、工控机、铝电解槽、位于电路板上的可调电阻及 隔直电容; 所述信号发生器依次与所述可调电阻、铝电解槽及隔直电容连接形成第一串联电路; 所述信号发生器依次与所述工控机、示波器、可调电阻连接形成第二串联电路。3. 根据权利要求2所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述工控机,用于控制所述信号发生器产生预定频率的正弦信号作为所述数据采集模块的输 入信号,还用于控制所述示波器测量所述可调电阻两端的正弦信号,接收并存储所述示波 器传回的测量的所述可调电阻两端的正弦信号。4. 根据权利要求2所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述铝电解槽包括:铝电解槽本体、与所述铝电解槽本体相连的预定根数的阳极导杆,及与所 述铝电解槽本体相连且与所述阳极导杆一一对应的阴极钢棒。5. 根据权利要求4所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述可调电阻与所述铝电解槽的一阳极导杆相连。6. 根据权利要求5所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述隔直电容与所述一阳极导杆所对应的阴极钢棒相连。7. 根据权利要求3所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述模型获取模块,具体用于根据传回所述工控机的所述可调电阻两端的正弦信号的相位和 幅值信息,获取铝电解槽的等效电路模型。8. 根据权利要求1所述的基于铝电解槽等效电路模型的极距测量系统,其特征在于,所 述铝电解槽的等效电路模型包括:铝电解槽的阳极、铝电解槽的阴极、第一电感、第二电感、 等效电容及电阻; 其中,所述第一电感与所述第二电感的连接点与所述铝电解槽的阳极相连;所述第一 电感与所述等效电容串联;所述第二电感与所述电阻串联;所述等效电容与所述电阻的连 接点与所述铝电解槽的阴极相连。
【文档编号】G01B7/14GK205505970SQ201620297086
【公开日】2016年8月24日
【申请日】2016年4月11日
【发明人】尹怡欣, 崔家瑞, 王粉花, 王家齐
【申请人】北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1