同步电动机的无传感器控制装置的制作方法

文档序号:6281071阅读:123来源:国知局
专利名称:同步电动机的无传感器控制装置的制作方法
技术领域
本发明涉及利用限位开关进行定位的同步电动机的无传感器控制装置。
背景技术
在自动仓库、搬运机械和工作机械等装置中,往往以电动机作为动力源使规定的物体定位于规定的位置。而且结构上是,在定位时通常使用2个限位开关,用设置于减速开始位置的第1个限位开关的信号使其从所要的旋转速度切换为低速旋转速度(爬行速度),以该减速状态将物体移动到规定位置,如果到达规定位置,则用设置于停止动作开始位置的第2个限位开关的信号使电动机的旋转停止。
图11示出例如在特开昭60-223486号公报揭示的已有的电动机减速电路中利用限位开关的简易定位方法的各种波形,(a)为目标速度的波形,(b)为充放电电路输出电压的波形,(c)为减速定时信号的波形,(d)为速度指令的波形。
图中,a为设置于减速开始位置的第1个限位开关,b为设置于停止动作开始位置的第2个限位开关,v1为判断减速定时用的电压信号,t为减速指令输入后至目标旋转速度切换到低速的时间。
下面用图11说明利用已有的电动机的减速电路的限位开关的简易定位动作。
一旦物体以高速(或中速)移动时通过设置于减速开始位置的第1个限位开关a,充放电电路输出电压就根据限位开关a的信号,利用与所要的旋转速度对应的电压信号依次放电。充放电电路输出电压下降,一旦降至电压信号v1(图中的b),减速定时信号就从H变为L(图中的(c)),将目标速度从高速(或中速)切换为低速(图中的(a))。
根据目标速度的切换时刻,速度指令使减速开始,减速结果后以低速移动时一旦通过设置于停止动作开始位置的第2个限位开关b,就使速度指令为0,停止减速,使电动机的转动停止(图中的(d))。
使用上述限位开关的简易定位,由于存在“转差率”,故通常在对不知道电动机实际位置信息的感应电动机进行控制的无传感器控制装置中加以实施。
而较感应电动机更高效、小型且易于控制的,产业界普遍应用的永磁同步电动机,为了进行转矩控制,必须进行相应于转子位置的电流控制,通常使用编码器和分解器等位置传感器,使用这种位置传感器进行同步电动机的定位控制。
另一方面,由于如能去除位置传感器,就能实现电动机的小型、轻量、低价格化,同时还能够改善环境适应性、可靠性,故各种物位置传感器的控制的研究一直在进行着。
作为无位置传感器控制的现有例子,有特表平8-505996号公报示出的永磁同步电动机的观测者-基础(observer base)的控制方法。这是一种以高分辨率控制多相无电刷永磁同步电动机的转子位置和转子速度的方法,并且是使用采用定子相电流的测定值推定的转子的位置推定值和速度推定值,得到所要的转子位置调整或速度调整,或者为了命令转子遵照所要的位置轨迹或速度轨迹,求出对各定子相应该施加的电压量的方法。
又,在步同电动机的无传感器控制情况下的位置推定是一种检测电动机的电角度1周期内的位置即磁极位置的方法,由于不知道电动机轴的机械位置(电动机机械角)(例如4极电动机的情况下,电动机1周、即机械角1周中电气角发生2周),为了控制机械位置需要下一些功夫。而且,在同步电动机的无传感器控制情况下,由于利用流过电动机的电流来推定磁极位置,一旦停止时驱动电路停止工作,没有电流流动,就不能推定磁极位置,这种状况下一旦电动机轴转动,就会丢失磁极位置。
如上所述,无传感器的同步电动机位置控制是困难的,通常无传感器的同步电动机驱动以速度控制来实施。
感应电动机中通常用的使用限位开关的简易定位,如上所述存在着这样的问题,即需要减速开始用与停止动作开始用的2个限位开关,而且限位开关设置位置的调整颇为烦难。
又,在同步电动机中进行定位控制的情况下,存在的问题是需要设置位置检测装置,加大了成本。
本发明为解决上述问题而作,其第1目的是,得到以无传感器方式将同步电动机定位于规定的位置上的同步电动机的无传感器控制装置。
其第2目的是,得到能减少限定开关的设置个数,而且限位开关的设置调整容易的同步电动机的无传感器控制装置。

发明内容
本发明的同步电动机的无传感器控制装置具有检测同步电动机的电流的电流检测器;使用该电流检测器得到的检测电流,算出所述同步电动机的速度推定值和磁极位置推定值的位置·速度推定器;以及使用速度指令和所述速度推定值对所述同步电动机进行速度控制的速度控制器,在不使用旋转位置检测装置的情况下对同步电动机进行驱动,该装置具备输出作为定位的计数基准的基准位置信号的基准位置信号输出手段;在输入该基准位置信号时将累计值置零,同时从所述位置·速度推定器取入磁极位置推定值作为基准位置,并开始进行累计的相对位置计数器;具有根据从基准位置移动的移动量的指令值与所述相对位置计数器输出作为相对位置的累计值之间的偏差进行位置控制的位置控制器,并输出速度指令的速度指令发生器,因此能将不具有位置检测器的同步电动机定位于规定的位置。而且能减少限位开关的设置个数,并且限位开关的设置调整容易的同步电动机的无传感器的控制装置。
又,由于所述速度指令发生器能够设定减速开始位置和停止动作开始位置,并使在所述相对位置计数器输出作为相对位置的累计值达到所述减速开始位置时开始减速,在到达所述停止动作开始位置时开始停止动作,因此向来在定位控制中必要的减速开始用的限位开关和停止动作开始用的限位开关这两个限位开关可用1个限位开关构成。又由于停止位置的调整可通过变更减速开始位置、停止动作开始位置来方便地调整,因此也可以不必进行像已往那样重新设置限位开关并进行调整的复杂作业。
而且,所述速度指令发生器至少能设定2组减速开始位置和停止动作开始位置,并能选择运转时使用的减速开始位置和停止动作开始位置,使在所述相对位置计数器输出作为相对位置的累计值达到选出的减速开始位置时开始减速,在到达所述选出的停止动作开始位置时开始停止动作,因此可不增加限位开关的个数来实现2种以上模式的定位,而且在定位模式切换时也不需要调整限位开头或变更减速开始位置的工作。
又,在同步电动机的无传感器控制装置中具有检测同步电动机电流的电流检测器;使用该电流检测器得到的检测电流,算出所述同步电动机的速度推定值和磁极位置推定值的位置·速度推定器;以及使用速度指令和所述速度推定值对所述同步电动机进行速度控制的速度控制器,在不使用旋转位置检测装置的情况下对同步电动机进行驱动,该装置具备输出作为定位计数基准的基准位置信号的基准位置信号输出手段;在输入该基准位置信号时将累计值置零,同时从所述位置·速度推定器取入磁极位置推定值并开始计数的相对位置计数器;输出速度指令变更位置信号的速度指令变更位置信号输出手段;具有根据从基准位置移动的移动量的指令值与所述相对位置计数器输出作为相对位置的累计值之间的偏差进行位置控制的位置控制器,并输出速度指令的速度指令发生器,因此能将不具有位置检测器的同步电动机定位于规定的位置。
又,由于所述速度指令发生器能够设定减速开始位置,并且在所述相对位置计数器输出作为相对位置的累计值到达所述减速开始位置时开始减速,在所述速度指令变更位置信号输出手段输出速度指令变更位置信号时开始停止动作,因此通过在低速运转时输出基准位置信号,可以提高将不具有位置检测器的同步电动机定位于规定位置的停止精度。
又,由于所述速度指令发生器设定减速开始位置、第1动作变更相对位置以及第2动作变更相对位置,并在所述相对位置计数器输出作为相对位置的累计值到达所述第1动作变更相对位置或所述第2动作变更相对位置时变更速度指令,在所述相对位置计数器输出作为相对位置的累计值到达所述减速开始位置时开始减速,在所述速度指令变更位置信号输出手段输出速度指令变更位置信号时开始停止动作,
因此能将不具有位置检测器的同步电动机定位于规定的位置,同时在运送途中可以变更所述第1动作变更相对位置与所述第2动作变更相对位置之间的速度,使用于检查等方面。


图1示出本发明的实施形态1的同步电动机的无传感器控制装置1a的结构图。
图2示出本发明的实施形态1的同步电动机的无传感器控制装置1a的速度指令发生器3的结构图。
图3示出本发明的实施形态2的同步电动机的无传感器控制装置1b的结构图。
图4示出本发明的实施形态2的同步电动机的无传感器控制装置1b的动作说明图。
图5示出本发明的实施形态3的同步电动机的无传感器控制装置1c的结构图。
图6示出本发明的实施形态3的同步电动机的无传感器控制装置1c的由旋转方向差异引起的动作的说明图。
图7示出本发明的实施形态4的同步电动机的无传感器控制装置1d的结构图。
图8示出本发明的实施形态4的同步电动机的无传感器控制装置1d的动作说明图。
图9示出本发明的实施形态5的同步电动机的无传感器控制装置1e的结构图。
图10示出本发明的实施形态5的同步电动机的无传感器控制装置1e的动作说明图。
图11示出例如特开昭60-223486号公报揭示的已有的电动机减速电路中利用限位开关的简易定位方法的各种波形图。
具体实施例实施形态1图1是本发明实施形态1的同步电动机的无传感器控制装置1a的结构图。图中,1a是同步电动机的无传感器控制装置,2为无传感器速度控制部,3为指令发生器,4为相对位置计数器,5为作为输出成为定位计数的基准的基准位置信号的基准位置信号输出手段的外围设备,10为同步电动机。
20为计算速度指令发生器3输出的速度指令与后述的位置·速度推定器27输出的速度推定值的差值的减法器,21为根据减法器20的输出而输出电流指令的速度控制器,22为计算速度控制器21输出的电流指令与后述的电流坐标变换器26的输出的差值的减法器,23为根据减法器22的输出而输出电压的电流控制器,24为将电流控制器23的输出坐标变换为同步电动机10上施加的电压的电压坐标变换器,25为电流检测器,26为将电流检测器25检测出的输出电流坐标变换的电流坐标变换器,27为利用电流坐标变换器20输出的电流值与电流控制器23输出的电压值来推定同步电动机10的位置和速度的位置·速度推定器。
无传感器速度控制部2基本上是与作为“全速度范围的无传感器凸极形PM同步电动机控制”提出的全速度范围可工作的同步电动机的无传感器控制方式(平成12年电气学会论文志D,120卷2号P.240-247),或作为“按照适应观察者的无电刷DC电动机的无位置传感器控制”(平成5年电气学会论文志D,113卷5号P.579~586)提出的方式有相同的结构。
下面对无传感器速度控制部2的动作说明如下。
减法器20计算速度指令发生器3输出的速度指令与位置·速度推定器27输出的速度推定值的差值。
速度控制器21由例如比例元件与积分元件构成,根据减法器20的输出即速度偏差计算电流指令并输出之。
减法器22计算速度控制器21输出的电流指令与电流坐标变换器26输出的电流值的差值。
电流控制器23由例如比例元件与积分元件构成,根据减法器20的输出即电流偏差计算电压指令并输出之。
电压坐标变换器24使用位置·速度推定器27输出的位置推定值将电流控制器23输出的电压指令变换为施加于同步电动机10的电压。
电流坐标变换器26使用位置·速度推定器27输出的位置推定值来对同步电动机10的电流进行坐标变换。
位置·速度推定器27根据电流控制器23输出的电压值与电流坐标变换器26输出的电流值推定同步电动机10的位置与速度。
但是,实施形态1的同步电动机的无传感器控制装置1a中,把无传感器速度控制部2连接到相对位置计数器4,由位置·速度推定器27推定从外部设备输入基准位置信号的时刻的磁极位置(电动机的电气角信息),作为基准磁极位置输出到相对位置计数器4,同时每次通过作为基准的磁极位置都输出到相对位置计数器4。
图2示出本发明的实施形态1的同步电动机的无传感器控制装置1a的速度指令发生器3的结构图。图中,28为计算从基准位置移动的移动量的指令值与来自作为相对位置计数器4的输出即相对于基准位置的相对位置之间的差值的减法器,29为位置控制器。
下面利用图1与图2说明实施形态1的同步电动机的无传感器控制装置1a的动作。在不使用检测绝对位置的传感器的同步电动机的无传感器控制装置1a中,以基淮位置信号输入时刻的位置作为基准位置,求相对于该基准位置的相对位置,以此算出绝对位置。
一旦从外部设备5输入基准位置信号,相对位置计数器4就将累计值置零,同时从无传感器速度控制部2输入基准位置信号输入时刻的位置作为基准位置,开始磁极位置的累计。
相对位置计数器4通过把每次通过作为计数基准的磁极位置都进行计数的计数值和电气角1周期内的偏离基准磁极位置的偏移量相加,求出相对于基准位置的相对位置。
又,速度指令发生器3能够根据减法器28求出的从基准位置移动的移动量的指令值与从相对位置计数器4输出的相对于基准位置的相对位置之间的差值,用位置控制器29作成速度指令,因此速度指令发生器3能够按照相对位置计数器4输出的相对位置信息改变速度指令,进行位置控制。
实施形态1的同步电动机的无传感器控制装置中,相对位置计数器4以基准位置信号被输入的时刻的推定磁极位置(电动机的电气角信息)作为基准,将每次通过作为基准的磁极位置都进行计数的计数值电气角1周期内的偏离基准磁极位置的偏移量相加,以此求得相对于基准位置的相对位置,因此不具有位置检测器的同步电动机可停止在相对于基准位置的相对的位置上。又,已有的同步电动机进行定位时采用了位置检测器,但即使不使用位置检测器也能用同步电动机上定位,因此可降低费用和提高系统的可靠性。
实施形态2图3示出本发明实施形态2的同步电动机的无传感器控制装置1b的结构图。图中,2、4、10与图1相同,其说明从略、又,1b为同步电动机的无传感器控制装置,6为将基准位置信号输出到相对位置计数器4的限位开关,7a为根据来自相对位置计数器4的输出改变速度指令的速度指令发生器。又,X1、X2为预先设定于速度指令发生器7a上的基准值。这里,X1相当于图11中设置于减速开始位置的第1个限位开关a,是从限位开关6产生的基准位置信号输出位置至减速开始位置的距离,X2相当于图11中设置于停止动作开始位置的第2个限位开关b,是从限位开关b产生的基准位置信号输出位置至停止动作开始位置的距离。
图4示出本发明实施形态2的同步电动机的无传感器控制装置1b的动作说明图,(a)为搬送装置的结构例,(b)为速度指令发生器7a输出的速度指令,(c)为相对位置计数器4的输出,(d)为速度。图中,1b为可输入限位开关6的信号的同步电动机的无传感器控制装置,10为同步电动机,11为同步电动机轴,12为连接于同步电动机轴并移动的传送带,13为固定于带上并移动的物体,14a为挡块。
下面利用图3和图4说明实施形态2的同步电动机的无传感器控制装置1b的动作。
从图4(a)的左端向右移动中的物体13在移动中通过限位开关6时,限位开关6输出基准位置信号。
相对位置计数器4一旦输入由限位开关6输出的基准位置信号,就将累计值置零,同时输入来自无传感器速度控制部2的基准位置信号输入时刻的位置作为基准位置,开始磁极位置的累计。
相对位置计数器4将每次通过作为计数基准的磁极位置都计数的计数器值与在电气角1周期内偏离基准磁极位置的偏移量相加,求出相对于基准位置的相对位置。相对位置计数器4的累计值如图4(c)所示增加。
速度指令发生器7a在相对位置计数器4的计数值如图4(c)所示,达到预先设定的减速开始位置X1时,使速度指令如图4(b)所示那样改变,开始减速,又,在相对位置计数器4的计数值到达停止动作开始位置X2时,使停止动作开始并改变速度指令。
物体13的移动速度的变化如图4(d)所示,物体13通过限位开关6(t0),相对位置计数器4的计数值到达减速开始位置X1时开始减速(t1),而在相对位置计数器4的计数值达到停止动作开始位置X2时开始停止动作(t2)。
实施形态2的同步电动机的无传感器控制装置1b中,预先设定减速开始位置X1和停止动作开始位置X2,在通过限位开关6时,开始计数的相对位置计数器4的计数值到达减速开始位置X1时开始减速,在到达停止动作开始位置X2时开始停止动作,因此以往定位控制所需要的减速开始用的限位开关和停止动作开始用的限位开关这两个限位开关可用1个限位开关构成。限位开关个数减少,使得从限位开关至控制装置的接线减少,布线工作也变得容易。
又,停止位置的调整可通过变更停止动作开始位置X2而方便地进行调整,因此不必进行像已往那样重新设置并调整限位开关的复杂工作。
实施形态3图5示出本发明实施形态3的同步电动机的无传感器控制装置1c的结构图。图中,2、4、10与图1相同,其说明从略。又,1c为同步电动机的无传感器控制装置,6为将基准位置信号输出至相对位置计数器4的限位开关,7b为根据相对位置计数器4的输出改变速度指令的速度指令发生器。又,X1、X2、X3、X4为预先设定于速度指令发生器7b的基准值,X1为正向运转时的减速开始位置,X2为正向运转时的停止动作开始位置,X3为逆向运转时的减速开始位置,X4为逆向运转时的停止动作开始位置。
图6为示出本发明实施形态3的同步电动机的无传感器控制装置1c的旋转方向的差异引起的动作的说明图,(a)为搬送装置的结构例,(b)为正向运转时的速度指令,(c)为正向运转时的相对位置计数器4的输出,(d)为正向运转时的速度,(e)为逆向运转时的速度指令,(f)为逆向运转时的相对位置计数器4的输出,(g)为逆向运转时的速度。图中,14a、14b是档块。
下面以图面上从左向右的移动作为正向运转,从右向左的移动作为逆向运转来进行说明。
速度指令发生器7b在正向运转时,当相对位置计数器4的计数值到达预先设定的减速开始位置X1时(t1),速度指令发生器7b使速度指令改变,开始减速,当到达停止动作开始位置X2时(t2),使停止动作开始,并改变速度指令。又,在逆向运转时,当相对位置计数器4的计数值到达预先设定的减速开始置X3时(t11),速度指令发生器7b使速度指令改变,开始减速。当到达停止动作开始位置X4时(t12),使停止动作开始并改变速度指令。
在上述实施形态2的图4中示出了在相对位置计数器4的输出到达减速开始位置X1时减速开始,到达停止动作开始位置X2时停止动作开始的例子,但在变更移动方向进行定位(例如从在正向运转时定位变更为在逆向运转时定位)的情况下,有必要进行在正向运转时与逆向运转时调整限位开关位置的工作,或者进行变更减速开始位置X1、停止动作开始位置X2的工作。而且在进行正向运转时和逆向运转时两种情况下进行定位时,需要正向运转时的限位开关和逆向运转时的限位开关,还必须根据移动方向判断2个限位开关的有效·无效。
但是,在实施形态3的同步电动机无传感器控制装置1c中,设置正向运转时的减速开始位置X1和停止动作开始位置X2以及逆向运转时的减速开始位置X3和停止动作开始位置X4,使正向运转时与逆向运转时可分别设定,因此,可不增加限位开关的个数实现正向运转时的定位和逆向运转时的定位,而且在定位的移动方向切换(从正向运转时定位变更到逆向运转时定位,或者从逆向运转时定位变更到正向运转时定位)时也不要进行限位开关的调整或变更减速开始位置X1、X2的工作。
上面的叙述中说明了这样的例子,即以预先设定于速度指令发生器7b的2组基准值作为正向运转时的减速开始位置X1、停止动作开始位置X2与逆向运转时的减速开始位置X3、停止动作开始位置X4,判别是正向运转时还是逆向运转时,使用正向运转时的减速开始位置X1和停止动作开始位置X2、逆向运转时的减速开始位置X3和停止动作开始位置X4的例子,但也可以选择以同方向移动运转时使用的减速开始位置和停止动作开始位置。
实施形态4图7示出本发明实施形态4的同步电动机的无传感器控制装置1d的结构图。图中,2、4、10与图1相同,其说明从略。1d为同步电动机的无传感器控制装置,7c为根据相对位置计数器4的输出使速度指令改变的速度指令发生器,15为将基准位置信号输出到相对位置计数器4的限位开关,16为停止动作开始用限位开关。又,X1为预先设定于速度指令发生器7c的基准值,是从限位开关15产生的基准位置信号输出位置至减速开始位置的距离。
图8为本发明实施形态4的同步电动机的无传感器控制装置1d的动作说明图,(a)为传送装置的结构例,(b)为速度指令,(c)为相对位置计数器4的输出,(d)为速度。
图中,10~13、14a与图4相同,其说明从略。1d为同步电动机的无传感器控制装置,15为将基准位置信号输出到相对位置计数器4的限位开关,1b为停止动作开始限位开关。
下面利用图7和图8说明实施形态4的同步电动机的无传感器控制装置1d的动作。
物体13开始移动并从图(a)的左端向右的方向以低速度指令fL移动。
低速运转时,在物体13通过限位开关15的时刻(t20),相对位置计数器4复位并开始计数。而在物体13通过限位开关15的时刻(t20),速度指令发生器7c切换到高速度指令fH。
高速动转中,在相对位置计数器4的计数到达减速开始位置X1时(t21),速度指令发生器7c将速度指令切换到低速度指令fL。
开始速度并以规定的低旋转速度移动,在通过限位开关16的时刻(t22)开始停止动作。
在上述实施形态2中示出了这样的例子,即相对位置计数器4在高速运转中输入限位开关6的输出作为基准位置信号后开始计数,在计数到达减速开始位置X1时,速度指令发生器7a开始减速,在计数到达停止动作开始位置X2开始停止动作的例子,但在实施形态4中,相对位置计数器4在低速运转时输入限位开关15的输出作为基准位置信号后开始计数,在计数到达减速开始位置X1时,速度指令发生器7c开始减速,并在通过停止动作开始用限位开关16的时刻开始停止动作。
实施形态4中,在低速运转时读入限位开关15的信号,故能抑制因信号读入滞后而产生的减速开始位置的误差。而且,在低速运转时通过停止动作开始限位开关16,故能更加提高停止精度。
上面所述中,作为预先设定的移动量,举出了减速开始位置X1的例子,但也可以也设定从低速运转向高速运转切换用的移动量、停止动作开始用的移动量,用于限位开关15、限位开关16通过时的动作。
实施形态5图9示出本发明实施形态5的同步电动机的无传感器控制装置1e的结构。图中,2、4、10与图1相同,其说明从略。1e为同步电动机的无传感器控制装置,7b为根据相对位置计数器4的输出使速度指令改变的速度指令发生器。15为将基准位置信号输出到相对位置计数器4的限位开关,16为限位开关。
图10为示出本发明实施形态5的同步电动机的无传感器控制装置1e的动作的说明图,(a)为传送装置的结构例,(b)为速度指令,(c)为相对位置计数器4的输出,(d)为速度。图中,10~13、14a与图4相同,其说明从略。1e为同步电动机的无传感器控制装置,15、16为限位开关。fL为低旋转速度指令,fM为从高速度指令暂时下降的速度指令,fH为高速度指令。
下面利用图9和图10说明实施形态5的同步电动机的无传感器控制装置1d的动作。
物体13开始移动并以从图中(a)的左端向右的方向以低旋转速度指令fL移动。
加速前的低速运转时,在物体13通过限位开关15的时刻(t20),相对位置计数器4复位,计数开始。又,在物体13通过限位开关15的时刻(t20),速度指令发生器7d切换为高速度指令fH。
高速运转中,相对位置计数器4的计数到达移动量X5时(t23),速度指令发生器7d暂时将速度指令切换为低的速度指令fM。
低速运转时,相对位置计数器4的计数达到移动量X6时(t24),速度指令发生器7d将速度指令切换为高速度指令fH。
高速运转中,相对位置计数器4的计数达到移动量X1时(t21),速度指令发生器7d将速度指令切换为低速度指令fL。
开始减速度并以规定的低旋转速度移动时,在通过限位开关16的时刻(t22),开始停止动作。
实施形态5中,可设定动作变更相对位置X5、X6,当物体13到达预先设定的动作变更相对位置X5时,使速度指令暂时下降,当达到预先设定的动作变更相对位置X6时,再次升高速度,因此,在速度范围内包含机械共振的运转模式中使用时,或在中途需要检查的运转模式中使用时,可以以X5、X6指定其间降低速度通过,或以可检查的低速进行驱动。
产业上的应用如上所述,本发明的同步电动机无传感器控制装置由于能将不具有位置检测器的同步电动机定位于规定的位置上,因此在无电刷DC电动机、嵌入磁铁型同步电动机(IPM)、开关磁阻电动机(SRM)、同步磁阻电动机(SyRM)等所有同步电动机中适用于不使用位置检测器进行定位的用途。
权利要求
1.一种同步电动机的无传感器控制装置,具有检测同步电动机的电流的电流检测器;使用该电流检测器得到的检测电流,算出所述同步电动机的速度推定值和磁极位置推定值的位置·速度推定器;以及使用速度指令和所述速度推定值对所述同步电动机进行速度控制的速度控制器,在不使用旋转位置检测装置的情况下对同步电动机进行驱动,其特征在于,具备输出作为定位计数基准的基准位置信号的基准位置信号输出手段;在输入该基准位置信号时将累计值置零,同时从所述位置·速度推定器取入磁极位置推定值作为基准位置,并开始进行累计的相对位置计数器;以及具有根据从基准位置移动的移动量的指令值与所述相对位置计数器输出作为相对位置的累计值之间的偏差,进行位置控制的位置控制器,并输出速度指令的速度指令发生器。
2.如权利要求1所述的同步电动机的无传感器控制装置,其特征在于,所述速度指令发生器做成能够设定减速开始位置和停止动作开始位置的结构,并能够在所述相对位置计数器输出作为相对位置的累计值达到所述减速开始位置时开始减速,在达到所述停止动作开始位置时开始停止动作。
3.如权利要求1所述的同步电动机的无传感器控制装置,其特征在于,所述速度指令发生器至少能设定2组减速开始位置和停止动作开始位置,并能选择运转时使用的减速开始位置和停止动作开始位置,使在所述相对位置计数器输出作为相对位置的累计值达到所述选择的减速开始位置时开始减速,在达到所述选择的停止动作开始位置时开始停止动作。
4.一种同步电动机的无传感器控制装置,具有检测同步电动机的电流的电流检测器;使用该电流检测器得到的检测电流,算出所述同步电动机的速度推定值和磁极位置推定值的位置·速度推定器;以及使用速度指令和所述速度推定值对所述同步电动机进行速度控制的速度控制器,在不使用旋转位置检测装置的情况下对同步电动机进行驱动,其特征在于,具备输出作为定位计数基准的基准位置信号的基准位置信号输出手段;在输入该基准位置信号时将累计值置零,同时从所述位置·速度推定器取入磁极位置推定值,并开始进行计数的相对位置计数器;输出速度指令变更位置信号的速度指令变更位置信号输出手段;以及具有根据从基准位置移动的移动量的指令值与所述相对位置计数器输出作为相对位置的累计值之间的偏差进行位置控制的位置控制器,输出速度指令的速度指令发生器。
5.如权利要求4所述的同步电动机的无传感器控制装置,其特征在于,所述速度指令发生器能够设定减速开始位置,并且在所述相对位置计数器输出作为相对位置的累计值达到所述减速开始位置时开始减速,在所述速度指令变更位置信号输出手段输出速度指令变更位置信号时开始停止动作。
6.如权利要求4所述的同步电动机的无传感器控制装置,其特征在于,所述速度指令发生器能够设定减速开始位置、第1动作变更相对位置以及第2动作变更相对位置,并且能在所述相对位置计数器输出作为相对位置的累计值达到所述第1动作变更相对位置或所述第2动作变更相对位置时变更速度指令,在所述相对位置计数器输出作为相对位置的累计值达到所述减速开始位置时开始减速,在所述速度指令变更位置信号输出手段输出速度指令变更位置信号时开始停止动作。
全文摘要
本发明是在不使用旋转位置检测装置的情况下驱动同步电动机的同步电动机无传感器控制装置,所述装置具备相对位置计数器(4)与速度指令发生器(3),前者在输入作为定位计数的基准的基准位置信号时使累计值置零,同时从所述位置·速度推定器取入磁极位置推定值作为基准位置,开始进行累计;后者具有根据从基准位置移动的移动量指令值与所述相对位置计数器输出作为相对位置的累计值之间的偏差,进行位置控制的位置控制器29,输出速度指令,从而得到能将不具有位置检测器的同步电动机定位于规定位置的同步电动机无传感器控制装置。
文档编号G05B11/01GK1473290SQ01818470
公开日2004年2月4日 申请日期2001年8月27日 优先权日2001年8月27日
发明者貝谷敏之, 谷敏之 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1