监控混合过程的方法

文档序号:6281450阅读:253来源:国知局
专利名称:监控混合过程的方法
技术领域
本发明涉及一种检测和控制混合过程的方法。特别是,本发明的 方法涉及在工业混合操作过程中和质量控制中使用发光材料。
背景技术
混合是包括在许多工业化生产过程中的一种基本操作。例如,在 制造工业加工材料期间通常例行使用混合步骤,所述材料是标准化, 无差别,可替换,可互换,以基本相同形式连续或分批加工,并可以 大量或从多种源获得的。这类材料的实例包括初级产品如农产品或矿 产品,和加工产品如制造材料、建筑材料和化工原料。
其中工业化生产过程包括混合步骤,就过程效率和最终产品质量 而言,混合操作很重要。在这点上,制造商关注的某些混合包括产品 一致性、过程可再现性、按比例扩大/按比例缩小变化、以及工艺参数 和步骤的灵活性。能够控制这些方面通常需要很好地理解下面特定混 合过程的机理和原理,其通常在很大程度上取决于要混合组分的性能。 例如,可影响固体混合的一些性能包括粒度分布、堆积密度、真密度、 颗粒形状、表面和流动特性、易碎性、湿度或固体的液体含量等等。 对于混合液体和液体-固体,其它性能如液体密度、粘度和表面张力开 始起作用。因此需要一种在工业混合过程中测量组分间的混合程度的 方法,以便能够监测或优化混合过程。
US 4,442,017和US 4,238,384公开了向添加剂中加入荧光材料, 所述添加剂通常在制造聚合热塑性材料期间与有机聚合物混合。该专 利旨在教导添加荧光材料作为一种监测分布均匀性和/或聚合物混合 物中添加剂预期浓度的方法。这些专利对于改善热塑性聚合物制造的 质量控制有点用处,然而该公开的方法依赖于检测作为指示剂的荧光材料存在与否来检测成品聚合物材料或配料中是否存在添加剂。在包 括混合的多组分过程中,制品的质量通常取决于组分的混合程度。测 定过程中是否存在荧光材料并不能对此种混合程度提供有价值的了 解。在这一方面,本发明设法改进现有技术中的缺点。
发明概述
一种测定混合过程中组分间的混合程度的方法,该方法包括以下
a) 混合至少两种组分和至少两种发光材料以形成混合物,其中将 发光材料彼此单独地添加到混合物中,和其中每种发光材料具有唯一 可检测的发光发射波长;
b) 检测由混合物样品发射的发光,其中发射的发光在所述发光材 料的唯一可检测的发光发射波长下包括不同的发光强度;
c) 其中在唯一可检测的发光发射波长下的发光强度比和/或发光 的绝对或相对强度表示出组分间的混合程度。
在唯一可检测的发光发射波长下的发光强度比和/或发光的绝对 或相对强度可以在激发后的特定时间下测量或在特定时间间隔内加以 总结,并用于监测或优化混合过程。
发光材料可以在间隔位置彼此单独地添加到混合物或混合过程 中,例如,它们可以作为不同的混合物组分部分添加。
由其检测到发射的发光的混合物样品可以是由混合物或与混合物 一体的样品中提取的样品。
附图简要说明


图1描述了标记物1和标记物2的相对信号强度(任意单位)对混 合时间(秒)的曲线图。
优选实施方案的描述
本发明涉及 一 种测定工序中混合程度的方法,其中该工序包括混合至少两种组分。因而该方法应当用于由一步混合的两种或多种组分 组成的产品的工业品制造,或用于包括多步混合操作的工业品制造。 该组分优选为通常用于制造其它工业加工材料或可用来制备高价值制 品 的工业加工材料。
在此使用的术语"工业加工材料,,包括但不限于下列种类的材料
(a) 建筑用材料,包括 混凝土
水泥 木材
防腐处理木材 粘土和粘土制品
玻璃
结构塑料和聚合物
装饰塑料和聚合物
密封塑料和聚合物
复合材料
陶瓷
金属和金属合金
石骨
源青
地沥青和地沥青混凝土 油漆
防腐蚀材料,如涂料 硅
结构织物
(b) 用于运输交通工具中结构和非结构用途的材料,所述运输交 通工具包括汽车、摩托车、船、航空运输交通工具等,这种材料包括
橡胶、硫化橡胶及其化合物 硅塑料
复合材料 环氧树脂
陶瓷材料和陶瓷复合材料 复合型材料例如,但不限于,制动片 粘合剂、胶、(交通工具)胶接剂 金属和金属合金 玻璃
油漆、内漆和底漆
精加工制品如研磨剂化合物,抛光剂和密封剂
防污材料和化合物
低摩擦材料和化合物
抗静电化合物
润滑剂
冷却材料和化合物 液压系统工作液 防腐添加剂和化合物 织物
(c)用于商品、组件、衣服和动产工业制造的材料,包括 用作可移动介质基质的塑料和聚合物以及复合材料,所述介质包 括但不限于存储卡和电子芯片
用作计算机、电话、电池、和塑料器皿和组件、玩具基底材料的
塑料和聚合物以及复合材料 玻璃
用于结构目的的复合材料
环氧树脂

陶瓷半导体 织物
(d) 用于计算机和信息技术基物品制造的材料,包括 陶瓷
塑料
聚合物
复合材料
元件如电路板、处理器和存储芯片
(e) 用于商品、组件、和动产大规模工业包装的材料,包括: 纸
纸板 塑料 织物
(f) 用于第一产业和能源工业的材料,包括 用作商业日用化学品和商品材料的散装材料
推进剂 高能材料
政治上敏感的材料和化学品
氰化物
前体化学品
核材料
集料
矿石和加工和半加工过的矿石
硝酸铵
其它硝酸盐
杀虫剂、除草剂及其它可能危险的材料
土壤改良剂
洗涤剂
在交易所中交换的矿产品和农产品(g)政府管理的材料,包括
药物及其前体
食品添加剂和产 品
化妆品
酒精
由此根据以上列表,很显然本发明的方法涉及材料、制品或产品 的制造过程,其中制造过程包括一种或多种混合操作,所述操作包括 混合两种或多种可以以固态或液态存在的组分。
在此使用的术语"发光材料"是指由于在前非热能转移而显现焚光 或磷光(光发射)的材料。
在根据本发明方法中使用的发光材料的实例包括
(a)包括下列的发光有机材料
芳族和杂芳族单体如芘、蒽、萘、荧光素、香豆素、联苯、萤蒽、 二萘嵌苯、二氮蒽、菲、菲啶、吖啶、喹啉、吡啶、primulene、氯化 丙锭(propidinium halide)、四唑、马来酰亚胺、咔唑、若丹明、萘酚、 苯、氯化乙锭(ethidium halide)、 ethyl viologen、胺荧、并五苯、1-2-二苯乙烯、对-三联苯、卟啉、三亚苯、7-羟基香豆素及其衍生物如丙 烯酸-9-蒽基甲酯、丙烯酸-2-萘酯、9-乙烯基蒽、7-[4-(三氟曱基)香豆 素I丙烯酰亚胺、2-苯基苯胺、2-氨基吡啶、双-N-甲基甲基吖啶硝酸盐、 二乙酰基苯、苯二胺、甲菲定溴化物、甲基芘、2-萘酚、3-十八烷酰 基伞形酮,
以商品名著称的荧光染料,如酸性黄14,吖啶橙,吖啶黄G,金 胺O,天青A和B,钙黄绿素蓝,香豆素6、 -30、 -6H、 -102、 -110、 -153、 -480d,署红Y,伊文思蓝,赫希斯特33258,亚甲基蓝,光神 霉素A,尼罗红,Oxonol VI,荧光桃红B,红荧烯,玫瑰红,Unalizarin, ThioflavinT, 二甲酚橙,和它们的衍生物,如甲酚紫高氯酸盐,1,9-二亚曱基蓝,十二烷基吖啶橙溴化物,和
聚合物,如荧光聚酰亚胺,如聚(苯均四酸二酐-fl"-3,6-二氨基吖 啶),聚((4,4,-六氟异亚丙基)二邻笨二甲酸酐-"/f硫堇,发光共轭聚合物,如聚药基,聚乙炔,聚亚苯基亚乙炔基,和聚 亚苯基亚乙烯基,
发光掺杂剂官能化的聚合物,如聚(9-甲基丙烯酸蒽基甲酯),聚 l(异丁烯酸曱脂-共-(荧光素O-丙烯酸酯),聚[(异丁烯酸甲脂)共-(9-丙烯酸蒽基甲酯)l,
(b) 包括下列的发光金属络合物
金属络合物发射体,如锌,金,钯,铑,铱,银,賴,钌,硼, 铕,铟,钐,和稀土的各种各样常规配体络合物,以及它们的衍生物, 如双(8-羟基喹啉)合锌,(2,2,-二吡啶)二氯化钯(11), (2,2'-二吡啶)二氯 化铂(II),氯双(2-苯基吡啶)合铑(in), 8-鞋基喹啉铝盐,锂四(8-羟基 喹啉)合硼,三(二苯甲酰甲烷)一(5-氨基菲咯啉)合铕(IH),三氯三(吡 啶)合铱(III)。其它实施例公开在下列科学著作中"Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence": Coordination Chemistry Reviews第84巻,1988年3月,第85-277页;"Metallated molecular materials of fluorene derivatives and their analogues": Coordination Chemistry Reviews第249巻,9-10版,2005年5月,第971-997页;和 "Luminescent molecular sensors based on analyte coordination to transition-metal complexes", Coordination Chemistry Reviews 第 233-234巻,2002年11月1日,笫341-350页,
(c) 磷光体,包括下列(其中以下种类表示两者掺杂以及无掺杂的 体系;即,例如,CaS:Tb,Cl是指CaS(无掺杂的),CaS:Tb-掺杂,和 CaS:Cl-掺杂,并且其中任意一种稀土元素或共离子还表示任意的稀土 元素和任意的共离子;即,其中例如CaO:Sm还表示CaO:Eu, CaO:Dy, CaO:Tm, CaO:Ce, CaO:Pr, CaO:Nd, CaO:Ho, CaO:Er, CaO:Tb, CaO:Gd, CaO:Yb, CaO:V, CaO:Mn, CaO:U02, CaO:Cr, CaO:Fe,等 等(其中Pr, Nd, Sm, Eu, Dy, Ho, Er, Tb, Gd, Tm, Yb为稀土元素的实 例,而V,Mn,U02,Cr,Fe为其它共离子的实例)
氧化物,如CaO:Eu, CaO:Eu,Na, CaO:Sm, CaO:Tb, Th02:Eu,Th02:Pr, Th02:Tb, Y203:Er, Y203:Eu, Y203:Ho, Y203:Tb, La203:Eu, CaTi03:Eu, CaTi03:Pr, SrIn204:Pr,Al, SrY204:Eu, SrTi03:Pr,Al, SrTi03:Pr, Y(P,V)04:Eu, Y203:Eu, Y203:Tb, Y203:Ce,Tb, Y202S:Eu, (Y,Gd)03:Eu, YV04:Dy,
硅酸盐,如CasB2SiO!。:Eu, Ba2So04:Ce,Li,Mn, CaMgSi206:Eu, CaMgSi206:Eu/Mn, Ca2MgSi207:Eu/Mn, BaSrMgSi207;Eu, Ba2Li2Si207:Sn, Ba2Li2Si207:Sn,Mn, MgSrBaSi207:Eu,
Sr3MgSi208:Eu,Mn, LiCeBa4Si4014:Mn, LiCeSrBa3Si40":Mn,
卣代硅酸盐,如LaSi03Cl:Ce,Tb,
磷酸盐,如YP04:Ce,Tb, YP04:Eu, LaP04:Eu, Na3Ce(P04)2:Tb, 硼酸盐,如YB03:Eu, LaB03:Eu, Sr0.3B203:Sm, MgYB04:Eu, CaYB04:Eu, CaLaB04:Eu, LaALB206:Eu, YAlsB4012:Eu, YAl5B4012:Ce,Tb, LaAl3B4012:Eu, SrB8013:Sm, CaYB08O37:Eu, (Y,Gd)B03:Tb, (Y,Gd)B03:Eu,
铝酸盐和镓酸盐,如YAK)3:Eu, YAK)3:Sm, YA103Tb, LaAI03:Eu,
LaA103:Sm, Y4AI209:Eu, Y3Al5012:Eu, CaAl204:Tb, CaTi0.9Al01O3:Bi, CaYA104:Eu, MgCeA1019:Tb, Y3Al5012:Mn,
混杂的氧化物,如LiIn02:Eu, LiIn02:Sm, LiLa02:Eu, NaY02:Eu, CaTi03:Pr, Mg2Ti04:Mn, YV04:Eu, LaV04:Eu, YAs04:Eu, LaAs04:Eu, Mg8Ge20 F2:Mn, CaY2Zr06:Eu,
卣化物和卣氧化物,如CaF2:Ce/Tb, K2SiF6:Mn, YOBr:Eu,
YOCl:Eu, YOF:Eu, YOF:Eu, LaOF:Eu, LaOCl:Eu, (ErCI3)0 25(BaCl2)0 75, LaOBr:Tb, LaOBr:Tm,
CaS型硫化物,如CaS:Pr,Pb,Cl, CaS:Tb, CaS:Tb,Cl,
混杂的硫化物和氧硫化物,如Y202S:Eu, Gd02S:Tb, Na123K0 42Eu012TiSi5O13:xH2O:Eu,
高能转换物(up-converters);即发射高于它们吸收的能量的光子 的化合物,如NaYF4:Er,Yb, YF3:Er,Yb, YF3:Tm,Yb。
(d)量子点;这些是发光性能取决于其粒子尺寸的纳米粒子材料,如金及其它金属纳米粒子。
在本发明方法中使用的发光材料是提供可量化的唯一发光响应的 那些。这样的发光材料可以通过利用唯一激发或发射频率和强度,或 它们发光的其它唯一性能如发光的延长持续时间来选择。
在其中本发明依赖能够跟踪两种或更多种发光材料发射强度的相 对比的情形下,应用下列限制。对于每种发光材料,通过三个物理变
量测定发光辉光的总体强度(i)发光材料所吸收的照射光的程度(所谓 的照射频率下的吸收系数);(ii)发光材料在发射频率下再传输吸收光 的"量子效率";和(iii)发光材料的"发光半衰期";即在发光辉光减弱至 其初始强度一半之前需要的时间。因为每种发光材料显示不同的(i)-(iii)
系统的最终混合物内获得可比强度。另外或者作为替代,可以改变照 射发光材料或检测由发光材料产生的发射的条件。或者它们可以这样 选择,以便在照射脉沖结束之后,以本领域中所知"选通,,技术仅在特 别的时间或时间间隔下测量发射强度。在此情况下,通常优选使用具 有长发光持续时间的发光材料,因为这种材料可能在要混合的材料本 底发光结束后发光,从而从观测数据中消除这些本底发光。
因为发光材料很少包含在制造过程中,它们在用于工业制品制造 (例如工业加工材料)的组分中的天然存在是可忽略的。同样,因为大 多数工业组分通常不显示相当大或长寿命的发光,由添加的发光材料 带来的唯一发光响应不可能被其它发光情况影响。这样,添加根据本 发明方法的发光材料可以用来使混合物组分具有唯一标识。
例如,在包括混合两种组分A和B的操作中,在组分A与组分B 混合之前,可以将在使用的照射和测量条件下具有唯一发射光谱和强 度的发光材料C添加到组分A中并混合。同样,组分B可以先与发 光材料D混合,所述发光材料D在使用的照射和测量条件下具有不同 于发光材料C的它自己唯一的发射光谱和强度。这样使组分A具有材 料C的唯一发光响应和使组分B具有材料D的唯一发光响应。因此, 可以实时监测组分A和B随后的混合,以便通过测量和比较发光材料A和B强度的相对比来测定在混合操作内任意一个瞬间下的混合程 度。可以这样设计组分A中发光材料C的浓度和组分B中发光材料D 的浓度,以便以最佳混合组合包含A和B的最终产品显示具有明确、 预定比的A和B的强度。
使混合效率与A和B发射强度预期比相关联的优点在于,如果这 些强度在最终混合物的随机取样批料中是唯一正确的,如果它们在所 有其它此种随机取样的批料中也是正确的。这是因为在一部分混合物 中过多或过少必然反映出在另一部分混合物中相应相反的情况。因此, 在上面实例中,在一种随机样品中相对过多的发光材料C必然伴有在 那个样品中过少的发光材料D。然后将混合误差量化为C和D每种的 实际强度和预期强度的差,以及C:D的预期比和实际比的差。后面的 比在整个委托行为中对混合效率产生极灵敏且可量化的精确测量,因 为C误差必然被相应的D误差放大。
相反,在US 4,442,017和US 4,238,384引用的方法中,仅仅使用 了一种发光材料,这样仅能通过测量遍及许多随机取样批料的发射强 度与预期平均发射强度的变化来测定混合效率。在此方法中,混合效 率误差不会被如上放大,并且因此对实际混合效率比较不敏感。此夕卜, 为了确保适当混合,人们必须收集并测量很多的随机样品。
应当理解,在本发明方法的一些实施方案中,不必通过添加发光 材料来赋予每种组分一种标识。同样,某些应用可能需要通过向组分 中添加一种以上的发光材料来赋予组分一种标识。
因为本发明方法中使用的发光材料作为组分混合程度的指示剂, 可以以多种方式进行本发明的方法,只要将发光材料单独地添加到组 分中即可,也就是说,它们自己不是作为混合物添加或者在取得随后 检测样品的相同点添加。
因此,在一个优选实施方案中,如上详述,在结合并混合组分之 前,将发光材料单独添加到每种组分中并混合。或者,正好在结合并 混合组分之前将发光材料添加到組分中。
在另一个实施方案中,可以在混合操作期间将发光材料分别添加到组分中。如以上所强调的,当实行时,应当要小心注意以^f更不能使 发光材料在添加到组分中之前混合,或不能使发光材料在取得随后检 测样品的相同点添加之前混合。对于后面这点,本发明的方法设想分 别从彼此间隔的位置将发光材料添加到组分混合物中。当实行这一 点 时,优选在添加发光材料的位置之间的点取得检测样品。
本发明还设想使用本发明的方法来测定在单个制造过程中的多个 混合操作的混合程度。例如,在预混合两种组分以后需要添加笫三种 組分。本发明可用于测定在添加第三中组分之前的头两种组分的混合 程度。同样,如果添加另一种发光材料与第三种组分,则还可以测定 第三种组分的混合程度。
因为本发明的方法中使用发光材料是为了监测混合操作,因此可 以适合地挑选发光材料,以致在混合操作期间或在制造工业制品时, 即在进一步加工、储存、运输期间或在使用该产品期间,它们不有害 地影响组分的物理性能或不与组分反应。
优选的发光材料是不轻易降解并由此能在受到加工条件后能够被
检测的那些。优选发光材料的实例包括电子管(lamp)和阴极射线管磷 光体,特别是稀土元素掺杂的磷光体。磷光体的发光性能随时间降低 非常緩慢并且相对稳定,这样它们能在长时期内(例如,25-50年)可靠 地和可再生地被检测到并且可以经受各种加工条件。
为了确保发光材料对于加工条件保持惰性,可以以化学或物理方 式改性发光材料。例如,可以将发光材料以物理方式封装在覆盖套内。 该套可以由聚合物如甲基丙烯酸甲酯、聚丙烯、聚乙烯或聚苯乙烯或 蜡如石蜡、黄蜡、胶蜡、植物蜡等组成。发光材料与聚合物和蜡的封 装方法在本领域是已知的。
在有些情况下,优选将组分改性以使发光材料与特定组分密切结 合。例如,可以在混合操作前的工序中将发光材料涂覆到组分表面或 加入到组分内。
因此,在混合之前,可以通过物理结合和/或化学结合将一种或多 种发光材料加入到组分中或组分上。例如,物理结合可包括在组分的结构或结构组成内物理俘获发光染料分子、粒子或集料。
化学结合可包括在发光染料分子、粒子或集料和组分本身之间产
生相互吸引作用。
发光材料是以可检测数量添加的。优选,由于与许多可使用的发
光材料相关的成本,将这些材料以痕量使用、特别是连同低成本工业
加工材料一起使用,这在经济上是有益且期望的。这里使用的术语"痕
量"是指在有环境光存在下非光学可检测的发光材料数量。优选,按所
有组分质量计,痕量为十亿分之一至小于0.1%。如果该方法用于监测
制造过程的混合程度,所述制造过程包括多个混合步骤并且多种组分 在过程期间的不同步骤下添加,则可以预先增加发光材料的用量,因 为发光材料可以在制造过程中被稀释。因此,本发明方法中包括的发 光材料的量将依赖于加工策略和组分性质。
优选本发明方法中存在的所有发光材料的量不会导致组分或组分 混合物(或由此获得的产品)发荧光或发磷光。因此,尽管发光材料一 混合就可以被检测到,但当通过肉眼观察时,它们并没有使组分、组 分混合物(或由此获得的产品)具有任何视觉标识。因而,优选发光材 料的存在不影响组分的常规物理性质。
本发明方法使用的发光材料的发光响应可以通过传统光谱装置来 检测。例如,能够使用各种各样的荧光分光光度计定量测量。检测最 经常需要除去要放入分光光度计中的混合物样品。这样检测通常在实 验室环境中进行。然而,电子学、光学和计算的新发展产生了便携式 光谱仪,其具有能检测样品中痕量发光材料的灵敏度。此外,可以使 用便携式光谱读数器,它能够不侵入区域检测,而不损害产品。这包 括使读数器的探针沿着产品表面运行或将探针插入样品混合物中。因 此,这样可以在整个表面上或在表面不同点上或在混合物中特定位置
(locii)内进行取样。
例如,在实地或现场检测痕量发光材料的便携式读数器可包括连 接到探针的便携式光语仪和便携式光源,所述探针适用于在光源、光 谱仪和样品之间双向传输光,同时排除环境光。为了实地或现场的混合监测,便携式检测系统可包括
i) 在操作上连接到便携式计算机的便携式光源和便携式光语仪;
ii) 一端光学连接到光源和光镨仪而另一端具有尖端的便携式光 纤探针,所述尖端配置成遮蔽来自样品的环境光;和
iii) 通过便携式计算机可执行的计算机软件,当环境光由探针尖 端遮蔽时,其用于控制光源和光谙仪以非破坏性地光学检测样品中的 痕量发光材料。
该系统还可以包括通过便携式计算机可执行的计算机软件,以测 定发光材料的发光响应比。
在此使用的术语"混合程度"是指在所述组分混合物中组分空间和 /或物理分布的测量。
为了监测组分的混合程度,对于样品中的每种发光材料,检测每 种添加的发光材料在使用的读数条件下的唯一发光响应。彼此对比参 考单个响应以便获得样品内发光材料的相对比。材料之间的比表示每 种发光材料在混合前和混合后的发光响应相对差。例如,将两种发光 材料(A和B)以相同的量各自单独添加到两种不同的要混合的组分中。 每种发光材料显示唯一发射光谱并且在这样的水平下加入,以致它们 在使用的读数条件下显示它们各自发射的相同强度水平。在混合一定 时间后,取得混合物样品并在使用的读数条件下测定发光材料A的强 度为50。/o和测定发光材料B的强度为25%。可以根据A:B(1:0.5)的比 认为组分的混合程度至少是仅仅完成了一半。在如上所述的系统中, A:B的识别比为1:1时将表明混合已经达到了相对均匀。
应当理解,在一些混合操作中,不必产生均匀混合物。本发明方 法的 一个优点是它向技术人员提供了测定混合程度的方法,以便可以 测定不均匀混合的重要性和含意。生产需要混合材料的行业通常依赖 混合设备制造商提供的额定时间来决定每种批料的混合时间。然而, 额定的混合时间是非常粗略的测量,其不考虑也不能考虑以任意给定 设备使用的材料、配料设计和批料大小的每种可能改变。
因此,对于特定的材料组合和批料大小,可以将单批料连续长时期混合,直到达到均匀性很久以后,从而导致生产没有效率。或者, 对于特定的材料组合和批料大小,混合很可能在达到均匀之前终止, 导致质量差。本发明提供了可以解决所有这些问题的实施方案。
另外或作为替代,本发明的优选实施方案为特定的材料组合、或 新的批料大小或新的配料设计提供了 一种确立新的最佳混合步骤的方 法。这样,不用监测每个批料,只要实施试验以确定给定混合物在何 时能达到通常期待的均匀性。新方法的容易使用是指它是监测最初几 种混合物的单一物质,以确立给定的批料大小、配料设计和设备部件 的组合通常在何时能产生均匀性。
在更进一步的实施方案中,该方法提供一种快速且简单的质量控 制方法,其中混合质量很重要并且也许对最终产品的性能有严格限制。 因为当前一些测量均匀性的方法通常緩慢并且费力(例如,在混凝土生 产中),它们实际上不能用于实地操作中(甚至是在其中需要确定或测 量均匀性快速方法的生产中)。本发明的方法提供了 一种确定混合达到 均匀性的有效方法,其容易用于实地以及用于注重时间的生产环境中。
本发明的特定实施方案还可以有利地作为识别或标记特定产品的 方法,所述产品通过唯一混合操作生产。因而,产品质量与特定的制 造商和混合过程有关。
为了达到不同的目的,本发明还可以以不同的实施方案使用,这 对于本领域技术人员是显而易见的。
本发明实施方案的其它更加具体的应用详述如下 (a)用于混凝土
混凝土是一种工业加工材料,它的质量非常依赖于其组分的混合。 混凝土通常由水泥、粗和细集料和水组成。通常,根据制造商的说明 书进行混合规定时间。例如,用于建造桥、道路等类型的预拌混凝土 通常在装有发动机的大约7,000升的水泥混合器中制备和混合,所述 混合器安装在适当改变的卡车后面的顶上。混合这种混凝土的标准规 程通常包括在设定转数或设定时间(通常4分钟)的指定速度下将其混 合。通常据说混凝土的最佳混合时间根据组分量(装载量)和"配料设 计"(其包括所用组分的比率和性质和类型以及混合器本身设计方面的 改变)改变。
至今,还没有供预拌混凝土制造商在它们操作中日常使用的测量 均匀性的可用系统。这是指预拌混凝土制造商不得不使用搅拌时间的 默认值,不允许改变装栽量或使用材料的类型或改变使用材料的相对 比。这导致不能最佳混合,要么装载混合太长时间,这减慢了生产, 要么装载混合太短时间,导致产品将来可能失败。
此外,可控或不可控的常规改变(在正常公差内)可导致最佳混合 时间改变。例如,組分含水量可以对最佳混合时间具有^艮大影响。这 种改变是非线性的,意思是指不能根据制造商的建议时间容易地推出 最佳混合时间。的确,即使任意一种变量的细微变化就可导致最佳配 合时间以不可预知的方式改变。为了克服这种不足,本发明的方法提 供了一种快速而有效测量混合均匀性的方式,从而确定不同装载量和 不同配料设计的最佳混合时间。
根据本发明,测定混凝土或水泥基样品中适当混合的方法可包括
引入两种或更多种发光材料将一种加入到一种组分中,如砂或细集 料部分,而另一种加入到另一种组分中,如水泥部分。然后相互之间 比较接收到的信号强度,以便确定样品混合有多好。例如,如果将发 光材料大量加入到它们各自组分中以便它们完全混合时显示相同的各 自发射振幅,然后进行混凝土或水泥-砂的混合直到它们各自测量的发 射幅度与彼此相同的步骤为止。只有在那一步下整个样品才混合均匀。 (b)用于药品制造
可服用药品剂量通常需要精确量的活性成分。这只能通过与助剂 和/或赋形剂的均匀混合并在要服用的单位剂量中确保活性对非活性 成分的比率保持一致来实现。该过程对于极有效的活性成分是相当困 难的,所述极有效的活性成分要求将少量活性物与相对大量的助剂和/ 或赋形剂混合。根据本发明的方法,通过在混合步骤期间应用药理学 可接受量的发光材料,可以在批量水平以及在单位剂量水平例如片剂下容易地测定准确剂量。 (C)用于聚合物制造
在热塑性聚合物的制造期间,聚合树脂经常与各种添加剂如催化 剂、颜料、稳定剂、润滑剂等混合。可以极大改变的添加剂分布能有 害地影响得到的聚合物材料的质量。根据本发明的方法,通过向每种 添加剂中施加单独的发光材料,制造商能够监测组分的混合程度,并 且如果需要能够因此调节工艺参数。
为了达到不同的目的,本发明还可以以不同的实施方案使用,这 对于本领域技术人员是显而易见的。例如,该方法可用来验证在工艺 过程内的每个单个混合操作的均匀性。该方法可用来提供混合过程均 匀度的连续输出。因此, 一旦达到均匀性,可以终止混合过程并将批 料移入到下一生产阶段。以此使用,该方法提供了一种使生产时间最 小化和生产效率最大化的方法。
现在将本发明描述于下列实施例中。不应当把实施例看作是以任 何方式限制本发明。
实施例
在以18转/分运行的WESTMIX 2.2立方尺水泥混合器中,将两 种不同的发光标记物加入到产品级混凝土的标准试拌配方中。将标记 物1(1 g)与水作为混合物中的第一固体组分加入。然后按照标准混合 说明,将砂-砾、(7.5 kg)、砂、(7.5 kg)和水泥(5 kg)按此顺序添加到水泥混 合器中。然后添加标记物2(1 g)并将混合物在最大旋转下混合4分钟。
在混合期间,使用适合的如上所述类型便携式读数器在混合物顶 部随机位置上每20秒抽样每种标记物相对于基线的最大发射强度。在 抽样过程期间,至多进行20次测量。计算中值数据点,并且在抽样测 量期间还测定数据的统计散布(scatter)(即数据范围)。
标记物是如上所述类型的稀土元素磷光体;当使用250纳米波长 的紫外线照射时,每种磷光体发射一系列波长的光。因此,当使用250 nm波长的光照射时,标记物1发射580纳米(nm)、 620 nm和700 nm波长的光,而标记物2在4卯nm和575nm下发射。因此标记物的发 射波长彼此不重叠。
根据图l所示监测的发射强度,当中值发射最大值同时指示它们 预期强度时,在大约3分钟以后混合物变得均匀。这仅仅是如果混合 物是完全均匀的才可能。在后面搅拌时间内,它保持均匀。
此外,数据的统计散布在抽样期间连续变小直到大约3分钟,这 证实已经确定了混合物均匀。统计散布以选定数据点显示的方括号中 的数字显示在图1中。这些数字显示出在这些特定抽样测量期间最大 强度数值的范围。在3分钟以后,标记物发射的绝对和相对最大强度 以及它们的统计散布保持不变。因而,统计散布提供一种另外确认的 量度,4吏用它可以测量混合物的均匀性。该测量可用作初次或二次量 度。即,可以在抽样期间通过随时间积分数据散布来测量混合物的均 匀性。当每单位时间的散布变化变为零时,则混合物是均匀的。
测定均匀性的标准方法是标题为"methods of Sampling and Testing Aggregates"的澳大利亚标准测试号AS 1141。该技术包括取得 材料样品,用水洗去混合物的水泥部分,然后将样品分类成-4.75 mm 和+4.75 mm的粒度分级。然后将由每种分类获得的材料量与混凝土的 配料设计和与另一种从混合物中取得的样品相比。公差为±3%。应当 理解,作为测定均匀性标准方法的澳大利亚标准(AS)1141的方法緩慢 且费力的。此外,很明显AS1141完全不适合作为测定实地均匀性的 方法。结果,它很少地在实验室中进行(并且从未在实地中有效)。
本发明彻底改善了 AS 1141,因为它提供了多个可实时测量的用 于测定均匀性的量度。这些量度不仅在混合物达到均匀性时一致,而 且因为可用数据点的更大数值,本发明的方法在此方面更加具体;这 反过来也是可能的,因为测量更加容易。
在整个说明书中,除非上下文需要另有所指,单词"包括 (comprise)"和变体如"comprises"和"comprising"将理解成意指包含 所述的整体或步骤或整体组,然而并不排除任何其它的整体或步骤或 整体组。本说明书中对任何现有公开(或由其获得的信息)、或任何已知事 物的参考,均不应视作在本说明书试图涉及的领域中,对这些现有公 开(或由其获得的信息)或已知事物构成公知常识的承认、认可或任何 形式的建议。
权利要求
1、一种测定混合过程中组分间的混合程度的方法,该方法包括以下步骤a)混合至少两种组分和至少两种发光材料以形成混合物,其中将发光材料彼此单独地添加到混合物中,和其中每种发光材料具有唯一可检测的发光发射波长;b)检测由混合物样品发射的发光,其中发射的发光在所述发光材料的唯一可检测的发光发射波长下包括不同的发光强度;c)其中在唯一可检测的发光发射波长下的发光强度比和/或发光的绝对或相对强度表示出组分间的混合程度。
2、 根据权利要求1的方法,其中将发光材料作为不同的混合物组 分部分彼此单独地添加到混合物中。
3、 根据权利要求2的方法,其中在结合并混合组分之前,将发光 材料单独地添加到组分中并混合。
4、 根据权利要求l的方法,其中在组分混合期间,在间隔位置处 将发光材料彼此单独地添加到混合物中。
5、 根据权利要求1-4中任一项的方法,其中组分以固态存在。
6、 根据权利要求4的方法,其中检测步骤b)包括在添加发光材 料的位置之间的点取得样品。
7、 根据权利要求1-5中任一项的方法,其中从混合物中提取检 测步骤b)的混合物样 品。
8、 根据权利要求1-5中任一项的方法,其中检测步骤b)的混合 物样品与混合物是一体的。
9、 根据权利要求1-8中任一项的方法,其中发光材料选自由发 光有机材料、发光金属配合物、磷光体和量子点组成的组。
10、 根据权利要求9的方法,其中发光材料是磷光体。
11、 根据权利要求10的方法,其中发光材料是稀土元素掺杂的磷 光体。
12、 根据权利要求1-11中任一项的方法,其中发光材料以所有 组分质量的十亿分之一至小于0.1%存在于混合物中。
13、 根据权利要求1-12中任一项的方法,其中使用便携式检测 系统进行检测步骤b)。
14、 根据权利要求13的方法,其中便携式检测系统包括i) 在操作上连接到便携式计算机的便携式光源和便携式光谱仪;ii) 一端光学连接到光源和光谦仪而另一端具有尖端的便携式光 纤探针,所述尖端配置成遮蔽来自样品的环境光;和iii) 通过便携式计算机可执行的计算机软件,当环境光由探针尖 端遮蔽时,其用于控制光源和光谱仪以非破坏性地光学检测样品中的 痕量发光材料。
15、 根据权利要求1-14中任一项的方法,其用于制造混凝土、 药物或聚合物。
16、 根据权利要求1-14中任一项的方法,其用于制造混凝土。
17、 根据权利要求16的方法,其中混合步骤a)包括两种组分, 所述组分的每一种包括不同的稀土元素掺杂的磷光体,所述磷光体在 混合组分之前净皮添加到组分中以形成混合物。
18、 根据权利要求16或17的方法,其中使用便携式检测系统进 行检测步骤b),并且其中样品与混合物是一体的。
19、 一种基本上按照上文描述的根据权利要求1 - l8中任一项的 方法。
全文摘要
一种测定混合过程中组分间的混合程度的方法,该方法包括步骤a)混合至少两种组分和至少两种发光材料以形成混合物,其中将发光材料彼此单独地添加到混合物中,和其中每种发光材料具有唯一可检测的发光发射波长;b)检测由混合物样品发射的发光,其中发射的发光在所述发光材料的唯一可检测的发光发射波长下包括不同的发光强度;c)其中在唯一可检测的发光发射波长下的发光强度比和/或发光的绝对或相对强度表示出组分间的混合程度。
文档编号G05D11/02GK101291721SQ200680039036
公开日2008年10月22日 申请日期2006年8月22日 优先权日2005年8月22日
发明者A·L·劳尼科尼斯, G·F·斯维杰斯, J·克拉夫特 申请人:联邦科学和工业研究组织
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1