一种有效的控制变量参数化的工业过程动态优化系统及方法

文档序号:6319999阅读:229来源:国知局

专利名称::一种有效的控制变量参数化的工业过程动态优化系统及方法
技术领域
:本发明涉及最优领域,尤其是一种有效的控制变量参数化的工业过程动态优化系统及方法。
背景技术
:工业过程动态优化是过程模拟技术的核心,是化工过程优化设计、操作和控制的一个重要环节。从20世纪60年代至今,动态优化(也常称为最优控制)在理论研究和实际应用领域的发展都十分令人瞩目,它已经由一种学术界乐于探究的方法论演变为一项正在并将继续对过程工业产生重大影响的技术。动态优化的应用领域非常广泛,一个典型的工程在线应用是求解非线性模型预测控制(NonlinearModelPredictiveControl,NMPC)中的优化问题。现代工业应用要求NMPC求解的动态过程模型日趋大规模和精细化,而NMPC的一个关键环节是滚动优化,所以发展高效的动态优化算法对于实现NMPC在线应用的重要性已经越来越突出。目前的一些动态优化方法,如迭代动态规划法、模拟退火法、遗传算法、粒子群算法、随机优化法等,虽然能够找到工业过程动态优化问题的最优解,但是往往出现求解结果不准确和收敛缓慢问题,而且计算稳定性较低,很难既保证所得最优解的准确性,又使得动态优化问题的求解稳定、快速。
发明内容为了克服已有的工业过程动态优化系统和方法很难既准确又快速地找到最优解、稳定性差的不足,本发明提供了一种能够准确找到大规模非线性动态优化问题的最优解且收敛稳定、快速的有效的控制变量参数化的工业过程动态优化系统及方法。本发明解决其技术问题所采用的技术方案是—种有效的控制变量参数化的工业过程动态优化系统,包括与工业过程对象连接的现场智能仪表、DCS系统和上位机,所述的DCS系统包括数据库和操作站,所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,所述的上位机主要包括初始化模块,用于对数据进行初始化处理,对控制向量参数进行初始设置,具体步骤如下(2.l)将时域tG[t。,tf]平均分割成N段[t。,tj,[t"t2],…,[V"tj,其中tN=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u°;(2.3)设动态优化的收敛精度为4,当优化目标值迭代误差小于收敛精度时,停止迭代;控制变量参数化模块,用于对动态优化问题的控制变量进行离散化,利用N个独立的控制参数Ul,u2,...,uN来描述控制变量u(t),即5u(t)=Ui,tG[t卜/tj(i=1,2,...,N)(1)其中Ui是对应第i个时间分段的控制参数,且Ui须满足控制变量的边界约束式(2),下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界Umin《Ui《Umax(i=l,2,...,N)(2)设控制参数向量u=[Ul,u2,...,u,],则由式(1)使求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划(NonlinearProgramming,NLP)问题;ODE求解模块,用于求解动态优化问题的常微分方程组(OrdinaryDifferentialEquations,ODE),得到状态向量的值和相应的目标函数值,并传给NLP求解模块,采取以下步骤来完成(4.1)判断参数i的值,若i=O,则令Xo=x(t0)(3)若i=N+l,则转步骤(4.4),否则,令x0=xf卜=1,2,,N)(4)式(3)(4)中xO表示状态向量初始值,x(t。)是给定的状态向量x(t)在起始时刻t。的值,rf卜工表示时间分段tG[ti—n终端时刻的状态向量值,下标i-1表示第i-1个时间分段;(4.2)以xO为初始点,采用四阶Runge-Kutta法求解状态方程式(5),计算得出状态向量x(t)在时间分段tG[ti—A]上的值;^l=/[x(0,u。,tG[tt](i=丄,2,.…,N)(5)其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(tG[ti—"ti])的值,并将终端时刻ti对应的状态向量值赋给xfi—"参照式(6);然后转步骤(4.1);xf卜!=x(t》(i=1,2,.,N)(6)其中,x(ti)表示ti时刻的状态向量值;(4.4)计算并保存目标函数J的值J=V[x(tf)](7)其中x(tf)是状态向量在时域tG[t。,tf]的终端时刻tf(=tN)的值,V为在终点条件下目标函数的组成部分;NLP求解模块,用于求解控制变量参数化模块得到的非线性规划问题将控制参数向量u的元素Ul,u2,...,uN作为优化变量,以u°为初始解,利用简约空间序贯二次规划法(Reduced-spaceSequentialQuadraticProgramming,RSQP)进行迭代寻优,迭代过禾呈中通过调用ODE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为u*,u*=[Ul*,u2*,...,u/],上标*表示最优值,最优状态向量表示为^(t),并由式(7)计算出最优目标值J然后将优化结果传给结果输出模块。作为优选的一种方案所述的上位机还包括信息采集模块,用于设定采样时间,采集由现场智能仪表上传的工业过程对象的动态信息。进一步,所述的上位机还包括结果输出模块,用于将NLP求解模块计算出的最优控制参数向量11*(=[Ul*,u2*,...,u/])依据式(1)转化为最优控制轨线『(t),然后将『(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。—种用所述的一种有效的控制变量参数化的工业过程动态优化系统实现的动态优化方法,所述的动态优化方法包括以下步骤1)在DCS系统中指定动态优化的状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制向量的上下边界umin、umax和DCS的采样周期,并将DCS数据库中相应各变量的历史数据,控制变量上下边界值umin、umax传送给上位机。2)在上位机的初始化模块中,对DCS输入的数据进行初始化处理,对控制向量参数进行初始设置,按照以下步骤完成(2.1)将时域tG[t。,tf]平均分割成N段[t。,tj,[tnt2],...,[tN—ntj,其中tN=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u°;(2.3)设动态优化的收敛精度为4(一般可取为10—6),当优化目标值迭代误差小于收敛精度时,停止迭代;3)在上位机的控制变量参数化模块中,对动态优化问题的控制变量进行离散化,从而将求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划(NonlinearProgramming,NLP)问题。利用由N个独立的控制参数w,U2,...,Uw组成控制参数向量u(u=[Ul,u2,...,UN])来描述控制变量U(t),参照式(l),即:u(t)=Ui,tG[t卜p、](i=1,2,…,N)(1)其中Ui是对应第i个时间分段的控制参数,且Ui须满足控制变量的边界约束Umin《Ui《Umax(i=l,2,...,N)(2)下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界;4)在上位机的ODE求解模块中,采用四阶R皿ge-Kutta法求解动态优化模型中的常微分方程组(OrdinaryDifferentialEquations,ODE),得到状态向量x(t),并计算相应的目标函数值J,再将x(t)和J传给NLP模块,采取以下步骤来完成(4.1)判断参数i的值,若i=0,则令x0=x(t0)(3)若i二N+1,则转步骤(4.4),否则,令:x0=xf卜=1,2,.,N)(4)式(3)(4)中xO表示状态向量初始值,x(t。)是给定的状态向量x(t)在起始时刻t。的值,rf卜工表示时间分段tG[ti—n终端时刻的状态向量值,下标i-1表示第i-1个时间分段;(4.2)以xO为初始点,采用四阶R皿ge-Kutta法求解状态方程,计算得出状态向量x(t)在时间分段tG[ti—"上的值;^^=/[X(0,V],tG[t卜"tj(i=1,2,…,N)(5)其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(tG[ti—"J)的值,并将终端时刻ti对应的状态向量值赋给xfH,参照式(6),然后转步骤(4.1);xf卜i=x(t卩(i=1,2,.,N)(6)其中,x(ti)表示ti时刻的状态向量值;(4.4)计算并保存目标函数J的值J=V[x(tf)](7)其中x(tf)是状态向量在时域tG[t。,tf]的终端时刻tf(=tN)的值,V为在终点条件下目标函数的组成部分。5)在上位机的NLP求解模块中,利用RSQP法求解控制变量参数化模块得到的NLP问题将控制参数向量u的元素Ul,u2,...,uN作为优化变量,以u°为初始解,采用RSQP进行迭代寻优,迭代过程中通过调用ODE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为uu*=[Ul*,u2*,...,11/],上标*表示最优值,最优状态向量表示为Z(t),并由式(7)计算出最优目标值J然后将iAZ(t)和JM专给结果输出模块。作为优选的一种方案所述的动态优化方法还包括将现场智能仪表所采集的工业过程对象的数据传送到DCS系统的实时数据库中,在每个采样周期从DCS系统的数据库得到的最新数据输出到上位机,并在上位机的初始化模块进行初始化处理。进一步,所述的动态优化方法还包括在所述步骤(5)中得到的最优控制参数向量u*,将通过结果输出模块转换为最优控制曲线u*(t),并在上位机的人机界面上显示u*(t)和最优目标值J、同时,最优控制曲线^(t)将通过数据接口传给DCS系统,并在DCS系统中显示所得到的优化结果信息。本发明的技术构思为现代工业过程的应用要求NMPC求解的动态过程模型越来越趋于大规模化和精细化,因此,发展高效的动态优化算法的重要性已经变得越来越突出。目前的一些动态优化方法,如迭代动态规划法、模拟退火法、遗传算法、粒子群算法、随机优化法等,虽然能够找到工业过程动态优化问题的最优解,但是往往出现求解结果不准确和收敛缓慢问题,而且计算稳定性较低。本发明的动态优化方法,通过控制变量参数化将动态优化问题中的控制变量进行离散,使得无限维的动态优化问题转化为有限维的非线性规划问题,然后采用RSQP法进行迭代寻优,使动态优化问题的求解更加简便、高效,同时也提高了算法的求解准确性和稳定性。本发明的有益效果主要表现在1、能够准确、稳定地寻找到工业过程非线性系统动态优化的最优解;2、具有很高的求解效率,适用性好。因此,在工业过程动态优化的各个领域都具有广泛的应用前景。图1是本发明所提供的工业过程动态优化系统的硬件结构图;图2是本发明上位机实现动态优化方法的功能结构图。具体实施例方式下面根据附图具体说明本发明。实施例1参照图1、图2,一种有效的控制变量参数化的工业过程动态优化系统,包括与工业过程对象1连接的现场智能仪表2、DCS系统以及上位机6,所述的DCS系统由数据接口3、操作站4、数据库5构成;现场智能仪表2与数据通讯网络连接,所述数据通讯网络与数据接口3连接,所述数据接口3与现场总线连接,所述现场总线与操作站4、数据库5和上位机6连接,所述的上位机6包括初始化模块8,用于对数据进行初始化处理,对控制向量参数进行初始设置,具体步骤如下(2.1)将时域tG[t。,tf]平均分割成N段[t。,tj,[tnt2],...,[tN—ptj,其中tN=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u°;(2.3)设动态优化的收敛精度为4,当优化目标值迭代误差小于收敛精度时,停止迭代;控制变量参数化模块9,用于对动态优化问题的控制变量进行离散化,利用N个独立的控制参数Ul,u2,...,uN来描述控制变量u(t),即<formula>formulaseeoriginaldocumentpage9</formula>其中Ui是对应第i个时间分段的控制参数,且Ui须满足控制变量的边界约束式(2),下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界<formula>formulaseeoriginaldocumentpage9</formula>设控制参数向量u=[Ul,u2,...,uj,则由式(1)使求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划(NonlinearProgramming,NLP)问题;ODE求解模块10,用于求解动态优化问题的常微分方程组(OrdinaryDifferentialEquations,ODE),得到状态向量的值和相应的目标函数值,并传给NLP求解模块,采取以下步骤来完成(4.1)判断参数i的值,若i=0,则令<formula>formulaseeoriginaldocumentpage9</formula>若i=N+l,则转步骤(4.4),否则,令:<formula>formulaseeoriginaldocumentpage9</formula>式(3)(4)中xO表示状态向量初始值,x(t。)是给定的状态向量x(t)在起始时刻t。的值,rf卜工表示时间分段tG[ti—n终端时刻的状态向量值,下标i-1表示第i-1个时间分段;(4.2)以xO为初始点,采用四阶Runge-Kutta法求解状态方程式(5),计算得出状态向量x(t)在时间分段tG[ti—A]上的值;<formula>formulaseeoriginaldocumentpage9</formula>其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(tG[ti—"ti])的值,并将终端时刻ti对应的状态向量值赋给xfi—"参照式(6);然后转步骤(4.1);<formula>formulaseeoriginaldocumentpage9</formula>其中,x(ti)表示ti时刻的状态向量值;(4.4)计算并保存目标函数J的值J=V[x(tf)](7)其中x(tf)是状态向量在时域tG[t。,tf]的终端时刻tf(=tN)的值,V为在终点条件下目标函数的组成部分;NLP求解模块ll,用于求解控制变量参数化模块得到的非线性规划问题将控制参数向量u的元素Ul,u2,...,uN作为优化变量,以u°为初始解,利用简约空间序贯二次规戈岐(Reduced-spaceSequentialQuadraticProgramming,RSQP)进行迭代寻优,迭代过禾呈中通过调用ODE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为u*,u*=[Ul*,u2*,...,u/],上标*表示最优值,最优状态向量表示为^(t),并由式(7)计算出最优目标值J然后将优化结果传给结果输出模块12。所述的上位机6还包括信息采集模块7,用于设定采样时间、采集由现场智能仪表2上传的工业过程对象的动态信息,以及结果输出模块12,用于将NLP求解模块11计算出的最优控制参数向量u*(=[Ul*,u2*,...,u/])依据式(1)转化为最优控制轨线u*(t),然后将u*(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。实施例2参照图1和图2,一种有效的控制变量参数化的工业过程动态优化方法,所述的动态优化方法按照以下步骤实施1)、在DCS系统中指定动态优化的状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制向量的上下边界umin、umax和DCS的采样周期,并将DCS数据库5中相应各变量的历史数据,控制变量上下边界值umin、umax传送给上位机。2)、在上位机的初始化模块8中,对DCS输入的数据进行初始化处理,对控制向量参数进行初始设置,按照以下步骤完成(2.1)将时域tG[t。,tf]平均分割成N段[t。,tj,[tnt2],...,[tN—ntj,其中tN=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u°;(2.4)设动态优化的收敛精度为4(一般可取为10—6);当优化目标值迭代误差小于收敛精度时,停止迭代;(2)在上位机的控制变量参数化模块9中,对动态优化问题的控制变量进行离散化,从而将求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划(NonlinearProgramming,NLP)问题。利用由N个独立的控制参数w,U2,...,Uw组成控制参数向量u(u=[Ul,u2,...,UN])来描述控制变量U(t),参照式(l),即:u(t)=Ui,tG[t卜pti](i=1,2,,N)(1)其中Ui是对应第i个时间分段的控制参数,且Ui须满足控制变量的边界约束[O川]Umin《Ui《Umax(i=l,2,...,N)(2)下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界;4)在上位机的0DE求解模块10中,采用四阶Runge-Kutta法求解动态优化模型中的常微分方程组(OrdinaryDifferentialEquations,ODE),得到状态向量x(t),并计算相应的目标函数值J,再将x(t)和J传给NLP模块,采取以下步骤来完成(4.D判断参数i的值,若i=O,则令x0=x(t0)(3)若i二N+1,则转步骤(4.4),否则,令x0=xf卜=1,2,,N)(4)式(3)(4)中xO表示状态向量初始值,x(t。)是给定的状态向量x(t)在起始时刻t。的值,rf卜工表示时间分段tG[ti—n终端时刻的状态向量值,下标i-1表示第i-1个时间分段;(4.2)以xO为初始点,采用四阶R皿ge-Kutta法求解状态方程,计算得出状态向量x(t)在时间分段tG[ti—"上的值;,=/[x(/),u—],tg[ti—"^](1=L2,….,N)(5)其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(tG[ti—"ti])的值,并将终端时刻ti对应的状态向量值赋给xfH,参照式(6),然后转步骤(4.1);xf卜!=x(t》(i=1,2,.,N)(6)其中,X(t》表示ti时刻的状态向量值;(4.4)计算并保存目标函数J的值J=V[x(tf)](7)其中x(tf)是状态向量在时域tG[t。,tf]的终端时刻tf(=tN)的值,V为在终点条件下目标函数的组成部分。5)在上位机的NLP求解模块11中,利用RSQP法求解控制变量参数化模块得到的NLP问题将控制参数向量u的元素Ul,u2,...,uN作为优化变量,以u°为初始解,采用RSQP进行迭代寻优,迭代过程中通过调用ODE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为u*,u*=[Ul*,u2*,...,11/],上标*表示最优值,最优状态向量表示为Z(t),并由式(7)计算出最优目标值J然后将u*、x*(t)和J*传给结果输出模块12。所述的动态优化方法还包括将现场智能仪表所采集的工业过程对象的数据传送到DCS系统的实时数据库中,在每个采样周期从DCS系统的数据库得到的最新数据输出到上位机,并在上位机的初始化模块进行初始化处理。所述的动态优化方法还包括在所述步骤(5)中得到的最优控制参数向量u将通过结果输出模块转换为最优控制曲线u*(t),并在上位机的人机界面上显示u*(t)和最优目标值J*;同时,最优控制曲线u*(t)将通过数据接口传给DCS系统,并在DCS系统中显示所得到的优化结果信息。本实施例中,系统开始投运1)利用定时器,设置好每次数据检测和采集的时间间隔;2)现场智能仪表2检测工业过程对象1的数据并传送至DCS系统的实时数据库5中,得到最新的变量数据;3)在上位机6的初始化模块8中,根据实际生产需求和操作限制条件对各模块相关参数和变量进行初始化处理,将处理的结果作为控制变量参数化模块9和NLP求解模块11的输入;4)在上位机6的控制变量参数化模块9中,对控制变量进行离散化,形成的NLP问题传给NLP求解模块ll;5)在上位机6的ODE求解模块IO,根据NLP求解模块11输入的控制参数向量值,求出动态优化问题的状态向量与目标函数值,结果作为NLP求解模块11的输入;6)上位机6的NLP求解模块11,依据初始化模块8的初始值对控制变量参数化模块9输入的NLP问题进行迭代求解,迭代过程中调用ODE模块IO求解状态向量和目标函数,最终将优化的结果传给结果输出模块12;7)上位机6的结果输出模块12,将NLP求解模块12得出的优化结果进行转换,然后将所得的最优控制结果信息传输给DCS系统,并显示于上位机6的人机界面和DCS系统的操作站4,同时通过DCS系统和现场总线将所得到的优化结果信息传输到现场工作站进行显示,并由现场工作站来执行最优操作。上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。权利要求一种有效的控制变量参数化的工业过程动态优化系统,包括与工业过程对象连接的现场智能仪表、DCS系统和上位机,所述的DCS系统包括数据库和操作站,所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,其特征在于所述的上位机主要包括初始化模块,用于对数据进行初始化处理,对控制向量参数进行初始设置,具体步骤如下(2.1)将时域t∈[t0,tf]平均分割成N段[t0,t1],[t1,t2],…,[tN-1,tN],其中tN=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u0;(2.3)设动态优化的收敛精度为ζ,当优化目标值迭代误差小于收敛精度时,停止迭代;控制变量参数化模块,用于对动态优化问题的控制变量进行离散化,利用N个独立的控制参数u1,u2,...,uN来描述控制变量u(t),即u(t)=ui,t∈[ti-1,ti](i=1,2,...,N)(1)其中ui是对应第i个时间分段的控制参数,且ui须满足控制变量的边界约束式(2),下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界umin≤ui≤umax(i=1,2,...,N)(2)设控制参数向量u=[u1,u2,...,uN],则由式(1)使求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划问题;ODE求解模块,用于求解动态优化问题的常微分方程组,得到状态向量的值和相应的目标函数值,并传给NLP求解模块,采取以下步骤来完成(4.1)判断参数i的值,若i=0,则令x0=x(t0)(3)若i=N+1,则转步骤(4.4),否则,令x0=xfi-1(i=1,2,...,N)(4)式(3)(4)中x0表示状态向量初始值,x(t0)是给定的状态向量x(t)在起始时刻t0的值,xft-1表示时间分段t∈[ti-1,ti]终端时刻的状态向量值,下标i-1表示第i-1个时间分段;(4.2)以x0为初始点,采用四阶Runge-Kutta法求解状态方程式(5),计算得出状态向量x(t)在时间分段t∈[ti-1,ti]上的值;<mfencedopen=''close=''><mtable><mtr><mtd><mfrac><mrow><mi>dx</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mi>dt</mi></mfrac><mo>=</mo><mi>f</mi><mo>[</mo><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>u</mi><mi>i</mi></msub><mo>,</mo><mi>t</mi><mo>]</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>&Element;</mo><mo>[</mo><msub><mi>t</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>]</mo></mtd><mtd><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mtd></mtr></mtable><mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></mfenced>其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(t∈[ti-1,ti])的值,并将终端时刻ti对应的状态向量值赋给xfi-1,参照式(6);然后转步骤(4.1);xfi-1=x(ti)(i=1,2,...,N)(6)其中,x(ti)表示ti时刻的状态向量值;(4.4)计算并保存目标函数J的值J=ψ[x(tf)](7)其中x(tf)是状态向量在时域t∈[t0,tf]的终端时刻tf(=tN)的值,ψ为在终点条件下目标函数的组成部分;NLP求解模块,用于求解控制变量参数化模块得到的非线性规划问题将控制参数向量u的元素u1,u2,...,uN作为优化变量,以u0为初始解,利用简约空间序贯二次规划法进行迭代寻优,迭代过程中通过调用ODE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为u*,u*=[u1*,u2*,...,uN*],上标*表示最优值,最优状态向量表示为x*(t),并由式(7)计算出最优目标值J*,然后将优化结果传给结果输出模块。2.根据权利要求1所述的有效的控制变量参数化的工业过程动态优化系统,其特征在于所述的上位机还包括信息采集模块,用于设定采样时间,采集由现场智能仪表上传的工业过程对象的动态信息。3.如权利要求1或2所述的有效的控制变量参数化的工业过程动态优化系统,其特征在于所述的上位机还包括结果输出模块,用于将NLP求解模块计算出的最优控制参数向量<formula>formulaseeoriginaldocumentpage3</formula>依据式(1)转化为最优控制轨线^(t),然后将^(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。4.一种用如权利要求1所述的有效的控制变量参数化的工业过程动态优化系统实现的动态优化方法,其特征在于所述的动态优化方法包括以下步骤1)在DCS系统中指定动态优化的状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制向量的上下边界umim、umax和DCS的采样周期,并将DCS数据库中相应各变量的历史数据,控制变量上下边界值umin、umax传送给上位机。2)对DCS输入的数据进行初始化处理,对控制向量参数进行初始设置,按照以下步骤完成(2.1)将时域tG[t。,tf]平均分割成N段[t。,tj,[tpt2],,[Vptj,其中tw=tf,每个时间段的长度取为tf/N;(2.2)设控制变量u(t)参数化为N维向量u,并设控制参数向量的初始值为u、(2.3)设动态优化的收敛精度为L当优化目标值迭代误差小于收敛精度时,停止迭代;;3)对动态优化问题的控制变量进行离散化,从而将求解控制变量u(t)的动态优化问题转化为求解控制参数向量u的非线性规划问题。利用由N个独立的控制参数w,u2,...,Uw组成控制参数向量u(u=[Ul,u2,...,uN])来描述控制变量U(t),参照式(1),即<formula>formulaseeoriginaldocumentpage3</formula>其中Ui是对应第i个时间分段的控制参数,且Ui须满足控制变量的边界约束<formula>formulaseeoriginaldocumentpage3</formula>下标min、max分别表示最小值和最大值,umin、umax分别对应控制变量的下界和上界;4)采用四阶R皿ge-Kutta法求解动态优化模型中的常微分方程组,得到状态向量x(t),并计算相应的目标函数值J,再将x(t)和J传给NLP模块,采取以下步骤来完成(4.1)判断参数i的值,若i=O,则令<formula>formulaseeoriginaldocumentpage3</formula>若i二N+1,则转步骤(4.4),否则,令<formula>formulaseeoriginaldocumentpage4</formula>,N)(4)式(3)(4)中x0表示状态向量初始值,x(t。)是给定的状态向量x(t)在起始时刻t。的值,xfi—i表示时间分段tG[ti—ntj终端时刻的状态向量值,下标i-l表示第i-l个时间分段;(4.2)以x0为初始点,采用四阶R皿ge-Kutta法求解状态方程,计算得出状态向量x(t)在时间分段tG[ti—"tj上的值;<formula>formulaseeoriginaldocumentpage4</formula>(5)其中f表示函数向量,x(t)表示n维状态向量,n为给定正数;(4.3)保存状态向量x(t)(tG[ti—pt》的值,并将终端时刻ti对应的状态向量值赋给xf^,参照式(6),然后转步骤(4.1);<formula>formulaseeoriginaldocumentpage4</formula>(6)其中,x(ti)表示、时刻的状态向量值;(4.4)计算并保存目标函数J的值J=V[x國(7)其中x(tf)是状态向量在时域tG[t。,tf]的终端时刻tf(=tN)的值,V为在终点条件下目标函数的组成部分。5)利用RSQP法求解控制变量参数化模块得到的NLP问题将控制参数向量u的元素Ul,u2,...,uN作为优化变量,以u°为初始解,采用RSQP进行迭代寻优,迭代过程中通过调用0DE求解模块计算状态向量和目标函数值,最终求解出最优的控制参数向量及相应的最优状态向量,最优的控制参数向量表示为u*,u*=[Ul*,u2*,..,u/],上标*表示最优值,最优状态向量表示为Z(t),并由式(7)计算出最优目标值J然后将iAZ(t)和JM专给结果输出模块。5.如权利要求4所述的动态优化方法,其特征在于所述的动态优化方法还包括将现场智能仪表所采集的工业过程对象的数据传送到DCS系统的实时数据库中,在每个采样周期从DCS系统的数据库得到的最新数据输出到上位机,并在上位机的初始化模块进行初始化处理。6.如权利要求4或5所述的动态优化方法,其特征在于所述的动态优化方法还包括在所述步骤(5)中得到的最优控制参数向量u将通过结果输出模块转换为最优控制曲线^a),并在上位机的人机界面上显示i^a)和最优目标值j、同时,最优控制曲线^a)将通过数据接口传给DCS系统,并在DCS系统中显示所得到的优化结果信息。全文摘要一种有效的控制变量参数化的工业过程动态优化系统,包括与工业过程对象连接的现场智能仪表、DCS系统和上位机,上位机主要包括初始化模块,用于对数据进行初始化处理,对控制向量参数进行初始设置;控制变量参数化模块,用于对动态优化问题的控制变量进行离散化,利用N个独立的控制参数来描述控制变量u(t);ODE求解模块,用于求解动态优化问题的常微分方程组,得到状态向量的值和相应的目标函数值,并传给NLP模块;NLP求解模块,用于求解控制变量参数化模块得到的非线性规划问题。还提供了一种有效的控制变量参数化的工业过程动态优化方法。本发明能够准确找到大规模非线性动态优化问题的最优解且收敛稳定、快速。文档编号G05B19/418GK101763083SQ20091015566公开日2010年6月30日申请日期2009年12月29日优先权日2009年12月29日发明者刘兴高,陈珑申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1