提供不间断电能的方法及其设备的制作方法

文档序号:6655405阅读:119来源:国知局
专利名称:提供不间断电能的方法及其设备的制作方法
技术领域
本发明的实施方案主要涉及用于向重要的和/或敏感的负载提供不间断的、受控的电能的方法和设备。更加确切的是,本发明的实施方案涉及具有改进的控制系统的不间断电源(UPS)。
背景技术
人们已经知道,有备份系统的不间断电源用于为重要的和/或敏感的负载(例如,计算机系统和其他的数据处理系统)提供受控的、不间断电能的用途。图1显示的是用于提供受控的不间断电能的典型的、单相的、联机UPS 10。所述UPS 10包括输入电路断路器/过滤器12、整流器14、控制开关15、控制器16、电池18、逆变器20和隔离变压器22。所述UPS 10也包括用于耦合交流电源的输入端口24,和用于耦合负载的输出端口26。
所述UPS 10操作如下。电路断路器/过滤器12通过输入端口,从交流电源接收输入的交流电,过滤输入的交流电并向整流器14提供经过滤的交流电。整流器调整输入的电压。控制开关15接收经调整的电能,也接收来自电池18的直流电能。控制器16确定从整流器得到的电能是否在预先设定的范围内,以及如果在预先设定的范围内,通过调控控制开关从整流器向逆变器20提供电能。如果来自于整流器的电能不在预先设定的范围内,可能由于“熄灭”或“中断”状态,或由于动力高峰,则控制器调控控制开关从电池向逆变器20提供直流电。
UPS 10的逆变器20接收直流电并将直流电转换为交流电,以及将交流电控制在预先设定的规格之内。逆变器20向隔离变压器22提供受控的交流电。隔离变压器用于增加或减少来自于逆变器的交流电的电压,并为负载与UPS之间提供隔离。隔离变压器是典型的可选择的装置,其使用主要取决于UPS输出电流的规格。依靠电池的容量和负载的电力需求,UPS 10能在短暂的电源下降时为负载或者延伸的电能储运损耗提供电能。
有备用的控制特征的模块UPS系统也是人们所知道的,而且美国第5,982,652号专利文件描述了这种系统,其内容并入本文作为参考。在典型的模块UPS系统中,附加的电能模块和电池模块能够被添加到UPS系统中,用于提供增加的输出电能和延长电池的运行时间。
人们已经知道,在UPS系统中分相位电能输入和输出的用途。在典型的分相位UPS中,UPS的输入端口被配置用于接收来自交流电能系统的两相位和中性电能,并在UPS的输出端口处提供两相位和中性电能。通常,因为能够支持许多不同的输出电流规格,分相位系统对于用户具有更大的灵活性。一般情况下,当分相位系统具有更大灵活性时,典型地是,这些系统需要更加复杂的控制系统。
更进一步,当交流电能不能够得到的时候,使得UPS处于电能下降的状态,和重新启动UPS常常是人们所需要的。具有这种能力的模块系统是人们所知道的,其包括能够从West Kington,RI的美国能量转换公司得到的SymmetraUPS系统。在高能模块系统里,在电能下降模式期间,重新启动UPS常常很难防止电池的泄漏,以及人们需要将发生在电池上的泄漏降低到最小。

发明内容
本发明的实施方案提供了对UPS系统的改善,如上文中所描述的,尤其是,本发明的一些实施方案为具有分相位的电能输入和输出的UPS系统提供经改进的控制系统。
本发明的第一方面集中在电能供给系统。所述的电能供给系统包括机座,用于接收来自于电源的输入电能的电能输入端口,向负载提供输出电能的电能输出端口,至少一个安装在机座上的电池模块,该电池模块具有提供电池电能的电池输出端口,至少一个安装在机座上的电能模块,该电能模块与电能输入端口耦合以接收输入的,与电池输出端口耦合以接收电池的电能,和与电能输出端口耦合用于提供来自至少电池电能与输入的电能之一的输出电能,与至少一个电能模块耦合的第一控制器,和实质上类似于第一控制器的第二控制器,所述第二控制器与第一控制器耦合,并与至少一个电能模块耦合。第一控制器和第二控制器中的每一个都被配置用于确定电能供给系统的运行参数,并存储由第一控制器确定的第一套参数和由第二控制器确定的第二套参数。
在电能供给系统中,第一控制器在电能供给系统中可以作为主控制器运行,控制电能模块的输出电能,第一控制器和第二控制器可以被配置用于在第一控制器发生故障时,允许第二控制器控制输出的电能。至少一个电能模块可以包括多个电能模块,和至少一个电池模块可以包括多个电能模块。电能供给系统可以更进一步包括通讯总线,该通讯总线与第一控制器,第二控制器和至少一个电能模块耦合,以在第一控制器,第二控制器和至少一个电能模块之间提供双方的通讯。第一控制器可以经过配置作为通讯总线的主控制,并控制总线上的通讯,和在第一控制器发生故障时,第二控制器可以经过配置作为通讯总线的主控制。
在电能供给系统中,第一控制器和第二控制器中的每一个可以包括主处理器,通过继电器耦合通讯总线的内部通讯总线,并耦合内部通讯总线的存储装置,该存储装置存储电能供给系统的运行参数,以及在第二控制系统中的主处理器可以被配置用于打开在第二控制器上的继电器和通过内部通讯总线向存储装置发送更新的运行参数。
电能供给系统的电能输入端口可以被配置用于接收具有第一输入相位线,和第二输入相位线和中性输入线的输入电能,第一控制器能够耦合电能输入端口和被配置用于检测在第一输入相位线和第二输入相位线之间的输入相位差,以及控制电能模块向具有第一输出相位线,第二输出相位和中性输出线的输出电能提供实质上等同于输入相位差的第一输出相位线和第二输出相位线之间的输出相位差。第一控制器和第二控制器中的每一个能够包括冷启动按钮,和在没有出现输入电能的情况下,当冷的启动按钮中的一个被用户启动时,电能供给系统能够被配置从电池的电能中获得电能。在没有出现输入电能的情况下,在冷的启动按钮的激活之前来自至少一个电池模块的电流实质上为零,电能供给系统能够被配置使得冷的启动按钮的激活产生电能。第一控制器能够耦合电能输入端口和被配置用于检测输入电压和输入的电流,以及一旦检测输入电压小于预先设定的界限值时,减少电能供给系统输入电流的流动。一旦检测输入电压小于预先设定的界限值,第一控制器可以配置用于减少在电能供给系统中电池充电电流。
电能供给系统可以进一步包括耦合电能输出端口的四象限的电能仪表,确定电能供给系统的输出电能,至少一个电能模块能够包括二象限的电能仪表,用于确定电能模块输出电能。电能供给系统可以进一步包括耦合电能输出端口的输出保险丝,和耦合输出保险丝和第一控制器的、检测经过输出保险丝电压的检测电路。第一控制器和第二控制器中每一个适合接收来自于机座的输入信号,和建立在输入信号的基础上,作为主控制器或者备用控制器运行。第一控制器可以包括存储装置,和被配置用于感应在输出端口处的输出电压,和比较输出电压与来自保存在存储装置中的上部和下部界限值的水平来确定输出电压是否在预先设定的范围之内。
本发明的另一方面集中在电能供给系统,所述的电能供给系统包括接收来自电源的输入电能的电能输入端口,为负载提供输出电能的电能输出端口,至少一个具有电池输入端口的电池模块,所述电池模块提供电池电能,至少一个耦合电能输入端口的用于接收输入电能的电能模块,耦合电池输出端口以接收电池电能,和耦合电能输出端口以提供输出电能的电能模块,耦合至少一个电能模块的第一控制器,耦合第一控制器和耦合至少一个电能模块的第二控制器,和耦合第一控制器,第二控制器和至少一个电能模块,并在第一控制器,第二控制器和至少一个电能模块之间提供双方通讯的通讯总线。第一控制器被配置作为通讯总线的主线和控制在总线上的通讯,和一旦第一控制器发生故障时,第二控制器被配置作为通讯总线的主线。
本发明的另一方面集中在电能供给系统,所述电能供给系统包括有第一输入相位线,第二输入相位线和中性输入线的用于接收输入电能的输入端口,提供输出电能的输出端口,所述输出端口有第一输出相位线,第二输出相位线和中性输出线,提供电池电能的电池,和耦合输入端口,输出端口和电池的、被配置用于控制电能供给系统从至少输入电能和电池电能之一提供输出电能的控制器。控制器被配置用于检测第一输入相位线和第二输入相位线之间的输入相位差,和向输出电能提供等同输入相位差的在第一输出相位线和第二输出相位线之间输出相位差。
根据本发明另一方面,电能供给系统包括接收输入电能的输入端口,提供输出电能的输出端口,提供电池电能的电池,接收输入电能和电池电能以及提供来自至少电池电能和输入电能之一的输出电能的电路系统,和耦合在输入端口,输出端口,电路和电池的、以及被配置用于控制电能供给系统的控制器。控制器包括为电能供给系统存储运行设置的存储器,所述控制器被配置用于感应在输出端口处的输出电压,和比较输出电压与源于存储在存储器中的操作设置的上部和下部界限值的水平来确定输出电压是否在预先设定的范围内。
本发明另一面集中于电能供给系统,该电能供给系统包括接收输入电能的输入端口,提供输出电能的输出端口,提供电池电能的电池,接受输入电能和电池电能以及提供来自至少电池电能和输入电能之一的输出电能的电路系统,和耦合输入端口,输出端口,电路系统和电池以及被配置用于检测输出电压和输出电流的控制器,耦合输入端口和输出端口之间的旁路装置,旁路装置有开启状态和通过旁路装置输入端口被电耦合到输出端口将输入电能提供到输出端口的闭合状态。控制器被配置用于确定输出电压是否在预先设定范围内,确定在输出端口处是否存在短路,和在没有短路的情况下,如果输出电压处于预先设定的范围之外,控制旁路装置转换到闭合状态。
本发明另一方面集中在电能供给系统,该电能供给系统包括机座,来自电源的输入电能的电能输入端口,为负载提供输出电能的电能输出端口,至少一个安装在机座上和有提供电池电能的电池输出端口的电池模块,至少一个安装在机座上的和耦合接收输入电能的电能输入端口,耦合接收电池电能的电池输出端口,和耦合提供来自电池电能和输入电能中的至少一个中的输出电能的电能输出端口的电能模块,安装在机座上的耦合至少一个电能模块和至少一个电池模块的第一控制器模块,和运行时耦合至少一个电池模块的第一冷启动按钮。电能供给系统被配置,在电能供给下降模式中来自电池中电流为零,电池中没有产生电流,当用户激活第一冷启动按钮时,电能供给系统从电池电能中获得电能。
本发明的另一电能供给系统包括机座,接收来自电源的输入电能的电能输入端口,为负载提供输出电能的电能输出端口,至少一个安装在机座上和有一个提供电池电能的电池输出端口的电池模块,至少一个安装在机座上和耦合接收输入电能的电能输入端口,耦合接收电池电能的电池输出端口,和耦合提供来自电池电能和输入电能中的至少一个中的输出电能的电能输出端口的电能模块,耦合至少一个电能模块的第一控制器,和实质上类似于第一控制器的第二控制器,耦合第一控制器和耦合至少一个电能模块。第一控制器和第二控制器中的每一个包括测量电能供给系统的运行参数的方法,存储被第一控制器测量的和被第二控制器测量的参数。
在本发明另一方面,电能供给系统包括接收来自电源的输入电能的电能输入端口,为负载提供输出电能的电能输出端口,至少一个有电池输出端口提供电池电能的电池模块,至少一个耦合电能输入端口接收输入电能,耦合电池输出端口接收电池电能,耦合电能输出端口提供输出电能的电能模块,耦合至少一个电能模块的第一控制器,耦合第一控制器和耦合至少一个电能模块的第二控制器,和耦合第一控制器,第二控制器和至少一个电能模块,并提供在第一控制器,第二控制器和至少一个电能模块之间双方通讯的通讯总线。电能供给系统也包括设置第一控制器控制通讯总线的方法和当在第一控制器发生故障时,设置第二控制器控制通讯总线的方法。
本发明还有另一方面集中在电能供给系统,包括接收输入电能的输入端口,该输入端口有第一输入相位线、第二相位线和中性输入线,提供输出电能的输出端口,该输出端口有第一输出相位线,第二输出相位线和中性输出线,提供电池电能的电池,和耦合输入端口,输出端口和被配置用于控制电能供给系统从至少一个输入电能和电池电能中的一个提供输出电能的控制器。电能供给系统进一步包括检测第一输入相位线和第二输入相位线之间的输入相位差,和向输出电能提供有实质上等同于输入相位差的输入第一相位线和第二相位线之间的输出相位差。
本发明另一方面的电能供给系统包括接收输入电能的输入端口,提供输出电能的输出端口,提供电池电能的电池,接收输入电能和电池电能以及提供来自至少一个电池电能和输入电能中一个的输出电能的电路系统,和耦合输入端口,输出端口,电路系统和电池以及被配置用于控制电能供给系统的控制器。电能供给系统进一步包括为电能供给系统存储运行设置和比较输出电压与来源于运行设置的上部和下部界限值的水平来确定输出电压是否在预先设定的范围内的方法。
本发明另一方面集中在电能供给系统,包括接收输入电能的输入端口,提供输出电能的输出端口,提供电池电能的电池,接收输入电能和电池电能以及提供来自至少一个电池电能和输入电能中的一个的输出电能的电路系统,和耦合输入端口,输出端口,电路系统和电池以及被配置用于检测输出电压和输出电流的控制器,和在电路系统两端设立旁路来向电能输出端口提供输入电能,检测在电能输出端口处短路和当检测到短路时,旁路不能连通的方法。
本发明还有另一方面是集中在电能供给系统。电能供给系统包括机座,接受来自电源的输入电能的电能输入端口,为负载提供输出电能的电能输出端口,至少一个安装在机座上和有提供电池电能的电池输出端口的电池模块,至少一个安装在机座上和耦合接收输入电能的电能输入端口,耦合接收电池电能的电池输出端口,和耦合提供来自电池电能和输入电能中的至少一个中的输出电能的电能输出端口的电能模块,安装在机座上的耦合至少一个电能模块和至少一个电池模块的第一控制器模块。电能供给系统进一步包括各种耦合第一控制器模块,在没有出现输入电能的情况下,使用电池电能启动电能供给系统的方法。
本发明另一个方面集中在有第一控制器和第二控制器提供对不间断电源备用控制的方法。方法包括使用第一控制器确定与不间断电源运行参数相应的第一套数值;使用第二控制器确定与不间断电源运行参数相应的第二套数值;在第一控制器中存储第一套数值和第二套数值;在第二控制器中存储第一套数值和第二套数值;使用第一控制器控制不间断电源的输出电能;和一旦第一控制器发生故障,使用第二控制器控制不间断电源的输出电能存储第一套数值和第二套数值在第一控制器,存储第一套数值和第二套数值在第二控制器,控制不间断电源使用第一控制器的输出电能,和在第一控制器发生故障时,控制不间断电源使用第二控制器的输出电能。
本发明另一方面是集中在控制不间断电能供给系统的方法,所述不间断电源系统有第一控制器,第二控制器,至少一个电能模块,和耦合在第一控制器,第二控制器和至少一个电能模块之间的通讯总线。该方法包括,使用第一控制器控制不间断电源的输出电能和在通讯总线上通讯,和在第一控制器发生故障时,使用第二控制器控制输出电能和在通讯总线上的通讯。
本发明的另一方面,提供不间断输出电能的方法包括检测在第一相位线和第二相位线之间的输入相位差,和向输出电能提供有实质上等同于输入相位差的第一输出相位线和第二输出相位线之间的输出相位差。
本发明还有另一方面,在不间断电源中控制输出电能的方法被提供。所述方法包括在存储器中为不间断电能供给存储运行设置,和比较输出电压与来源于运行设置的上部和下部界限值的水平来确定输出电压是否在预先设定的范围内。


相应的附图并不是严格按照比例绘制的。在附图中,在各张附图中说明的每一个相同的或几乎相同的部件用相同的数字来表示。为了清楚的目的,在每一幅图中并不是每一个部件都被标记。在附图中图1表示UPS系统现有技术的结构图;图2表示根据本发明的一个实施方案的模块分相位的UPS系统的正面视图;图3表示图2中的UPS系统的功能性的结构视图;图4是使用在图2中的UPS系统的电能模块的功能结构视图;
图5是图2中的UPS系统中的主智能模块和备用智能模块的功能性的相互耦合的结构视图;图6是在至少一个实施方案中使用的冷启动电路功能视图;图7是在至少一个实施方案中使用的限制输入电流的程序的流程视图;图8是一个实施方案中的输出电压和电压界限值的曲线图;图9是在至少一个实施方案中使用的保险丝状况检测电路的功能视图;图10是在本发明实施方案中使用的四象限的电能仪表的功能结构视图;图11是在本发明实施方案中使用的二象限的电能仪表的功能结构视图。
具体实施例方式
本发明并没有将其应用局限于下文中的描述和用于解释的附图中的详细结构和排列的部分。本发明有其他实施方案,而且能以各种方式被实施。同时,在本文件中使用的措词和术语起到说明的目的,不应该视为限制。术语“包括”、“包含”,或“有”,“容纳”,“含有”和在本文件中的变化,是意味着包含其后列明的项目和其中的等同物和额外的项目。
图2表示根据本发明的一个实施方案的分相位UPS系统100的正面视图,和图3表示分相位UPS系统100的功能相互连接的视图。UPS系统100包括大量位于底盘102中的元件。UPS系统主要元件包括电能模块104,电池模块106,交流电分配模块108,通讯模块110,显示器模块112,主智能模块(MIM)114A,和备用智能模块(RIM)114B。在图2中通讯模块是看不见的,但在实施方案中通讯模块被布置在机座上,位于MIM114A和RIM114B的后面。机座后部包括有盲配的连接器的后板,所述连接器用于UPS系统的模块的相互连接。图2显示没有前门的UPS系统100,然而,在其他实施方案中,出于美观的目的,一个或更多的封盖被放置在机座上前端,以保护设备和合适地引导空气流动。
图2和图3中的UPS系统100包括五个电能模块104和四个电池模块。在特殊应用中使用特定数量的电能模块和电池模块由用户以需要的电能和备用时间来选择。本发明的另外一个实施方案,机座可以包括额外的槽,以容纳更多的电能模块和电池模块。更进一步,提供额外电能模块和电池模块的模块机座系统也可以在本发明的实施方案中使用。这样一个模块机座系统被描述在共同待审的题目为“MODULAR UPS”的美国专利申请中,该专利以代理人备审案件目录A2000-700219与本发明申请同一天提交,所述美国专利申请在此并入本文作为参考。
UPS系统100中的相互连接和操作将结合图3中的结构视图在下文中作进一步表述。供给UPS系统的交流电是在输入端口120被接收。输入端口安装在后板上并接近机座的后部。在图3显示的本发明实施方案中,UPS系统被配置作为分相位系统并有四个输入端口121,123,125和127以各自接收输入的相位一(AC-IN1)、输入相位二(AC-IN2)、中性(N,被指定作为在UPS100中的MID)和接地底盘。系统也有四个输出端口129、131、133和135以提供输出相位一,输出相位二,中性和接地底盘。本发明的实施方案并不局限于分相位系统,而更适合的是,特殊的实施方案可以单相位系统以及三相位系统来实现。
输入电能从输入端口到达交流电模块108和经过断路器122和滤波板124。经过滤波板的输入电能通过UPS底板与电能模块104耦合,也与安装在交流电模块上的旁路开关126,旁路继电器128和130耦合。
在UPS维修期间,旁路开关126允许用户在UPS上手动设置旁路电路,以将输入电能从输入端口直接提供到UPS的输出端口。旁路继电器128和130或者被MIM114控制或者被RIM114B所控制,且被用于将UPS的输出端口与输入端口或者电能模块的输出端口耦合。在一般的操作中,旁路继电器128和130被配置用于提供来自电能模块的输出电能,但是,如果检测到发生故障或者超负载,继电器自动切换直接从输入端口提供输出电能。
每一个电池模块被耦合到直流电总线的正极(+BATT)和MID总线134,以向电能模块提供备用的直流电能。直流电总线也被耦合到外部的电池连接器136接收来自外部电池的直流电能。每一个电池模块通过控制和监控线138耦合MIM和RIM。在本发明的一个实施方案中,电池模块可以用智能电池模块来实现,例如,在共同待审的题目为“METHOD AND APPARATUSFOR MONITORING ENERGY STORAGE DEVICES”的美国专利申请中公开的,该专利以代理人备审案件目录A2000-700219与本发明申请同一天提交,所述美国专利申请在此并入本文作为参考。在其他实施方案中,电池模块可以使用对称和对称RM电池模块,该电池从RI西金斯敦的美国电能转换公司得到部分数字SYBATT,SYBT2和SYBT3。
在一个实施方案中的电能模块104实质上相同的,而且每一个都完成在MIM或者RIM控制下的不间断电能供给(没有电池)的功能。显示电能模块中的一个的主要功能结构和内部耦合的电能模块104的功能结构视图表现在图4中。电能模块104包括输入电能平台236,输入电能平台238,控制器240和电池充电电路242。输入电能平台236包括交流/直流变换器244,直流/直流变换器246和控制开关248。
直流电/交流电转换器244接收输入交流电能和转换输入交流电能为直流电能。直流电/直流电转换器246接收直流电池电能和修改电压水平产生直流电能,该修改的电压水平实质上与交流/直流转换器产生的电压水平相同。控制开关248,在控制器240的控制下,当输入电能进入输出平台238,从交流/直流转换器中选择直流电能,或者从直流/直流转换器中选择直流电能。转换到作为电源的电池或者线路的指令能够被每一个电能模块单个实施。输出电能平台238从输入电能平台接收到的直流电能中产生输出交流电能。电池充电电路242产生充电电流,用于来自交流/直流转换器中的直流电能对电池模块106充电。控制器240控制输入电能平台,输出电能平台和电池充电电路的运行。另外,控制器240向MIM114A和RIM114B提供在电能模块中主要的界面。
在图4中显示的电能模块被配置作为分相位单元,用于接收有两个相位和中性输入电能以及在输出端口提供两个相位和中立。在其他实施方案中,电能模块输入端口,电能模块输出端口,或者两者共同都可以被配置用于单相位操作。
通讯模块110在MIM或者RIM之间提供界面,和包括外部控制装置的大量元件,附件卡和显示模块112。在一个实施方案中,附件卡能够使用来自美国罗得岛西部金斯敦的美国能量转换公司的SmartSlot卡片来实施。通讯模块也向MIM或者RIM和用于控制和监控外部电池的外部电池控制器之间提供界面。
显示模块112为UPS系统100提供主要的用户界面。正如上面所讨论的,显示模块经过通讯模块向MIM或RIM发出通讯信息。在一个实施方案中,显示模块包括4×20线的数字液晶显示器,所述液晶显示器有五个键,发光二极管和听得见的警报。液晶显示器被用于显示系统状态,错误报告和模块诊断信息,和提供控制和配置UPS的能力。
MIM114A和RIM114B用于对UPS系统100的控制。主智能模块提供主控制,同时当在主智能模块发生错误时,备用智能模块提供控制。在本发明的一个实施方案中,MIM和RIM是相同的模块,主智能模块或者备用智能模块的指示由其在UPS上的位置来确定,模块本身没有任何区别。在本文件中说明中,对智能模块的编号使用编号数字114,当安装在MIM槽中的智能模块的编号使用编号数字114A和在RIM槽中的智能模块的编号使用标号数字114B。每一个模块包括硬件,软件和韧件,用于使得其能够作为MIM或者RIM运行。在图2中显示的实施方案中,安装在较低位置的智能模块槽中的智能模块被指定作为主智能模块,和安装在较高位置槽中智能模块被指定作为备用智能模块。智能模块有与在机座上连接器紧密配合的输入指定销,用于确定其被安装在两个槽中的哪一个和其是否应当作为MIM或者RIM运行。
本发明实施方案中的MIM和RIM对控制UPS100的操作以图5为参考进行描述,图5显示作为MIM14A功能模块中的一个和其他作为RIM114B智能模块的智能模块功能结构视图。MIM负责控制UPS系统100中的其他模块,和正如图3显示一样,MIM和RIM通过控制/通讯总线耦合到电池模块,电能模块,交流电模块,通讯模块以及冷却风扇。一个控制/通讯总线138显示在图3中,但正如下面描述,本发明特殊的实施方案中,MIM和RIM可以是由许多不同的控制线和总线来实现控制/通讯总线138完成MIM和RIM所有的监管任务。
MIM和RIM可以使用等同的智能模块来实现,和在图5中MIM和RIM的普通元件使用相同的编号数字进行指示,MIM元件包括“A”后缀和RIM元件包括“B”后缀。智能模块包括主处理器256A、256B,控制缓冲电路258A、258B,类似输入/输出测量电路(I/O电路)260A、260B,在智能模块和外部控制/感知/通讯线之间的内部控制线,该内部控制线耦合外部模块到智能模块。内部II总线262A,262B耦合两个智能模块中的处理器和电可擦除只读存储器和也耦合电池模块。外部II C总线264A,264B耦合每一个主处理器和也耦合通讯模块110。在图5中功能结构视图,为了不必要的复杂,在图中整个耦合线的数字不代表在每一个元件固体耦合的数字,只是显示更多的功能性连通。
在本发明的一个实施方案中,主处理器使用16兆赫的XA-S3微控制器来实现,所述微控制器有能够从飞利浦半导体取得零件PXAS30KBA。副处理器使用20兆赫微型芯片PIC17C56A控制器来实现,所述控制器能够从微型技术得到,和电可擦除只读存储器使用从微型芯片技术得到的零件24LC64,8K×8来实现。另外,记忆模块使用硅存储技术SST28F040A512×8Flash和三星公司K6T1008C2E-TB70128K×8静态的RIM来实现。
在UPS100中的MIM中的主处理器起着分配系统结构中的中央处理器的作用。主处理器经过II C总线耦合通信和控制分配处理器。分配处理器包括在MIM中副处理器,在RIM中主和副处理器,和被包括在电能模块中的处理器。在一个实施方案中,在电能模块中控制器中的处理器使用与在MIM中的副处理器使用的微型芯片来实现。在MIM中的主处理器也与包含在外部II C总线上的外部电池机座上处理器相通讯。
在MIM中,主处理器提供对副处理器的主要控制和提供控制、监控和不定时的紧急功能状态报告,包括经过通讯模块向显示模块和耦合到通讯模块上的任何外部装置报告状态。在MIM中的主处理器也作为控制内部II C总线和外部II C总线运行,和负责保持在电可擦除只读存储器254A和在存储器256A中的UPS设置状态。
在MIM252A中的副处理器被用于控制和监控在UPS系统100中更多时刻紧急功能。副处理器252A调节输出电压,频率和相位;监控输入电压,频率和相位;监控电池电压和提供旁路控制。副处理器也提供关于UPS中的操作MIM中的主处理器的数据。另外,当智能电池模块被使用时,在MIM中的副处理器与一半的电池模块保持通讯联络,这时在RIM中的副处理器和其他一半的电池模块保持通讯联络。
在RIM中的主处理器250A提供与在MIM中主处理器本质上相同的功能,例外情况是如果MIM发生故障和控制信号不能传送到RIM时,在RIM中的主处理器并不作为内部和外部II C总线的总线管理者。也正如下面描述,如果RIM出于控制之中,来自RIM到通讯模块的控制信号仅仅通过通讯模块起作用。
在RIM中副处理器提供与MIM中副处理器本质上相同的功能。副处理器254B监控UPS的状态,向UPS 100中的模块提供信号和向RIM中主处理器提供数据。正如下面所描述,仅仅当RIM出于控制之中,RIM中的副处理器产生的控制信号才起作用。
为了讨论的目的,MIM和RIM中的功能和来自MIM和RIM中的控制和通讯信号能够聚合在下面功能组中,UPS运行参数的状态的监控,感知和传递通讯的电池模块,有MIM和RIM发出数字控制信号,在MIM和RIM和电能模块之间的连通;在MIM和RIM和连通卡之间的传递通讯;在MIM/RIM和外部电池处理器之间的传递通讯;和在MIM和RIM之间的直接传递通讯。在本发明实施方案中,控制方案已经被实现允许,一旦MIM发生故障,MIM完成上面列表的功能和迅速转换到第二等同的RIM。
在图5中的结构视图,四个状态控制线266被显示耦合MIM和RIM以及耦合被确定为UPS感知和监控电路268的功能块。控制线266耦合MIM和RIM中的I/O电路260A和260B,允许MIM和RIM同时感知和测量出本发明实施方案中的各种UPS参数。这些包括输入和输出电能,电流,电压,频率和相位,内部温度,和电池总线电压。另外,状态控制线被用于监控电扇的运行,电路的断路器,和旁路开关和继电器的位置。从接收来自感知线266中感知数据,在I/O电路260A和260B中的电路调整信号并将它们发送到副处理器252A和252B或者主处理器250A和250B用于处理。这种方式中,MIM和RIM都独立的监控UPS 100现有的状态和运行情况。
在本发明的一个实施方案中,UPS 100能支持16个内部电池模块。在这个实施方案中,电池模块中8个通过通讯总线270A与MIM传递通讯和8个通过通讯总线270B与RIM传递通讯。使用上面所描述的状态监控线266来测量电池电压,使用通讯总线270A和270B获得额外的电池模块信息,和在一个实施方案中,使用智能电池模块,通讯总线270A和270B被用于提供向电池模块提供直流电压和向电池模块传递数据。关于电池模块的数据通过II C总线262A,262B在MIM和RIM之间保持传递。
在图5中,副处理器252A和252B提供数字控制信号被认做为控制线控制在UPS中大量功能的运行。这些运行包括旁路继电器和电能模块充电和放电的控制。这些控制信号被MIM和RIM中的副处理器单独产生,在本发明的一个实施方案中,缓冲器电路258A和258B被使用仅允许来自MIM和RIM中的一个的控制信号传送到正在受到控制的模块中。另外,在一个实施方案中,附加的由主处理器产生的能使UPS从电池模块中的电能冷启动的冷启动控制信号也由缓冲器电路258A和258B。
每一个缓冲器电路258A和258B被配置接收来自属于智能模块以及来自其他智能模块的能动信号,确定是否传送控制信号。如果缓冲器电路在MIM中,且MIM在运行,那么缓冲器电路的输出端口驱动的。如果缓冲器电路在MIM中,且MIM没有完全运行,那么缓冲器电路的输出端口是不被驱动的。如果缓冲器电路在RIM中,且MIM在运行,那么输出端口是不被驱动的,如果缓冲器电路在RIM中,且MIM没有完全运行,那么缓冲器电路的输出端口被驱动。
在一个实施方案中,每一个缓冲器电路有两个驱动的输入端口,该输入端口的状态被用于为了控制线授权输出端口。经授权的输入端口中的一个耦合在其他智能模块中的缓冲器电路的输出端口,其他经授权的输入端口耦合包含缓冲器的智能模块里的模块状态信号。模块状态信号如果为“真”表明智能模块是“正常”的。缓冲器被配置授权输出端口,如果模块状态信号被接收(且为“真”)在来自其他缓冲器的控制信号被接收之前。
一旦开始启动,两个智能模块都确定其是否安装在MIM槽还是在RIM槽。如果智能模块安装在MIM槽,模块为“正常”,那么在没有或者几乎没有延迟,模块状态信号被设置为“真”。如果智能模块安装在RIM槽,模块为“正常”,那么在大约一秒钟时间的延迟之后模块状态信号被设置“真”。延迟被设置足够长以确保在RIM中的模块状态信号将MIM处于控制之中之前,来自MIM钟的缓冲器的控制信号被RIM钟的缓冲器接收。如果MIM没有完全运行,那么在RIM中的缓冲器在接收来自MIM中的信号之前,将接收其模块状态信号,以及在RIM中的缓冲器将授权其输出端口。如果在UPS 100运行期间,在MIM中发生错误,那么模块状态信号将不再为“正常”,控制信号的控制将切换到RIM。
另外,上面所描述的控制信号,在MIM和RIM中的副处理器通过I/O电路系统260A,260B向电能模块提供控制信号274A和274B来控制电能模块输出电能的幅度、频率和相位。每一个MIM和RIM提供控制信号控制电能模块的输出电能,每一个MIM和RIM也提供状态信号表明智能模块是否为“正常”。如果MIM状态为“正常”,那么电能模块将使用MIM控制信号控制输出电能。如果MIM状态信号不为“正常”和RIM状态信号为“正常”,那么电能模块将使用RIM控制信号。如果两个状态信号均不为“正常”,那么电能模块将不能使用MIM控制信号在本发明的一个实施方案中,与MIM和RIM之间的外部传递通讯是经过通讯卡110,该通讯卡提供在线276A和276B上的格式为RS-232。每一个MIM和RIM中的主处理器通过通讯卡可单独的努力与设备传递通讯。在本发明的一个实施方案中,通讯卡被配置接收来自MIM中状态信号表明MIM是否为“正常”。如果MIM为“正常”,那么通讯模块仅将来自MIM的通讯传送到耦合通讯卡的模块中。如果MIM不为“正常”,那么通讯模块传送RIM的通讯。从显示器和任何其他模块到通讯卡的数据同时传送到MIM和RIM,允许两者通过通讯卡监控状态和接收用户设置。
正如上面所讨论的,MIM114A和RIM114B包含两个II C总线262A,262B和264A,264B。II C总线是根据菲利普半导体制造商制定的工业标准来执行的双线串连总线。内部II C总线262A,262B被用于在MIM和RIM中处理器,在MIM和RIM中的电可擦除只读存储器和在电能模块中的处理器之间的通讯。在MIM中的主处理器运行作为两个II C总线的控制器,一旦MIM发生故障,在RIM中的主处理器作为总线的控制器承担控制的作用。内部II C总线被MIM中的主处理器用于与其他每一个处理器传递通讯和收集状态信息。还有,在有电可擦除只读存储器的MIM中主处理器存储和包含UPS 100的状态信息和设置。
在本发明的一个实施方案中,继电器280A和280B安装在智能模块中的内部II C总线。每一个继电器由在包含有继电器的智能模块中的主处理器控制。继电器被用于分隔内部II C总线与在智能模块外部的元件,和继电器允许在安装在RIM槽中的智能模块的主处理器与安装在RIM中的电可擦除只读存储器传递信息或者完成其自己的II C总线和装置的自我诊断的检测。正如上述所描述的,II C的实施仅有一个能够控制总线通讯的控制装置,和在运行中的MIM中主处理器担当总线控制者。在RIM中,主处理器250B能够与电可擦除只读存储器254B传递信息或者通过开启继电器280B来完成II C的自我检测,声称自己作为在RIM114A中的II C总线控制者,然后通过II C总线262A传递信息。一旦通讯完成,主处理器250B关闭继电器。
外部II C总线264A,264B被使用允许在MIM或者RIM中的主处理器与安装在外部的电池机座上的处理器连通通讯。在通讯模块包括开关,该开关耦合外部II C总线到MIM外部II C总线264A或者RIM外部II C总线264B。开关的状态由MIM发送到上面所描述的通讯模块的MIM状态信号所确定。在通讯模块上的开关允许在MIM或者RIM中主处理器成为外部II C总线的总线控制者,依靠智能模块的运行状态像MIM一样成为外部II C总线的总线控制者。
正如上面所描述的,大量不同的控制方案被使用,允许MIM和RIM都监控UPS的状态,允许MIM和RIM中的合适的一个控制UPS,允许MIM和RIM都接收来自显示器模块或者通过通讯模块与UPS传递信息的外部装置用户的指令。在本发明的一个实施方案中,MIM和RIM相互传递信息来监控相互的状态和相互提供UPS的数据。
在每一个智能模块114A,114B,电可擦除只读存储器被用于存储UPS的设置和参数,在每一个模块中的主处理器接近电可擦除只读存储器来获得在开始启动方面的信息。在本发明的实施方案中,电可擦除只读存储器可以被用于存储系统运行时间数据,用户输出电能设置,硬件校准常数,用户密码信息以及其他用户错误设置。
每一个智能模块也包括随机存储记忆器256A,256B。随机存储器被用于存储从电可擦除只读存储器获得的运行设置和关于UPS运行的电流数据,包括从各种感知线获得的数据和被副处理器和主处理器计算出来的数据。在本发明的一个实施方案中,在每一个智能模块中的随机存储记忆器包含两套数据,一套数据由在同一个电池模块中的主处理器提供,和一套数据由在UPS中的其他智能模块中的主处理器提供。正如上面描述的,MIM和RIM中的每一个耦合到UPS感应线,和因此能独立的确定UPS的状态。两套数据的用途是允许MIM和RIM比较数据和如果在两套数据中有重大区别,提醒用户可能出现错误。
内部II C总线也被用于确保,当用户的配置数据变更时,存储在电可擦除只读存储器256A和256B中的数据保持一致。每一个MIM和RIM接收从通讯模块的用户更新信息,和在一个实施方案中,无论当在用户的配置设置发生如何变化,可使用在电可擦除只读存储器中的更新的数据。在这个实施方案中,确保电可擦除只读存储器的数据是相同的,仅MIM中更新的数据被用于在MIM中的电可擦除只读存储器254A和在RIM中的电可擦除只读存储器254B。在一个实施方案中,在MIM中的主处理器250A通过内部II C总线接近在RIM中的电可擦除只读存储器254B来向电可擦除只读存储器254B提供更新的信息。
还有其他实施方案,为了防止发生错误的MIM向电可擦除只读存储器254B输入错误的数据,电可擦除只读存储器254B采用输入保护以防止MIM直接将数据输入到RIM中的电可擦除只读存储器254B。当在MIM中的主处理器250A为RIM中的电可擦除只读存储器254B更新数据,主处理器250A通过内部II C总线262A向在RIM主处理器250B发送数据。然后,在RIM中的主处理器250B打开继电器280B来隔离II C总线262B与II C总线262A,以允许主处理器250B作为总线控制者在运行,和向电可擦除只读存储器254B输入。一旦向电可擦除只读存储器254B数据的输入完成,继电器280B闭合,和主处理器250A在此变为被包含在II C总线262A,262B中的总线控制者。
在UPS开始启动和在运行过程中,大量的程序跟随以确保在机座上的MIM和RIM槽中的智能模块完成上面所描述的MIM和RIM的功能,和确保当MIM发生故障时,对UPS 100的控制能容易的从MIM和RIM传送到。耦合在MIM和RIM之间的控制信号272被用于建立和传达MIM和RIM之间对UPS的控制。这些信号的表示法和功能的说明提供在下面的表格I中。
表格IMIM/RIM控制信号

一旦开始启动UPS系统100,在信号IM0_1状态的基础上,智能模块确定在其被安装在UPS机座的哪一个槽上。开始的时候,继电器280A和280B是出于打开位置用于防止II C总线,直到MIM和RIM的运行状态终止。
智能模块经历自我检测程序,如果成功,每一个模块将设置IM_OK信号为“真”,向通讯模块和电能模块提供控制信号以表明MIM出于运行和控制状态。另外,在MIM中的缓冲器258A将有正如上面所描述的被授权的输出端口,提供来自缓冲器258A的控制信号以及关闭在RIM中的缓冲器258B的输出端口。当继电器280A和280B打开时,主处理器250A和250B读取与其相连的电可擦除只读存储器256A和256B为UPS获得配置信息。然后,继电器关闭,在MIM中的主处理器变为对内部II C总线262A,262B的总线控制者。
如果在开始启动的过程中,MIM发生故障,然后RIM将不会接收来自MIM的IM_OK信号,以及RIM将处于UPS 100的控制之下。在这种情形下,主处理器250B作为内部II C总线的总线控制者在运行,通讯模块和电能模块对收到来自RIM的信号发生反应。另外,缓冲器258B将有自己的授权输出端口来提供来自RIM的控制信号。
在UPS的运行中,在MIM和RIM中副处理器不间断完成脉冲pong运行,主处理器监控处理器的正常状态。在一个实施方案中,这种过程由主处理器发送“0”到副处理器,和副处理器反馈“0”组成。然后,主处理器发送“1”,同时副处理器反馈“1”,在主处理器出于变化状态和副处理器跟随输入状态,这种过程将继续。如果在这个过程中,主处理器和副处理器检测到错误,然后错误被检测到,IM_OK线被设置到错误状态。到电能模块的控制信号也被改变表明智能模块发生故障,如果发生故障的智能模块在MIM中,到通讯模块的状态控制信号也将被设置为错误状态。
如果MIM发生故障,那么RIM检测到这个发生故障,当IM_OK线处于错误状态,RIM以正如上面所描述发生在启动时的相似的方式接替MIM的运行。当在MIM槽中发生故障的智能模块被运行的智能模块所代替,然后它通过II C总线向RIM发送请求以保证对UPS的控制。在接收到请求之后,在RIM中槽中的智能模块将放弃控制,一旦在MIM中的智能模块发现控制已经被放弃,它将声称到电能模块和通讯模块的控制信号完全重新继续控制UPS。
在UPS系统100的一个实施方案中,目前被描述的特征被合并在UPS中以防止在无交流电的电能下降模式下使用电池启动,电池泄漏的发生。在现有的UPS系统中,在无交流电能下降模式下,逻辑电路有代表性的继续接收来自电池中的电压来允许电路检测用户对冷启动的要求。还有,在有代表性的现有UPS系统中,在电能下降模式过程中,电容器和其他装置并联在电阻上,因此导致电池缓慢泄漏。
在本发明的UPS系统的实施方案中,继电器和半导体开关被用于隔离电池与任何电阻耦合,包括电热器,和在无交流电的电能下降模式下,所有的逻辑电路电能下降,以防止电池泄漏。为了允许UPS在这种模式下被充电,冷起动电路已经被增加到电能模块和智能模块上。图6表示冷启动电路和在智能模块114和电能模块104上执行的控制信号的功能视图。正如上述所讨论的,在本发明的实施方案中,普通智能模块被用于MIM和RIM,被显示在图6中的智能模块是使用作为RIM和MIM的智能模块114的配置的代表。
在图6中显示的部分智能模块,包括主处理器250,推动按钮开关302,辅助的电能补给304,电阻器306-316,晶体管324-329,二极管331,332和333,连通逻辑电路334。在一个实施方案中,推动按钮开关被安装在智能模块(MIM和RIM)的前面,和在UPS前门被移动时,很容易被用户接近。在图6中表示的部分智能模块包括辅助的电能供给340,晶体管342,344和346,电阻器350-356和二极管360。
UPS 100以电池的冷起动开始于用户激活在MIM和RIM前面的推动按钮开关302中的一个。在一个实施方案中,开始冷启动,操作员保持按钮处于被按状态达大约两秒钟的时间。开关的激活引起电流流经开关通过电阻307,308和309,连通晶体管324。当晶体管324连通时,电池电压被施加在辅助电能供给304,所述辅助电能模块304为在智能模块开始运行的电路,包括主处理器,启动产生逻辑电压。一旦辅助供给正在运行,通过电阻310,5伏电压施加在晶体管325以连通晶体管325的方式,通过使用偏电阻311和312连通晶体管326。当晶体管326连通时,然后为了感知和处理,电池感知信号被提供给主处理器。在电能下降模式下,晶体管325和326隔离这样的感知信号。
主处理器把逻辑信号LPOFF应用于连通逻辑电路334。对信号LPOFF的反应,通过电阻306和二极管332,电压被施加在晶体管327上用于连通晶体管327。当晶体管327被连通,在推动按钮开关上的电压被接地,在此时,用户能断开推动按钮开关,因为它被锁在地面上。
主处理器检测到目前没有交流电和必须使用电池启动。主处理器然后设置信号LPON PSD高,即通过晶体管328和329,电阻314,315和316以及二极管333设置输出信号LPON到12伏。信号LPON被送给每一个电能模块和其他智能模块,以通知这些每一个模块来自电池的冷起动将要发生。在智能模块,信号LPON被接收或者在相同引线上传达,取决于特殊智能模块是否是其推动按钮被用户激活的一个。当LPON信号被智能模块接收,信号通过二极管331和电阻313连通晶体管327。当晶体管327被连通,智能模块以上面所描述的相同方式充电。
在电能模块上,LPON通过二极管360和电阻350施加在晶体管342上并连通晶体管342。晶体管342的连通,有偏电阻352,353,354和355,引起晶体管344和346连通。一旦晶体管344和346连通,电池电压被施加在电能模块上的电路,包括辅助电能供给340和在电能模块上的处理器,这能在II C总线上与MIM上的主处理器传递信息。
上面所描述的电能下降和冷起动电路比具有代表性的现有技术UPS系统有重要的优点。继电器和晶体管的使用隔离电阻装置,以防止电池的泄漏,和被描述的冷启动电路的使用的方式能够使利用电池冷启动,而不需要保持会导致电池泄漏的逻辑电能被充电状态。
本发明还有另外的实施方案,输入电流管理方案在UPS 100中被执行,使得UPS 100以低输入交流电压模式运行,而不需要切换到电池模式上。正如人们所知道的,在典型的电子装置中,包括UPS的装置,当装置能够得到的输入电压降低时,典型的原因为输入电能问题,装置的电流的移动上升以保持输入电能在大致相同的水平。如果电流移动增加太大,在UPS中的电路断路器或者在对UPS的供给上可能会断开。在典型的UPS的装置中,如果输入电压降低到低于预先设定的水平,UPS将切换到电池模式上,和关闭输入交流电。这造成当交流电能够得到,但是并不处于足够高的电压水平,不得不运行电池(有限的电池运行时间)的缺点。
在本发明实施方案中,智能模块被计划用于检测低输入电压(造成高输入电流)情形,和减少UPS整个的电流移动使得低输入电压UPS运行而无须担心断开电路断路器。在本发明一个实施方案中被使用于完成这个功能的程序现在讲被描述在图7中作为参考,这显示电流减少程序400流程图。在这个程序中的点402上,输入电压被在MIM(或如果MIM发生故障的RIM)中的副处理器检测和转送到主处理器。在确定块404,输入电压与预先约定的界限值相比较。如果输入电压高于该界限值,那么程序400运行到点402。
如果输入电压小于预先设定的界限值,程序进入到点406,输入电流被检测和与预先设定的电流界限值标准比较。如果电流小于界限值,程序返回到点402,如果电流大于界限值,程序进入到电流较少计划被完成的点408。在本发明的一个实施方案中,为了减少输入电流,在智能模块上的主处理器在控制过程中向电能模块上的控制器发送指令减少对电池的充电电流。减少的数量可以是固定值或者能够在UPS 100上的输入端口的电流数量基础上被确定。还有在不同的实施方案中,如果在输入端口的电流过度高,为了一些或所有的电能模块,充电电流能够被减少到零。
电流减少计划在点408处被实施后,程序进入到点410,在这里电流再次被确定和与界限值进行比较,来确定在电流的进一步减少程序是否需要。如果确定块410的输出为“是”,那么程序为了输入电流进一步的减少进入点414。如果确定块410的输出为“否”,那么程序进入点412,在这里需要进一步电流的减少或者允许UPS移动额外的电流任何输入电压和电流变化被监控。
在本发明上面所描述的电流减少计划中,对电池模块的充电电流被减少以允许UPS在低电压下运行。在其他的实施方案中,在UPS的其他非临界运行可以被关闭或者被衡量后返回减少到UPS的输入电流。
正如上面说描述的,UPS 100可以是分相位的UPS,所述分相位的UPS能够使用输入电能系统的两个输入相位进行充电,和能够提供两个输出相位。对于北美申请,输出电压被设置为208伏(相位对相位),输入相位典型是相位线的一条对另一条偏移120度。在分相位UPS系统中,当UPS旁路开关被激活时,需要提供输出相位与输入相位相匹配以向负载提供平稳的电能转换。在典型的UPS系统中,相位线的匹配被电工在安装的时候人工完成。
现在将要描述的,在本发明UPS系统的一个实施方案中,相位线匹配由UPS系统本身完成。正如上面所描述的,感知线耦合从在MIM和RIM中的I/O电路260A,260B到输入电能线9(看图5)。在一个实施方案中,I/O电路包括零-交叉检测电路被用于耦合副处理器来测量在输入相位之间的原始相位角度。实际稳定的相位角度由在MIM和RIM中的主处理器来确定。在MIM(如果MIM在运行中和处于控制中)中的主处理器使用II C总线收集来自MIM副处理器的原始相位角度数据。还有,在MIM中主处理器将原始相位角度数据在II C总线从MIM中副处理器转移到RIM中主处理器。如果在MIM槽中的职能模块不在运行的过程中,那么在RIM槽中智能模块的主处理器将成为总线的控制者,以及将原始相位角度数据从RIM副处理器转移到RIM主处理器。
主处理器每500毫秒接收原始相位角度数据直到十次有效的读取发生。如果内部相位锁环已经调度和被检测的角度值是120度,180度或者负120度加上或者减少大约22度。三个不间断的无效的读取将重新设置有效读取值为零。主处理器计算在输入相位之间实际的相位角度作为十次原始读取的平均值。每一个主处理器把其计算的相位角度传递给其相连的副处理器。副处理器向电能模块提供控制信号来控制电能模块产生有与输入电压相位相匹配的输出电压。自动相位检测的使用终止现有技术系统使用电工以试错的方式提供匹配的需要。
正如上面所描述的,在UPS 100中,防止UPS提供指定的输出电能的UPS元件发生故障时,旁路继电器能够被激活来直接耦合UPS的输入端口到输出端口,因此在UPS中设置旁通。在典型的UPS系统,被补充上下限幅器比较仪的硬件被用于比较输出电压波形上部和下部界限值的限度,这确定可接受的输出电压上下限幅器。对于UPS系统被配置用于以多样的输出电压下运行,当输出电压设置改变时,硬件设置,搭接片,元件或者转换器被改变以适应上下限幅器比较仪。
在本发明中至少一个实施方案中,上下限幅器比较仪在UPS中智能模块的软件中被实施。通过实施在软件中的上下限幅器比较仪,界限值限度能够被程序所定义和被智能模块主处理器使用在电可擦除只读存储器254A中存储的标度常量来纠正。除了比较单个电压上部和下部界限值限度,更加全面的模块被用于提供更加选择性的和智能性的比较。在本发明的一个实施方案中,设计的界限值包括表格2中的确定的值。
表格2上下限幅器比较仪被存储的数值

实施的UPS 100上下限幅器比较仪的软件正如下运行。正如上面所讨论的,UPS输出电压和电流值被智能模块的副处理器感知。建立在从主处理器中接收设计的界限值(表格2),副处理器设置电压上部和下部界限值标准和比较输出电压波形与界限值。图8显示输出电压沿着上部界限值504和下部界限值506的绘图。在一个实施方案中,输出电压的测量每线圈完成32次。每一个副处理器将经检测的输出电压波形与界限值进行比较和,也显示在图8中产生被确定为Turbo原始信号508,当输出电压低于下部界限值和高于上部界限值,改变状态。
图8也显示的是延期信号510,被确定为Turbo_Out。Turbo_Out信号建立在Turbo原始信号和Turbo_drop_count数值的基础上。由于大量的读取,如果Turbo原始信号低于或者等于Turbo_drop_count数值,Turbo_Outxinaho仅改变状态。延迟信号的用途在于防止由于在输出电压短的瞬间现象UPS 100发生关闭。在本发明的一个实施方案中,为了实现延迟,计数器在每一个测量点增加计数,该每一个测量点的测量信号在上下限幅器比较仪之外,和计数器在每一个测量点减少计数,该每一个测量点的测量信号在上下限幅器比较仪之内,而没有处于零以下或者比Turbo_drop_count数值更大。这个计数器的使用将引起Turbo_Out信号来检测在输出端口重复发生的瞬间现象。无论计数是否等同于Turbo_drop_count,那么Turbo_Out信号被激活,表明主处理器电压处于容许的范围之外,主处理器能够激活旁路继电器耦合UPS的输入端口直接到输出端口。在本发明的一个实施方案中,被引导进入多位相位系统的UPS中,在两个输入相位的电压都被使用上面所描述的程序所监控。
上面所讨论的UPS的输出端口为了设定的容许情形之外的软件可调节参数的使用有几个优点,包括改变输出电压而没有改变搭接片或者其他硬件的能力,和为了以实时的方式允许UPS在不可靠的电能特征地区更加有效的运行瞬间的调节界限值和滤过的参数和使用存储在电可擦除只读存储器标度常量纠正界限值的能力。还有,正如现在将要描述的,设计的电压/相位上下限幅器比较仪的使用允许本发明的实施方案提供改进的输出断路电路检测和关闭系统。
在典型的UPS系统中,当在输出端口发生短路电路时,在输出端口的电压下降将被检测,系统将转换到旁路模式,潜在的将短路并联在输入电线上。然后,短路可以引起巨大电流出现,这将导致电路断路器容易断开,也容易关闭UPS和可能的其他设备。
在UPS系统100的至少一个实施方案中,短路检测和保护被提供。正如上面所讨论的,当界限值外的输出电压被检测出,Trubo原始信号的状态被改变。在这个实施方案中,当Trubo原始信号处于低的情形,输出电压的数值被与Trubo_band_short_Ckt的数值比较来确定输出电压是否比输出短路电压更低。在一个实施方案中,这个电压被设置大约为需要输出电压的8%。在分相位系统中,两个相位的输出电压差与Trubo_band_short_Ckt相比较。如果输出电压低于Trubo_band_short_Ckt,那么输出电流被与Turbo_Band_Short_Cht的数值相比较,看输出电流是否比被为短路所设置电流更大。如果输出电流比Turbo_Band_Short_Cht更大,那么副处理器确定短路已经发生,以及在延迟期间过去前,使Turbo_Out丧失,以防止系统转换到旁路模块。为了处理好短路,在电能模块的逆变器下提供过电流保护,这被设计提供在最大电流数值的电流在比预先设定的期限更长,即在一个实施方案中相当于四秒钟。当短路被检测出,为了短路回路消失,副处理器将等候四秒钟,如果短路回路在四秒钟不消失,那么电能模块被关闭以分离短路的电压。
被使用在本发明实施方案中短路保护向UPS 100的读取而免于受到短路的破坏,和防止当短路在UPS的负载中发生时,在为UPS的电能系统中的电路断路器断开。
本发明的一个实施方案中,现在将要以图9为参考被描述,另外提供UPS的输出端口的短路的检测,为了在电能模块的运行期间的不间断,被提供在电能模块检测电路560允许在每一个电能模块中输出保险丝被检测。在人们所知道的UPS系统电能模块中,通过打开在保险丝与输出端口之间的继电器,输出保险丝典型的仅在自我检测模式下被检测,在保险丝的输入端放置检测电压,和检测在保险丝输出端口处的检测电压。
图9时功能结构视图,显示了一个输出相位的输出电路562和电能模块104中的保险丝检测电路560。输出电路652包括有电容器564的输出过滤器和感应器566,保险丝568,输出继电器569,感知电阻器570,572,574和576和输出端口577。在电能模块中,输出逆变器向输出滤波器提供输出,该滤波器在输出端口577滤波电能和提供电能。
检测电路包括逆变器582,放大器584,比较仪586和两个开关588和590。检测电路有两个运行模式,在该模式中保险丝568的状态被检测,一个在自我检测的模式和一个在通常运行过程中的模式。
在自我检测模式中,继电器569被打开和来自电能模块控制器的MEC_1信号被设置高,连通开关590。当开关590被连通,SREF_2信号在开关590的输出端口被提供。信号SREF_2是被电能模块控制器产生的参考正弦波形信号,在自我检测模式中被用作正弦参考信号来控制电能模块的输出。开关590的输出端口耦合比较仪586的一个输入端口。比较仪586的其他输入端口通过电阻器574和576耦合到保险丝568来采样在保险丝输出端口的电压。如果被采样的输出信号实质上与SREF_2信号相匹配,那么来自比较仪586的保险丝OK信号将为高表明保险丝是正常的。如果保险丝被打开,那么比较仪586的输出将为低表明保险丝需要更换。
在自我检测模式中,电能模块的输出信号使用发生错误信号来控制,被确定为Local Prime Bus,建立在有SREF_2信号的保险丝输出端口上的被采样的信号的比较基础上由放大器584产生。在运行的普通模式过程中,由于电能模块的输出被智能模块所控制时,信号Local Prime Bus并不被使用。
在运行的普通模式上,继电器569关闭和保险丝输出状态被确定如下。在运行的普通模式上,信号MEC_1是低,断开开关590和连通开关588。开关588的输入端口耦合在保险丝568的输入端口处提供采样电压的放大器584的输出端口。开关588的输出端口耦合比较仪586。在运行的普通模式上,比较仪586将保险丝输入端口的电压与保险丝输出端口的电压进行比较,如果两者电压实质上是相同的,表明保险丝是正常的,那么Fuse_OK将被设置为高。如果到比较仪586的两个电压实质上不相同,那么Fuse_OK将为低表明保险丝需要更换。本领域内普通技术人员所熟知的那样,比较仪和放大器可以包括放大/变小状态来确保当保险丝正常时,在比较仪586被比较的信号处于相似的水平和相位。
在上面所描述的实施方案中,普通电路系统被用于控制电能模块的输出和检测在自我检测模式和在普通运行过程中保险丝输出状况的检测。在一些举例中,当多个电能模块被使用,保险丝的输出端口的电压可以其他电能模块产生的电压所影响,和为了获得保险丝状态的精确检测,有必要每一次运行一个电能模块。
在本发明的实施方案中,智能模块测量UPS的输出电能,和使用这些测量来检测UPS中的故障,另外,当在电能模式下运行中,这些测量被用于确定UPS剩下的运行时间。在单相位UPS系统中,当输出电压和电流有相同的极性,电能的测量能够典型的被使用两象限的电能仪表,其能够测量电能,这是单相位系统典型例子。在分相位系统中,取决于负载的需要,UPS的负载可以耦合相位1和中线之间,在相位线2和中线之间,或者在相位线1和相位2之间。这些负载耦合可以造成无功功率,即由于输出电流和电压一个或者两个相位有相反的极性造成无功功率。为了获得准确的电能读取,无功功率应当从整个电能读取中扣除。在本发明下面所描述的一个实施方案中,为了精确测量分相位UPS系统中每一个输出相位的输出电压,智能模块包括两个象限电能仪表。
图10表示在一个实施方案中的四象限电能仪表600的结构视图,被用于在智能模块的I/O电路中来测量每一个输出相位的输出电能。一个电能仪表被用于每一个输出相位的测量。电能仪表600包括第一输出端口602来接收输出电流信号和第二输入端口604来接收输出电压信号。电能仪表也包括电流整流器610,逆变器612,晶体管618和620,极性检测器622,差别检测器,电压整流器626,脉冲幅度调制器电路628,二极管630和632,平均滤波器634和输出端口636,提供一个与瞬间电能水平成比例的电压水平的直流电信号。
在运行中,来自输出相位中的一个的输出电流和电压被智能模块所感知和被提供在电能仪表600的输入端口602和604。电流整流器610整流电流信号产生全波性整流信号614。逆变器612接收到经整流的电流信号和提供经变极的全波形整流电流信号616。经整流电流信号被提供到晶体管620的输出端口,经变极的整流信号被提供到晶体管618的输入端口。
输出电压在电压整流器626处被整流产生全波形整流信号和被脉冲幅度调制器电路628。转换成脉冲幅度调制信号。脉冲幅度调制器电路提供采样比例取决于信号的电压水平的脉冲幅度调制信号。脉冲幅度调制器电路输出端口被安装在两个二极管630,632的输入端口位置。输入电压信号和电流信号也被提供到极性检测器电路622的输入端口。极性检测电路包括一对比较仪623和625,当输入信号是正极时,每一个比较仪在其输出端口提供高信号和当输入信号是负极的,每一个比较仪在其输出端口提供低信号。比较仪623和625的输出信号被送到差别检测器624。差别检测器包括两个提供补充输出的控制极627和629。当输入电压和电流信号的极性是相同的,控制极627的输出为高,和当输入电压和电流信号的极性是不相同的,控制极627的输出为低。当输入电压和电流信号的极性是不相同的,控制极629的输出为高,和当输入电压和电流信号的极性是相同的,控制极629的输出为低。
当控制极627的输出信号是低的,控制极627的输出信号与经过二极管630的脉冲幅度调制信号合并连通晶体管618。当控制极629的输出信号是低的,控制极629的输出信号与经过二极管632的脉冲幅度调制信号合并连通晶体管620。当输入电压和电流有相同的极性时,在使用晶体管620,电压脉冲幅度调制信号被经整流的电流信号放大。当输入电压和电流有相反的极性,使用晶体管620电压脉冲幅度调制信号被逆变器和整流的电流信号放大。
晶体管618和620的输出信号被输入到平均滤波器634,这提供了与瞬间电能成比例的电压水平的直流电信号。在一个实施方案中,输出滤波器是使用低传送滤波器采用与输出线频率大致相当的切断频率的方式来实施,以致在一个线路周期中,输出电能是有效的平均电能。输出电能信号被输入到类似主处理器中数字转换器的整体中。
本发明的实施方案利用了图10中的四象限电能仪表,在分相位UPS系统中提供精确电能测量使得允许计算出精确的电池运行时间。
在本发明的一个实施方案中,除了上面所描述的四象限电能仪表,每一个电能模块还包括测量电能模块的输出电能以确保输出电能没有超过电能模块的额定功率的二象限仪表。人们所熟知的现有技术中单相位系统的电能模块包括当电流和电压都是正极时仅有单个象限电能仪表在运行。正如上面所描述的,在分相位系统中,当电压时正极时,输出电流可以为正极或者为负极,因此,需要的说明的是在UPS系统中正极和负极电流都有分相位输出。
电能模块二象限电能仪表700现在将以图11作为参考来描述,其表示电能仪表的功能性结构视图。二象限电能仪表包括电流输入702,电压输入704,脉冲幅度调制器电路706,第一开关708,第二开关709和第三开关710,反相器712,电阻器714和716,电容器718,输出缓冲器720,和提供输出电能信号的输出端口。
在电能仪表700中,输入端口702接收代表电能模块输出电流的信号,输入端口704接收代表电能模块输出电压的信号。对于正极输入电压,脉冲幅度调制器电路706以20千赫速率提供的有与输入电压成比例脉冲幅度的采样脉冲幅度调制信号。对于负极输入电压,脉冲幅度调制器电路的输出保持低。脉冲幅度调制器电路的输出被提供来控制开关708的输入和开关708的输入接收输入电流信号。开关708的输出有效提供被来自脉冲幅度调制器电路的脉冲幅度调制信号调制的电流波形。
在脉冲幅度调制信号的正极脉冲中,通过电阻器714,电容器718被电流信号充电。在脉冲幅度调制信号断开期间(在脉冲之间),开关708打开,开关710连通,电容器718通过电阻器714放电。相应地,在电容器718两边的平均电压是脉冲幅度调制信号和输入电流水平频宽比的函数并与电能成比例。在电容器两边的电压被输入到缓冲器720,缓冲器720的输出端口耦合电能模块的控制器。在一个实施方案中,电阻器714有数值121千欧,电阻器716有数值2兆欧和电容器718有数值1微法拉,然而其他数值可以被用于这些元件。
对于负极输入电流和正极输入电压,电能仪表700将在上面所描述的正极电流数值来提供正确的电能读取相同方式下运行。对于负极输入电压,脉冲幅度调制器电路将保持低和开关708将保持打开。进一步,开关709和710将打开,和电阻器714在飘移,允许电容器718因负极输入电压被保持充电。
对于分相位系统,每一个电能模块包括二象限电能仪表,通过增加电能仪表的输出,控制器能够确定整个电能的流动。
在上面所描述的模块UPS系统中,一些举例中某些功能当在特殊模块被完成时就已经被描述。在其他实施方案中,这些功能可以在其他模块中完成,和/或者模块的已完成的功能能够被合并。进一步,许多在上面被描述的特征可以在不是模块类型的UPS系统中实施。
本发明的实施方案被描述用于在线UPS系统。本发明的其他实施方案也可以被用于离线UPSs和UPS’的其他类型,除了UPS系统,也可以被用于装置。
至此,本发明的至少一个实施方案的几个方面都已经描述了,各种变化,修改以及改进对于本领域的普通技术人员来说是很容易理解的。这样的变化,修改以及改进指向公开揭示的部分,也符合本发明的思想并落入本发明的范围之内。因此,前面的说明和图示仅是举例的方式。
权利要求
1.一种电能供给系统,该系统包括机座;用于接收来自电源的输入电能的电能输入端口;用于向负载提供输出电能的电能输出端口;至少一个安装在机座上的电池模块,该电池模块具有提供电池电能的电池输出端口;至少一个安装在机座上的电能模块,该电能模块被耦合到电能输入端口上以接收输入电能,被耦合到电池输出端口上以接收电池电能,并且被耦合到电能输出端口上以提供来自电池电能和输入电能两者中至少一个的输出电能;第一控制器,该第一控制器与至少一个电能模块耦合;以及第二控制器,该第二控制器实质上与第一控制器相类似,并与第一控制器耦合,并与至少一个电能模块耦合;其中所述第一控制器和第二控制器的每一个都被配置用于确定电能供给系统的运行参数,以及存储有第一控制器确定的第一套参数和由第二控制器确定的第二套参数。
2.根据权利要求1所述的电能供给系统,其中所述第一控制器在电能供给系统中起到主处理器的作用,并且控制电能模块的输出的电能,而且其中所述第一控制器和第二控制器被配置用于允许当第一控制器发生故障时,第二控制器控制输出电能。
3.根据权利要求2所述的电能供给系统,其中所述至少一个电能模块包括多个电能模块,和至少一个电池模块包括多个电能模块。
4.根据权利要求1所述的电能供给系统,进一步包括通讯总线,该通讯总线与第一控制器、第二控制器和至少一个电能模块耦合,以提供第一控制器、第二控制器和至少一个电能模块双方之间的通讯;其中所述的第一控制器被配置起到通讯总线的主线的作用,和控制总线上的通讯,并且第二控制器被配置用以当第一控制器发生故障时,其能起到通讯总线的主线的作用。
5.根据权利要求4所述的电能供给系统,其中所述的每一个第一控制器和第二控制器都包括主处理器、经过继电器与通讯总线耦合的内部通讯总线、和存储装置,该存储装置与内部通讯总线耦合,存储电能供给系统的运行参数,以及其中所述在第二控制器中的主处理器被配置以打开在第二控制器中的继电器,并通过内部通讯总线向存储装置发送更新的运行参数。
6.根据权利要求1所述的电能供给系统,其中所述的电能输入端口被配置用于接收有第一输入相位线、第二输入相位线和中性输入相位线的输入电能,其中所述第一控制器被耦合到电能输入端口并被配置用于检测第一相位线和第二相位线之间的输入相位差,和控制电能模块向有第一输出相位线、第二相位线和中性输出线的输出电能提供实质上与输入相位差等同的第一输出相位线和第二输出相位线之间的输出相位差。
7.根据权利要求1所述的电能供给系统,其中所述的每一个第一控制器和第二控制器包括冷启动按钮,所述电能供给系统被配置用以在现场没有输入电能时,当冷启动按钮中的一个被用户激活时,电能供给系统从电池电能中获得电能。
8.根据权利要求7所述的电能供给系统,其中所述电能供给系统被配置,在冷启动按钮激活前,现场没有电能输入和至少一个电池模块实质电流为零时,在电能供给系统中的冷启动按钮激活。
9.根据权利要求1所述的电能供给系统,其中所述第一控制器被耦合到电能输入端口上并被配置以检测输入电压和输入电流,并且在检测到输入电压小于预先设定的界限值时,减少电能供给系统的输入电流的流动。
10.根据权利要求9所述的电能供给系统,其中所述第一控制器被配置用以在检测到输入电压小于预先设定的界限值时,减少在电能供给系统中的电池充电电流。
11.根据权利要求1所述的电能供给系统,进一步包括耦合到电能输出端口上的四象限电能仪表,确定电能供给系统的输出的电能。
12.根据权利要求1所述的电能供给系统,其中所述至少一个电能模块包括二象限电能仪表,确定电能模块的输出电能。
13.根据权利要求1所述的电能供给系统,进一步包括耦合到电能输出端口上的输出保险丝,耦合到输出保险丝和第一控制器上的检测电路,所述的检测贿赂用以检测输出保险丝两端的电压。
14.根据权利要求1所述的电能供给系统,其中所述每一个第一控制器和第二控制器适合接收来自机座的输入信号,和基于输入信号的状态,作为主控制器或备用控制器而运行。
15.根据权利要求1所述的电能供给系统,其中所述第一控制器包括存储装置,并被配置以感知在输出端口的输出电压,将输出电压与来源于包含在存储装置的数据的上部和下部界限值水平进行比较来确定输出电压是否在预先确定的范围内。
16.根据权利要求15所述的电能供给系统,其中所述第一控制器被配置来感知在输出端口处的输出电流,比较输出电流和短路电流值,比较输出电压和输出短路电压值,并且如果输出电流超过短路电流值以及输出电压小于输出短路电压值,则提供在输出端口处出现短路的指示。
17.一种电能供给系统,包括用于接收来自电源的输入电能的电能输入端口;用于向负载提供输出电能的电能输出端口;至少一个电池模块,所述的电池模块具有用于提供电池电能的电池输出端口;至少一个电能模块,所述的电能模块被耦合到电能输入端口上以接收输入电能,被耦合到电池输出端口上以接收电池电能,并被耦合到电能输出端口上以提供输出电能;第一控制器,所述的第一控制器被耦合到至少一个电能模块上;以及第二控制器,所述的第二控制器被耦合到第一控制器上,并被耦合到至少一个电能模块上;以及通讯总线,与第一控制器、第二控制器和至少一个电能模块耦合以提供在第一控制器、第二控制器和至少一个电能模块之间双方的通讯传递;其中所述的第一控制器被配置以运行作为通讯总线的主控制并控制总线上的通讯,以及第二控制器被配置用以当第一控制器发生故障时,运行作为通讯总线的主控制。
18.根据权利要求17所述的电能供给系统,其中所述第一控制器起到在电能供给系统中的主控制器的功能并控制电能模块的输出的电能,所述第一控制器和第二控制器被配置用于允许当第一控制器发生故障时,第二控制器来控制输出电能。
19.根据权利要求18所述的电能供给系统,其中所述至少一个电能模块包括多个电能模块,以及至少一个电池模块包括多个电能模块。
20.根据权利要求17所述的电能供给系统,其中每一个所述的第一控制器和第二控制器包括主处理器,经过继电器被耦合到通讯总线上的内部通讯总线,被耦合到内部通信总线上存储电能供给系统的运行参数的存储装置,以及其中在第二控制器中的主处理器被配置以打开在第二控制器中的继电器和通过内部通讯总线向存储装置发送更新的运行参数。
21.根据权利要求17所述的电能供给系统,其中所述的电能输入端口被配置以接收具有第一输入相位线、第二输入相位线和中性输入线的输入电能,其中所述第一控制器被耦合到电能输入端口上并被配置来检测第一相位线和第二相位线之间的输入相位差,和控制电能模块以提供具有第一输出相位线、第二相位线和中性输出线的输出电能,在第一输出相位线和第二输出相位线之间的输出相位差实质上等于输入相位差。
22.根据权利要求17所述的电能供给系统,其中每一个所述的第一控制器和第二控制器包括冷启动按钮,并且其中所述电能供给系统被配置用以在现场没有输入电能时,当冷启动按钮被用户激活时,电能供给系统从电池电能中获得电能。
23.根据权利要求22所述的电能供给系统,其中所述电能供给系统被配置,用以在冷启动按钮激活前,现场没有电能输入和至少一个电池模块的电流实质为零时,在电能供给系统中的冷启动按钮激活。
24.根据权利要求17所述的电能供给系统,其中所述第一控制器被耦合到电能输入端口上并被配置以检测输入电压和输入电流,并且在检测到输入电压小于预先设定的界限值时,减少电能供给系统输入电流的流动。
25.根据权利要求24所述的电能供给系统,其中所述第一控制器被配置,用以在检测到输入电压小于预先设定的界限值时,减少在电能供给系统中电池充电电流。
26.根据权利要求17所述的电能供给系统,进一步包括耦合到电能输出端口上的四象限电能仪表,确定电能供给系统的输出电能。
27.根据权利要求17所述的电能供给系统,其中所述至少一个电能模块包括二象限电能仪表,确定电能模块的输出电能。
28.根据权利要求17所述的电能供给系统,进一步包括耦合电能输出端口的输出保险丝,以及耦合输出保险丝和第一控制器的检测电路,用以检测输出保险丝两端的电压。
29.根据权利要求17所述的电能供给系统,其中每一个所述的第一控制器和第二控制器适合接收来自机座的输入信号,和基于输入信号的状态,运行作为主控制器或备用控制器。
30.根据权利要求17所述的电能供给系统,其中所述第一控制器包括存储装置,和被配置来感知在输出端口上的输出电压,将输出电压与来源于包含在存储装置中的数据的上部和下部界限值进行比较来确定输出电压是否在预先确定的范围内。
31.根据权利要求30所述的电能供给系统,其中所述第一控制器被配置来感知在输出端口处的输出电流,比较输出电流和短路电流值,比较输出电压和输出短路电压值,并且如果输出电流超过短路电流值以及输出电压小于输出短路电压值,电路提供在输出端有短路存在的指示。
32.一种电能供给系统,包括输入端口,所述的输入端口用以接收有第一输入相位线、第二输入相位线和中性输入线的输入电能;输出端口,所述的输出端口提供有第一输出相位线、第二输出相位线和中性输出线的输出电能;电池,所述的电池提供电池电能;以及控制器,所述的控制器被耦合到输入端口、输出端口和电池上,并被配置来控制电能供给系统以提供来自输入电能和电池电能中至少一个的输出电能;其中所述控制器被配置以检测在第一输入相位线和第二输入相位线之间的输入相位差,和提供具有在第一输出相位线和第二输出相位线之间的输出相位差的输出电能,所述的输出相位差实质上等于输入相位差。
33.根据权利要求32所述的电能供给系统,其中所述控制器被配置检测输入电压,比较输入电压与界限值电压,和当输入电压小于界限值电压时,实施电流减少计划来减少到电能供给系统的输入电流。
34.根据权利要求33所述的电能供给系统,其中所述电流减少计划包括减少对电池的充电电流。
35.一种电能供给系统,包括接收输入电能的输入端口;提供输出电能的输出端口;提供电池电能的电池;电能电路,接收输入电能和电池电能并提供来自至少电池电能和输入电能中的一个的输出电能;以及控制器,所述的控制器被耦合到输入端口、输出端口、电路系统和电池上并被配置来控制电能供给系统;其中所述的控制器包括存储用于电能供给系统的运行设置的存储装置,所述的控制器被配置来感应在输出处的输出电压,将输出电压与来源于包含在存储装置中的运行设置的上部和下部界限值进行比较来确定输出电压是否在预先设定的范围内。
36.根据权利要求35所述的电能供给系统,进一步包括耦合控制器的用户输入装置,其中所述的控制器被配置用于为电能供给系统接收来自用户输入装置的更新运行设置,更新在存储装置中的运行设置,并基于更新的运行设置更新上部和下部界限值。
37.根据权利要求35所述的电能供给系统,进一步包括耦合在输入端和输出端之间的旁路装置,所述旁路装置有开启状态和闭合状态,在所述的闭合状态下输入端通过旁路装置被电耦合到输出端上来向输出端提供输入电能,所述控制器被配置用以在如果输出电压处于预先设定的范围之外的情形比预先设定的时间长时,控制旁路装置来切换到闭合状态。
38.根据权利要求37所述的电能供给系统,其中所述控制器被配置来检测在输出端的短路电路,和禁止闭合旁路装置。
39.根据权利要求37所述的电能供给系统,其中在控制器中的存储装置包括电可擦除只读存储器。
40.一种电能供给系统,包括机座;接收来自电源的输入电能的电能输入端;向负载提供输出电能的电能输出端;至少一个电池模块,所述的电池模块被安装在机座上并具有提供电池电能的电池输出端;至少一个电能模块,所述的电能模块被安装在机座上并耦合到电能输入端以接收输入电能,耦合到电池输出端以接收电池电能,耦合到电能输出端以提供来自至少电池电能和输入电能中的一个的输出电能;第一控制器模块,被安装在机座上,耦合到至少一个电能模块和至少一个电池模块上;以及第一冷启动按钮,被运行地耦合到至少一个电池模块上;在没有输入电能出现的充电下降模式下,没有得到来自电池的电流,这时用户激活第一冷启动按,所述电能供给系统被配置从电池电能中获得电能。
41.根据权利要求40所述的电能供给系统,进一步包括安装在机座上的第二控制器模块,所述第二控制器模块实质上类似于第一控制器模块并且一旦第一控制器模块发生故障,作为备用控制器使用;以及第二冷启动按钮,所述的第二冷启动按钮运行中耦合至少一个电池模块;在没有输入电能出现的充电下降模式下,没有得到来自电池的电流,这时用户既可以激活第一冷启动按钮也可以激活第二冷启动按钮,所述电能供给系统被配置从电池电能中获得电能。
42.一种电能供给系统,包括机座;接收来自电源的输入电能的电能输入端;向负载提供输出电能的电能输出端;在机座上至少安装一个提供电池电能的电池输出端的电池模块;被安装在机座上的至少一个电能模块,所述电能模块耦合电能输入端以接收输入电能,耦合电池输出端接收电池电能,耦合电池输出端以提供来自电池电能和输入电能中至少一个的输出电能;耦合至少一个电能模块的第一控制器;以及实质上类似于第一控制器的第二控制器,耦合第一控制器,并耦合至少一个电能模块;其中每一个所述的第一控制器和第二控制器包括测量电能供给系统的运行参数的装置和用于存储被第一控制器测量的和第二控制器测量的运行参数的装置。
43.根据权利要求42所述的电能供给系统,其中所述第一控制器和第二控制器包括用于设置第一控制器和第二控制器中的一个为主控制器的装置和用于设置第一控制器和第二控制器中的一个为备用控制器的装置,并且一旦主控制器发生故障,用于传送从主控制器到备用控制器对电能供给系统的控制的装置。
44.根据权利要求43所述的电能供给系统,其中所述至少一个电能模块包括多个电能模块,以及所述至少一个电池模块包括多个电能模块。
45.根据权利要求43所述的电能供给系统,进一步包括为提供第一控制器和第二控制器之间的双方通讯的通讯总线和设值主控制器控制通讯总线以及一旦主控制器发生故障,备用控制器控制通讯总线的装置。
46.根据权利要求42所述的电能供给系统,其中所述电能输入端被配置接收有第一输入相位线、第二输入相位线和中性输入线的输入电能,进一步包括用于检测第一输入相位线和第二输入相位线之间的输入相位差的装置,和用于向有第一输出相位线、第二输出相位线和中性输出线的输出电能提供实质上等同于输入相位差的第一输出相位线和第二输出相位线之间的输出相位差的装置。
47.根据权利要求42所述的电能供给系统,进一步包括在没有出现输入电能的情况下以电池电能启动电能供给系统。
48.根据权利要求47所述的电能供给系统,进一步包括在电能下降模式没有出现输入电能情况下,绝缘电池电压以致于实质上来自电池模块的电流为零的装置,和所述启动装置包括在电能下降模式下启动电能供给系统的装置。
49.根据权利要求42所述的电能供给系统,进一步包括一旦检测到输入电压小于预先设定的界限值,减少电能供给系统的输入电流流动的装置。
50.根据权利要求49所述的电能供给系统,所述减少输入电流流动的装置包括减少电池充电电流的装置。
51.根据权利要求42所述的电能供给系统,进一步包括测量在电能输出端处的有效功率的装置。
52.根据权利要求42所述的电能供给系统,所述至少一个电能模块包括测量用于正输出电压和正负输出电流的电能模块输出电能的装置。
53.根据权利要求42所述的电能供给系统,进一步包括耦合到电能输出端上的输出保险丝,和检测输出保险丝两端电压的装置。
54.根据权利要求42所述的电能供给系统,进一步包括用于存储用于电能供给系统的运行参数的装置,和比较在电能输出端处的输出电压与来源于运行参数的上部和下部界限值水平来确定输出电压是否在预先设定的范围内。
55.根据权利要求54所述的电能供给系统,进一步包括绕过至少一个电能模块用以向电能输出端提供输入电能的装置,和用于检测在电能输出端口处短路电路以及使旁路失去功能的装置。
56.一种电能供给系统,包括接收来自电源的输入电能的电能输入端;向负载提供输出电能的电能输出端;至少一个带有电出输出端的电池模块,提供电池电能;至少一个电能模块,所述的电能模块耦合电能输入端接收输入电能,耦合电池输出端接收电池电能,和耦合电能输出端提供输出电能;耦合到至少一个电能模块的第一控制器;第二控制器,所述的第二控制器被耦合到第一控制器并被耦合到至少一个电能模块;以及通讯总线,所述的通讯总线被耦合到第一控制器、第二控制器和至少一个电能模块上来提供在第一控制器、第二控制器和至少一个电能模块之间双方的通讯传递;装置,用于设置第一控制器控制通讯总线以及一旦第一控制器发生故障,设置第二控制器控制通讯总线。
57.根据权利要求56所述的电能供给系统,其中所述第一控制器和第二控制器包括设置第一控制器和第二控制器中的一个为主控制器和设置第一控制器和第二控制器中的一个为备用控制器的装置,和一旦主控制器发生故障,传送从主控制器到备用控制器对电能供给系统的控制的装置。
58.根据权利要求57所述的电能供给系统,其中所述至少一个电能模块包括多个电能模块,和所述至少一个电池模块包括多个电能模块。
59.根据权利要求56所述的电能供给系统,其中所述电能输入端被配置接收有第一输入相位线、第二输入相位线和中性输入线的输入电能,进一步包括检测第一输入相位线和第二输入相位线之间的输入相位差的装置,和向有第一输出相位线、第二输出相位线和中性输出线的输出电能提供实质上等同于输入相位差的第一输出相位线和第二输出相位线之间的输出相位差的装置。
60.根据权利要求56所述的电能供给系统,进一步包括在没有出现输入电能的情况下以电池电能启动电能供给系统的装置。
61.据权利要求60所述的电能供给系统,进一步包括在电能下降模式没有出现输入电能情况下,绝缘电池电压以致于实质上来自电池模块的电流为零的装置,和所述启动装置包括在电能下降模式下启动电能供给系统的装置。
62.根据权利要求56所述的电能供给系统,进一步包括一旦检测到输入电压小于预先设定的界限值,减少电能供给系统的输入电流流动的装置。
63.根据权利要求62所述的电能供给系统,所述减少输入电流流动的装置包括减少电池充电电流的装置。
64.根据权利要求56所述的电能供给系统,进一步包括测量在电能输出端的有效功率的装置。
65.根据权利要求56所述的电能供给系统,所述至少一个电能模块包括测量用于正输出电压和正负输出电流的电能模块输出电能的装置。
66.根据权利要求56所述的电能供给系统,进一步包括与电能输出端耦合的输出保险丝,和用于检测输出保险丝两端电压的装置。
67.根据权利要求56所述的电能供给系统,进一步包括存储用于电能供给系统的运行参数的装置和比较在电能输出端的输出电压与来源于运行参数的上部和下部界限值水平来确定输出电压是否在预先设定的范围内。
68.根据权利要求67所述的电能供给系统,进一步包括用于绕过至少一个电能模块向电能输出端提供输入电能的装置,和检测在电能输出端口处短路电路的装置以及使旁路装置失去功能的装置。
69.一种电能供给系统,包括输入端,接收有第一输入相位线、第二输入相位线和中性输入线的输入电能;输出端,提供有第一输出相位线、第二输入相位线和中立输出线输出电能;提供电池电能的电池;控制器,所述的控制器耦合到输入端、输出端和电池上,并被配置以控制电能供给系统提供来自输入电能和电池电能中至少一个的输出电能;以及装置,用于检测第一输入相位线和第二输入相位线之间的输入相位差和向输出电能提供实质上等同于输入相位差的第一输出相位线和第二输出相位线之间的输出相位差。
70.根据权利要求69所述的电能供给系统,进一步包括当输入电压小于电压界限值时,减少对电能供给系统的输入电流的装置。
71.根据权利要求70所述的电能供给系统,其中所述减少输入电流的装置包括减少对电池的充电电流的装置。
72.一种电能供给系统,包括接收输入电能的输入端;提供输出电能的输出端;提供电池电能的电池;电能电路,接收输入电能和电池电能以及提供来自至少电池电能和输入电能中的一个的输出电能;以及控制器,所述的控制器被耦合到输入端、输出端、电能电路和电池上,并且被配置来控制电能供给系统;装置,用于存储用于电能供给系统的运行设置,并比较输出电压与来源于运行参数的的上部和下部界限值水平来确定输出电压是否在预先设定的范围内。
73.根据权利要求72所述的电能供给系统,进一步包括接收来自用户的更新的运行设置的装置,和在更新的运行设置基础上修改上部和下部界限值水平。
74.根据权利要求72所述的电能供给系统,进一步包括绕过电路系统向电能输出端提供输入电能的装置,和检测在电能输出端口处短路的装置以及使旁路装置失去功能的装置。
75.一种电能供给系统,包括机座;用于接收来自电源的输入电能的电能输入端;用于向负载提供输出电能的电能输出端;至少一个电能模块,所述的电能模块被安装在机座上并具电池输出端提供电池电能;至少一个电能模块,所述的电能模块被安装在机座上并被耦合到电能输入端以接收输入电能,被耦合到电池输出端以接收电池电能,和被耦合到电能输出端口以提供来自电池电能和输入电能中至少一个的输出电能;第一控制器模块,被安装在机座上,被耦合到至少一个电能模块和至少一个电池模块;以及装置,被耦合到第一控制器模块,在没有出现输入电能的情况下,以电池电能启动电能供给系统。
76.根据权利要求75所述的电能供给系统,进一步包括在电能下降模式没有出现输入电能情况下,绝缘电池电压以致于来自电池模块的电流实质上为零的装置,以及其中所述启动装置包括在电能下降模式下启动电能供给系统的装置。
77.根据权利要求75所述的电能供给系统,进一步包括安装在机座上的第二控制器模块,所述第二控制器模块实质上类似与第一控制器模块并且一旦第一控制器模块发生故障时,作为备用控制器使用。
78.一种为有第一控制器和第二控制器的不间断电源提供备用控制的方法,所述方法包括使用第一控制器确定与不间断电源运行参数相应的第一套数值;使用第二控制器确定与不间断电源运行参数相应的第二套数值;在第一控制器中存储第一套数值和第二套数值;在第二控制器中存储第一套数值和第二套数值;使用第一控制器控制不间断电源的输出电能;以及一旦第一控制器发生故障,使用第二控制器控制不间断电源的输出电能。
79.根据权利要求78所述方法,其中所述不间断电源包括通讯总线,以及所述的方法进一步包括使用第一控制器控制在通讯总线上的通讯;以及一旦第一控制器发生故障,使用第二控制器控制在通讯总线上的通讯。
80.根据权利要求78所述方法,其中所述不间断电源有电能输入端,所述的电能输入端被配置接收有第一输入相位线、第二输入相位线和中性输入线的输入电能,并且所述方法进一步包括检测在第一输入相位线和第二输入相位线之间的输入相位差;以及向有第一输出相位线、第二相位线和中性输出线的输出电能提供实质上与输入相位差等同的第一输出相位线和第二输出相位线之间的输出相位差。
81.根据权利要求78所述方法,其中每一个所述的第一控制器和第二控制器包括冷启动按钮,以及所述方法进一步包括在没有出现输入电能情况下,这时用户激活冷启按钮之一,以致不间断电源从电池电能中获得电能的方法。
82.根据权利要求78所述方法,进一步包括检测不间断电源的输入电压和输入电流;以及一旦检测到输入电压小于预先设定的界限值,减少不间断电源的输入电流的流动。
83.根据权利要求82所述方法,其中所述减少输入电流流动包括减少在不间断电源中电池充电电流。
84.根据权利要求78所述方法,其中所述不间断电源包括输出保险丝,并且其中所述方法进一步包括检测在输出保险丝两端的电压来检查保险丝在不间断电源运行过程中的状态。
85.根据权利要求78所述方法,其中所述第一控制器包括存储装置,以及所述方法进一步包括感应在不间断电源输出端的输出电压;以及比较输出电压与来源于包含在存储装置中的数据的上部和下部界限值水平来确定输出电压是否在预先确定的范围内。
86.根据权利要求85所述方法,进一步包括感应在输出端的输出电流;比较输出电压和短路电流值;比较输出电压和输出电路电压值;以及如果输出电流超过短路电流值和输出电压小于输出短路电压值,则提供在输出端有短路存在的指示。
87.一种控制不间断电源的方法,所述的不间断电源有第一控制器、第二控制器、至少一个电能模块和耦合在第一控制器、第二控制器、至少一个电能模块之间的通讯总线,所述方法包括使用第一控制器控制不间断电源的输出电能和在通讯总线上的通讯;以及一旦第一控制器发生故障,使用第二控制器控制不间断电源输出电能和在通讯总线上的通讯。
88.根据权利要求87所述方法,其中所述不间断电源有电能输入端、,所述的电能输入端被配置接收有第一输入相位线、第二输入相位线和中性输入线的输入电能,以及所述方法进一步包括检测在第一输入相位线和第二输入相位线之间的输入相位差;以及提供输出电能,所述的输出电能有第一输出相位线、第二输出相位线和中性输出线,其在第一输出相位线和第二输出相位线之间的输出相位差实质上与输入相位差相等。
89.根据权利要求87所述方法,其中每一个所述的第一控制器和第二控制器包括冷启动按钮,以及所述方法进一步包括在没有出现输入电能情况下,这时用户激活冷启按钮之一,以致不间断电源从电池电能中获得电能的方法。
90.根据权利要求87所述方法,进一步包括检测不间断电源的输入电压和输入电流;以及一旦检测到输入电压小于预先设定的界限值,减少不间断电源的输入电流的流动。
91.根据权利要求90所述方法,其中所述减少输入电流流动包括减少在不间断电源中电池充电电流。
92.根据权利要求90所述方法,其中所述不间断电源包括输出保险丝,以及所述方法包括检测在输出保险丝两端的电压来检查保险丝在不间断电源运行过程中的状态。
93.根据权利要求90所述方法,其中所述第一控制器包括存储装置,以及所述方法包括感应在不间断电源输出端的输出电压;和比较输出电压与来源于包含在存储装置中的数据的上部和下部界限值水平来确定输出电压是否在预先确定的范围内。
94.根据权利要求93所述方法,进一步包括感应在输出端的输出电流;比较输出电流和短路电流值;比较输出电压和输出电路电压值,以及如果输出电流超过短路电流值和输出电压小于输出短路电压值,电路提供在输出端上有短路存在的指示。
95.一种在电源中提供不间断输出电能的方法,所述的电源具有输入端,接收有第一输入相位线、第二输入相位线和中性输入线的输入电能,和具有提供输出电能的输出端口,所述的输出端口有第一输出相位线、第二输出相位线和中性输出线,所述方法包括检测在第一输入相位线和第二输入相位线之间的输入相位差;和提供具有在第一输出相位线和第二输出相位线之间的输出相位差的输出电能,所述的输出相位差实质上与输入相位差相等。
96.根据权利要求95所述方法,进一步包括当输入电压小于预先设定的电压时,减少对电能供给的输入电流。
97.根据权利要求96所述方法,其中所述减少输入电流包括减少在电能供给中至少一个电池的充电电流。
98.一种控制在不间断电源中输出电能的方法,所述的不间断电源有接收输入电能的输入端,提供输出电能的输出端,提供电池电能的电池,接收输入电能和电池电能以及提供来自至少电池电能和输入电能中的一个的输出电能的电能电路,和耦合输入端、输出端、电能电路和电池的控制器,所述的控制器被配置以控制电能供给系统,所述方法包括;为不间断电源在存储装置中存储运行设置;以及比较输出电压与来源于运行设置的上部和下部界限值水平来确定输出电压是否在预先设定的范围内。
99.根据权利要求98所述方法,进一步包括接收来自用户的更新的运行设置;在更新运行设置基础上修改上部和下部界限值水平。
100.根据权利要求98所述方法,其中所述电源包括旁路装置以将输入端耦合到输出端以绕过电源电路,所述方法进一步包括检测在电能输出端的短路;以及当出现短路时,阻止旁路装置启动。
全文摘要
本发明提供电能供给系统及其方法。在一方面,一种电能供给系统包括机座,接收来自电源的输入电能的电能输入端口,为负荷提供输出电量的电能输出端口,至少一个安装在机座上的电池模块,所述电池模块具有提供电池电能的电池输出端口,至少一个安装在机座上的电能模块,所述电能模块与电能输入端口耦合以接收输入的电能,与电池的输出端口耦合以接收电池的电能,和与电能输出端口耦合以提供来自至少电池电能和输入电能之一的输出电能,与至少一个电能模块耦合的第一控制器,和实质上类似于第一控制器的第二控制器,所述第二控制器与第一控制器相耦合,并与至少一个电能模块耦合,其中所述每一个第一控制器和第二控制器被配置用于确定电能供给系统运行参数和存储由第一控制器确定的第一套参数和由第二控制器确定的第二套参数。
文档编号G06F13/42GK1934766SQ200580009535
公开日2007年3月21日 申请日期2005年1月21日 优先权日2004年1月23日
发明者弗郎西斯·J·马萨查埃利, 斯瑞丹·穆塔伯泽加, 耶欧布·德密斯, 迈克尔·J·英格美, 唐纳德·李·查兰蒂尼 申请人:美国能量变换公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1