用于执行使用掩码的向量打包一元编码的系统、装置和方法

文档序号:6485498阅读:174来源:国知局
用于执行使用掩码的向量打包一元编码的系统、装置和方法
【专利摘要】本发明描述响应于单个使用掩码的向量打包一元编码指令在计算机处理器中执行使用掩码的向量打包一元编码的系统、装置和方法的实施例,该指令包括源向量寄存器操作数、目的地写掩码寄存器操作数和操作码。
【专利说明】用于执行使用掩码的向量打包一元编码的系统、装置和方 法

【技术领域】
[0001] 本发明的领域一般涉及计算机处理器架构,更具体地涉及在执行时导致特定结果 的指令。
[0002] 置量
[0003] 指令集、或指令集架构(ISA)是涉及编程的计算机架构的一部分,并且可包括原 生数据类型、指令、寄存器架构、寻址模式、存储器架构、中断和异常处理、以及外部输入和 输出(I/O)。应注意术语指令在本文中一般指的是宏指令--即提供给处理器以供执行的 指令--与从处理器的解码器解码宏指令得到的微指令或微操作不同。
[0004] 指令集架构与微架构不同,微架构是实现ISA的处理器的内部设计。具有不同 微架构的处理器可共享共同的指令集。例如,英特尔Pentium(奔腾)4处理器、英特尔 Core (酷眷)处理器、以及位于Sunnyvale CA的Advanced Micro Devices公司的处理 器实现x86指令集的几乎相同的版本(带有被添加到较新的版本中的某些扩展),但是, 具有不同的内部设计。例如,ISA的相同寄存器体系结构可以使用已知的技术,以不同的 微型体系结构,以不同的方式来实现,包括专用物理寄存器,使用寄存器重命名机制(例 如,寄存器别名表(RAT)的使用,重新排序缓冲器(R0B)以及退役寄存器文件,如美国专利 No. 5, 446, 912所描述的;使用多个图以及寄存器的池,如美国专利No. 5, 207, 132所描述 的)的一个或多个动态地分配的物理寄存器,等等。除非另作说明,短语"寄存器体系结 构"、"寄存器组",以及寄存器是指对软件/编程器以及指令指定寄存器的方式可见的东西。 在需要特殊性的情况下,形容词逻辑、架构、或软件可见将用于表示寄存器架构中的寄存器 /组,而不同的形容词将用于指定给定微架构中的寄存器(例如,物理寄存器、重新排序缓 冲器、引退寄存器、寄存器池)。
[0005] 指令集包括一个或多个指令格式。给定指令格式定义各种字段(位数、位位置) 以指定要执行的操作以及将对其进行该操作的操作数等。给定指令是使用给定指令格式来 表达的,并指定操作和操作数。指令流是特定指令序列,其中该序列中的每一指令都是指令 格式的指令出现。
[0006] 科学、金融、自动向量化的通用RMS(识别、挖掘以及合成)/可视和多媒体应用 (例如,2D/3D图形、图像处理、视频压缩/解压缩、语音识别算法和音频操纵)常常需要对 大量的数据项执行相同操作(被称为"数据并行性")。单指令多数据(SMD)是指使处理 器对多个数据项执行相同操作的一种指令。SIMD技术尤其适用于将寄存器中的多个位逻 辑地划分成多个固定尺寸的数据元素的处理器,其中每个数据元素表示单独的值。例如,64 位寄存器中的位可以被指定为作为四个单独的16位数据元素来操作的源操作数,每一个 数据元素都表示单独的16位值。作为另一个示例,256位寄存器中的位可以被指定为作为 四个单独的64位打包数据元素(四字(Q)尺寸的数据元素)、八个单独的32位打包数据 元素(双字(D)尺寸的数据元素)、十六个单独的16位打包数据元素(字(W)尺寸的数据 元素)、或三十二个单独的8位数据元素(字节(B)尺寸的数据元素)来操作的源操作数。 这种类型的数据被称为打包数据类型或向量数据类型,并且这种数据类型的操作数被称为 打包数据操作数或向量操作数。换句话说,打包数据项或向量指的是打包数据元素的序列; 并且打包数据操作数或向量操作数是SMD指令(也称为打包数据指令或向量指令)的源 操作数或目的地操作数。
[0007] 作为示例,一种类型的SIMD指令指定了将要以纵向方式对两个源向量操作数执 行的单个向量操作,用于生成具有相同尺寸的、具有相同数量的数据元素并且按照相同数 据元素次序的目的地向量操作数(也被称为结果向量操作数)。源向量操作数中的数据元 素被称为源数据元素,而目的地向量操作数中的数据元素被称为目的地或结果数据元素。 这些源向量操作数具有相同尺寸并且包含相同宽度的数据元素,因此它们包含相同数量的 数据元素。两个源向量操作数中的相同位位置中的源数据元素形成数据元素对(也称为对 应的数据元素;即,每个源操作数的数据元素位置0中的数据元素相对应,每个源操作数中 的数据元素位置1中的数据元素相对应,以此类推)。对这些源数据元素对中的每一个分 别执行该SMD指令指定的操作,以产生匹配数量的结果数据元素,并且因此每一对源数据 元素具有相应的结果数据元素。由于该操作是纵向的,且由于结果向量操作数是相同尺寸、 具有相同数量的数据元素并且结果数据元素按照与源向量操作数相同的数据元素顺序被 存储,所以结果数据元素处于结果向量操作数中与它们在源向量操作数中的相应源数据元 素对相同的位位置中。除此示例性类型的SMD指令之外,还有各种其他类型的SMD指令 (例如,只有一个或具有两个以上的源向量操作数的;以横向方式操作的;生成不同尺寸的 结果向量操作数的,具有不同尺寸的数据元素的,和/或具有不同的数据元素顺序的)。应 该理解,术语目的地向量操作数(或目的地操作数)被定义为执行由指令所指定的操作的 直接结果,包括将该目的地操作数存储在某一位置(寄存器或由该指令所指定的存储器地 址),以便它可以作为源操作数由另一指令访问(由另一指令指定相同位置)。
[0008] 诸如由具有包括 x86、MMX?、流式 SMD 扩展(SSE)、SSE2、SSE3、SSE4. 1 以及 SSE4. 2 指令的指令集的Intel? Core?处理器使用的技术之类的SMD技术,在应用性能方面实现 了显著的改善(Core?和MMX?是位于加利福尼亚州Santa Clara的Intel Corporation 的注册商标或商标。)。称为高级矢量扩展(AVX)(AVX1和AVX2)又使用VEX编码方案的 额外的SIMD扩展集已经被发布或出版(例如,参见丨ntel? 64和IA-32 Architectures Software Developers Manual,2011 年 10 月;参见 Intel? Advanced Vector Extensions Programming Reference, 2011年 6 月)。
[0009] -元编码在压缩算法中非常普遍,并且用于例如在一些搜索引擎中编码符号长 度,因为它往往更易于被解码。代替存储每个值,可以存储该值与先前数据集之间的差异。 这样,每个值被如下编码:
[0010] 0->1 [0011] 1->10 [0012] 2->100
[0013] 3->1000
[0014] ...
[0015] 遗憾的是,没有用于一元成码的专用指令。
[0016] 附图简沭
[0017] 本发明是通过示例说明的,而不仅局限于各个附图的图示,在附图中,类似的参考 标号表示类似的元件,其中:
[0018] 图1示出用于VPUNARYENCODE的示例性指令的操作的示例性示图。
[0019] 图2示出处理器中VPUNARYENCODE指令的执行的实施例。
[0020] 图3示出处理VPUNARYENCODE指令的方法的实施例。
[0021] 图4示出执行VPUNARYENCODE的方法的示例性伪代码。
[0022] 图5示出根据本发明一个实施例的多个1有效位向量写掩码元素与向量尺寸和数 据元素尺寸之间的关联。
[0023] 图6A例示了示例性AVX指令格式;
[0024] 图6B示出来自图6A的哪些字段构成完整操作码字段和基础操作字段;
[0025] 图6C示出来自图6A的哪些字段构成寄存器索引字段。
[0026] 图7A-7B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的 框图。
[0027] 图8A-D是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。
[0028] 图9是根据本发明的一个实施例的寄存器架构的框图。
[0029] 图10A是示出根据本发明的各实施例的示例性有序流水线和示例性的寄存器重 命名的无序发布/执行流水线的框图。
[0030] 图10B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例 性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。
[0031] 图11A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑 块之一(包括相同类型和/或不同类型的其他核)。
[0032] 图12是根据本发明的实施例的可具有超过一个的核、可具有集成的存储器控制 器、并且可具有集成图形的处理器的框图。
[0033] 图13是根据本发明的实施例的示例性系统的框图。
[0034] 图14是根据本发明的实施例的第一更具体的示例性系统的框图。
[0035] 图15是根据本发明的实施例的第二更具体的示例性系统的框图。
[0036] 图16是根据本发明的实施例的SoC的框图。
[0037] 图17是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进 制指令转换成目标指令集中的二进制指令的框图。
[0038] 详细描沭
[0039] 在以下描述中,陈述了多个具体细节。然而,应当理解的是,可不通过这些具体细 节来实施本发明的实施例。在其它实例中,未详细示出公知的电路、结构以及技术,以免模 糊对本描述的理解。
[0040] 说明书中对"一个实施例"、"实施例"、"示例实施例"等等的引用表明所描述的实 施例可以包括特定的特征、结构或特性,但是每个实施例不一定都包括该特定的特征、结构 或特性。此外,这些短语不一定表示同一实施例。此外,当联系实施例描述特定的特征、结 构或特性时,认为本领域普通技术人员能够知晓结合其它实施例来实现这种特征、结构或 特性,无论是否明确描述。
[0041] 概览
[0042] 在以下描述中,在描述该指令集架构中的该特定指令的操作之前,需要解释一些 项目。一种这样的项目称为"写掩码寄存器",通常用于断言用于有条件地控制逐个元素的 计算操作的操作数(在下文中,也可能使用术语掩码寄存器,表示诸如下文讨论的"k"寄存 器之类的写掩码寄存器)。如下文中使用,写掩码寄存器存储多个位(16、32、64等等),其 中写掩码寄存器中的每个有效位控制向量寄存器的打包数据元素在SMD处理期间的操作 /更新。典型地,存在超过一个写掩码寄存器可供处理器核使用。
[0043] 该指令集架构包括至少一些SMD指令,至少一些SMD指令指定向量操作并具有 用于从这些向量寄存器中选择源寄存器和/或目的地寄存器的字段(示例性的SIMD指令 可指定要对向量寄存器中的一个或多个向量寄存器的内容执行的向量操作,并且将该向量 操作的结果存储在向量寄存器之一中)。本发明的不同实施例可具有不同尺寸的向量寄存 器,并支持更多/更少/不同尺寸的数据元素。
[0044] 由SIMD指令指定的多位数据元素的尺寸(例如字节、字、双字、四字)确定向量 寄存器中的"数据元素位置"的位位置,并且向量操作数的尺寸确定数据元素的数量。打包 数据元素指的是存储在特定位置中的数据。换句话说,依赖于目的地操作数中的数据元素 的尺寸和目的地操作数的尺寸(目的地操作数中的位的总数量)(或者换句话说,取决于目 的地操作数的尺寸和该目的地操作数中的数据元素的数量),作为结果的向量操作数内的 多位数据元素位置的位位置改变(例如,如果作为结果的向量操作数的目的地是向量寄存 器,则该目的地向量寄存器内的多位数据元素位置的位位置改变)。例如,在对32位数据 元素进行操作的向量操作(数据元素位置〇占据位位置31:0,数据元素位置1占据位位置 63:32,以此类推)与对64位数据元素进行操作的向量操作(数据元素位置0占据位位置 63:0,数据元素位置1占据位位置127:64,以此类推)之间,多位数据元素的位位置不同。
[0045] 另外,如图5所示,根据本发明的一个实施例的1有效位向量写掩码元素的数量和 向量尺寸和数据元素尺寸之间的相关性。示出了 128位、256位以及512位的向量尺寸,不 过其他宽度也是可能的。考虑了 8位字节(B)、16位字(W)、32位双字(D)或单精度浮点以 及64位四字(Q)或双精度浮点的数据元素尺寸,不过其他宽度也是可能的。如图所示,当向 量尺寸是128位时,当向量的数据元素尺寸是8位时可将16位用于掩码操作,当向量的数 据元素尺寸是16位时可将8位用于掩码操作,当向量的数据元素尺寸是32位时可将4位 用于掩码操作,以及当向量的数据元素尺寸是64位时可将2位用于掩码操作。当向量尺寸 是256位时,当打包数据元素宽度是8位时可将32位用于掩码操作,当向量的数据元素尺 寸是16位时可将16位用于掩码操作,当向量的数据元素尺寸是32位时可将8位用于掩码 操作,以及当向量的数据元素尺寸是64位时可将4位用于掩码操作。当向量尺寸是512位 时,当向量的数据元素尺寸是8位时可将64位用于掩码操作,当向量的数据元素尺寸是16 位时可将32位用于掩码操作,当向量的数据元素尺寸是32位时可将16位用于掩码操作, 以及当向量的数据元素尺寸是64位时可将8位用于掩码操作。
[0046] 依赖于向量尺寸和数据元素尺寸的组合,可将所有64位、或仅64位的子集用作写 掩码。一般而言,当使用单个逐个元素的掩码控制位时,用于掩码操作的向量写掩码寄存器 中的多个位(有效位)等于以位表示的向量尺寸除以以位表示的向量的数据元素尺寸。
[0047] 如上文所指出的,写掩码寄存器包含对应于向量寄存器(或存储器位置)中的元 素的掩码位并跟踪应该对其执行操作的元素。因此,希望具有共同的操作,这些操作就向量 寄存器而论在这些掩码位上复制类似的行为,一般而言,允许调整写掩码寄存器内的这些 掩码位。
[0048] 以下是指令集中通常称为向量打包一元编码("VPUNARYENCODE")指令的指令的 实施例,以及可用于执行将在若干不同方面获益的这种指令的系统、架构、指令格式等的实 施例。VPUNARYENCODE的执行导致在写掩码寄存器中存储掩码位集合,其中掩码位的数据元 素定位对应于打包一元码。
[0049] 图1示出用于VPUNARYENCODE的示例性指令的操作的示例性示图。在所示示例中, 源向量寄存器101具有各自具有一元编码值的八个打包数据元素。向量寄存器中的打包数 据元素的数量依赖于向量寄存器尺寸和打包数据元素尺寸。尽管该示例仅示出16位目的 地写掩码寄存器,但是可以使用其它尺寸(诸如64位)。
[0050] 在图1的该示例中,源寄存器的数据元素位置0(SRC[0])存储值"1"。(为了便 于理解,该示例中的所有值是十进制格式的。)如背景中详述的,该十进制值的一元编码是 " 10"。但是,由于目的地写掩码寄存器的每个数据元素位置仅是单个位,一元成码必须占据 目的地写掩码寄存器103的两个位。如图所示,两个最低有效位用于存储一元编码值(即, MASK[1] = 1 并且 MASK[0] = 0)。
[0051] 源寄存器的下一最低有效数据元素位置(SRC[1])也为"1"。再次地,该值的一 元成码为"10",并且需要目的地写掩码寄存器的两个位,在该示例中,MASK[3] = 0并且 MASK[4] = 1。
[0052] 从最低有效数据元素位置开始,对源寄存器中每个连续数据元素位置进行求值, 直到两种情况之一发生。第一种情况是目的地写掩码寄存器103中的所有位置都被一元编 码值占据。如果这种情况发生,则指令可以输出编程器可访问的异常和/或简单地停止向 目的地寄存器进行写入。
[0053] 示例件格式
[0054] 该指令的示例性格式是"VPUNARYENCODE Kl,R2",其中目的地操作数K1是写掩码 寄存器,源操作数R2是向量寄存器(诸如128、256、512位寄存器等等)且VPUNARYENCODE 是指令的操作码。数据元素的尺寸可被定义在该指令的"前缀"中,诸如通过使用数据粒度 位的指示来定义。在多数实施例中,该位将指示每个数据元素是32位或64位,但是可以使 用其它变型。在一些实施例中,源操作数不是寄存器,而是存储器位置。
[0055] 示例件的执行方法
[0056] 图2示出处理器中VPUNARYENCODE指令的执行的实施例。在201,取出具有目的地 写掩码寄存器操作数和源向量寄存器操作数的VPUNARYENCODE指令。
[0057] 在203,由解码逻辑解码VPUNARYENCODE指令。依赖于指令的格式,在该阶段可解 释各种数据,诸如是否有数据变换,写入和/或检索哪些寄存器、访问哪些存储器地址等。
[0058] 在205,检索/读取源操作数值。例如,读取源向量寄存器。如果源操作数之一或 两者是存储器操作数,则检索与该操作数相关联的数据元素。在一些实施例中,将来自存储 器的数据元素存储在临时寄存器中。
[0059] 在207,由执行资源(诸如一个或多个功能单元)执行VPUNARYENCODE指令(或包 括这一指令的操作,诸如微操作),以确定源向量寄存器的每个打包数据元素位置中的一元 编码值。
[0060] 在209,将一元编码值以逐位格式存储到目的地写掩码寄存器中。如上所述,写掩 码寄存器中的一元编码可能要求一个以上的位位置。虽然分别示出了 207和209,但在一些 实施例中,它们可作为指令执行的一部分一起执行。
[0061] 图3示出处理VPUNARYENCODE指令的方法的实施例。在该实施例中,假定先前已 经执行了操作201-205中的一些(若不是全部),然而未示出那些操作,以免模糊下文呈现 的细节。例如,未示出取出和解码,也未示出操作数检索。
[0062] 在301,将要被求值的源向量寄存器的数据元素位置设置为源向量寄存器的最低 有效数据元素位置。例如,可以对图1示例中的SRC[0]求值。
[0063] 在303,确定数据元素位置的值以及其一元编码等效值。参见图1,对于该位置,值 为" 1",对应于一元编码值" 10 "。
[0064] 在一些实施例中,在305,判断在目的地写掩码寄存器中是否有足够的未使用位位 置。例如,是否有两个位可用于存储"10"?如果没有足够的位,则输出编程器可见的异常。
[0065] 如果有足够的位,则在307,将值"0"写入到目的地掩码寄存器的所确定值减1数 量的最低有效未使用位位置中,并且在写入〇后将" 1"写入到目的地写掩码寄存器的下一 最低有效未使用位位置中。用图1作为示例,MASK[0] = 0并且MASK[1] = 1。
[0066] 在309,判断在目的地写掩码寄存器中是否有任何剩余的未使用位位置。如果有未 使用位,则在311将下一最低有效打包数据元素位置设置为要求值,并且重复以上步骤。 [0067] 如果没有任何未使用位,则在313,判断是否源寄存器中的所有打包数据元素都已 被求值。如果它们全部都已被求值,则该指令完成。如果否,则在一些实施例中,输出编程 器可见的异常,该指令完成。
[0068] 图4示出执行VPUNARYENCODE的方法的示例性伪代码。
[0069] 示例性指令格式
[0070] 本文中所描述的指令的实施例可以不同的格式体现。例如,本文描述的指令可体 现为VEX、通用向量友好或其它格式。以下讨论VEX和通用向量友好格式的细节。另外,在 下文中详述示例性系统、架构、以及流水线。指令的实施例可在这些系统、架构、以及流水线 上执行,但是不限于详述的系统、架构、以及流水线。
[0071] VEX指令格式
[0072] VEX编码允许指令具有两个以上操作数,并且允许SMD向量寄存器比128位长。 VEX前缀的使用提供了三个操作数(或者更多)句法。例如,先前的两操作数指令执行改写 源操作数的操作(诸如A = A+B)。VEX前缀的使用使操作数执行非破坏性操作,诸如A = B+C。
[0073] 图6A示出示例性AVX指令格式,包括VEX前缀602、实操作码字段630、M〇D R/M字 节640、SIB字节650、位移字段662以及IMM8672。图6B示出来自图6A的哪些字段构成完 整操作码字段674和基础操作字段642。图6C示出来自图6A的哪些字段构成寄存器索引 字段644。
[0074] VEX前缀(字节0-2)602以三字节形式进行编码。第一字节是格式字段640 (VEX 字节0,位[7:0]),该格式字段640包含明确的C4字节值(用于区分C4指令格式的唯一 值)。第二-第三字节(VEX字节1-2)包括提供专用能力的多个位字段。具体地,REX字段 605 (VEX字节1,位[7-5])由VEX. R位字段(VEX字节1,位[7] - R)、VEX. X位字段(VEX字 节1,位[6] -X)以及VEX. B位字段(VEX字节1,位[5] -B)组成。这些指令的其他字段对 如在本领域中已知的寄存器索引的较低三个位(rrr、XXX以及bbb)进行编码,由此可通过 增加 VEX. R、VEX. X以及VEX. B来形成Rrrr、Xxxx以及Bbbb。操作码映射字段615 (VEX字节 1,位[4:0] -mmmmm)包括对隐含的前导操作码字节进行编码的内容。W字段664 (VEX字节 2,位[7] -W)由记号VEX. W表示,并且提供取决于该指令而不同的功能。VEX. ww 620 (VEX 字节2,位[6:3]-vvvv)的作用可包括如下:l)VEX.vvvv编码第一源寄存器操作数且对具有 两个或两个以上源操作数的指令有效,第一源寄存器操作数以反转(1补码)形式被指定; 2) VEX. vvvv编码目的地寄存器操作数,目的地寄存器操作数针对特定向量位移以1补码的 形式被指定;或者3) VEX. vvvv不编码任何操作数,保留该字段,并且应当包含1111b。如果 VEX. L 668尺寸字段(VEX字节2,位[2]-L) = 0,则它指示128位向量;如果VEX. L= 1,则 它指示256位向量。前缀编码字段625 (VEX字节2,位[1:0]-ρρ)提供了用于基础操作字段 的附加位。
[0075] 实操作码字段630 (字节3)还被称为操作码字节。操作码的一部分在该字段中被 指定。
[0076] MOD R/M 字段 640 (字节 4)包括 MOD 字段 642 (位[7-6] )、Reg 字段 644 (位[5-3])、 以及R/M字段646 (位[2-0])。Reg字段644的作用可包括如下:对目的地寄存器操作数或 源寄存器操作数(Rrrr中的rrr)进行编码;或者被视为操作码扩展且不用于对任何指令操 作数进行编码。R/M字段646的作用可包括如下:对引用存储器地址的指令操作数进行编 码;或者对目的地寄存器操作数或源寄存器操作数进行编码。
[0077] 比例、索引、基址(SIB)-比例字段650(字节5)的内容包括用于存储器地址生 成的SS652(位[7-6])。先前已经针对寄存器索引Xxxx和Bbbb参考了 SIB. XXX 654(位 [5-3])和 SIB. bbb 656 (位[2-0])的内容。
[0078] 位移字段662和立即数字段(IMM8) 672包含地址数据。
[0079] 通用向量友好指令格式
[0080] 向量友好指令格式是适于向量指令(例如,存在专用于向量操作的特定字段)的 指令格式。尽管描述了其中通过向量友好指令格式支持向量和标量运算两者的实施例,但 是替代实施例仅使用通过向量友好指令格式的向量运算。
[0081] 图7A-7B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的 框图。图7A是示出根据本发明的实施例的通用向量友好指令格式及其A类指令模板的框 图;而图7B是示出根据本发明的实施例的通用向量友好指令格式及其B类指令模板的框 图。具体地,针对通用向量友好指令格式700定义A类和B类指令模板,两者包括无存储器 访问705的指令模板和存储器访问720的指令模板。在向量友好指令格式的上下文中的术 语"通用"指不束缚于任何专用指令集的指令格式。
[0082] 尽管将描述其中向量友好指令格式支持以下情况的本发明的实施例,即64字节 向量操作数长度(或尺寸)与32位(4字节)或64位(8字节)数据元素宽度(或尺寸) (并且由此,64字节向量由16双字尺寸的元素或者替代地8四字尺寸的元素组成)、64字节 向量操作数长度(或尺寸)与16位(2字节)或8位(1字节)数据元素宽度(或尺寸)、 32字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或 8位(1字节)数据元素宽度(或尺寸)、以及16字节向量操作数长度(或尺寸)与32位 (4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸),但是 替代实施例可支持更大、更小、和/或不同的向量操作数尺寸(例如,256字节向量操作数) 与更大、更小或不同的数据元素宽度(例如,128位(16字节)数据元素宽度)。
[0083] 图7A中的A类指令模板包括:1)在无存储器访问705的指令模板内,示出无存储 器访问的完全舍入控制型操作710的指令模板、以及无存储器访问的数据变换型操作715 的指令模板;以及2)在存储器访问720的指令模板内,示出存储器访问的时效性725的指 令模板和存储器访问的非时效性730的指令模板。图7B中的B类指令模板包括:1)在无存 储器访问705的指令模板内,示出无存储器访问的写掩码控制的部分舍入控制型操作712 的指令模板以及无存储器访问的写掩码控制的vsize型操作717的指令模板;以及2)在存 储器访问720的指令模板内,示出存储器访问的写掩码控制727的指令模板。
[0084] 通用向量友好指令格式700包括以下列出的按照在图7A-7B中示出的顺序的如下 字段。
[0085] 格式字段740 -该字段中的特定值(指令格式标识符值)唯一地标识向量友好指 令格式,并且由此标识指令在指令流中以向量友好指令格式出现。由此,该字段对于仅具有 通用向量友好指令格式的指令集是不需要的,在这个意义上该字段是任选的。
[0086] 基础操作字段742 -其内容区分不同的基础操作。
[0087] 寄存器索引字段744-其内容直接或者通过地址生成来指定源或目的地操作数在 寄存器中或者在存储器中的位置。这些字段包括足够数量的位以从PxQ(例如,32x512、 16xl28、32xl024、64xl024)个寄存器组选择N个寄存器。尽管在一个实施例中N可高达三个 源和一个目的地寄存器,但是替代实施例可支持更多或更少的源和目的地寄存器(例如, 可支持高达两个源,其中这些源中的一个源还用作目的地,可支持高达三个源,其中这些源 中的一个源还用作目的地,可支持高达两个源和一个目的地)。
[0088] 修饰符(modifier)字段746 -其内容将指定存储器访问的以通用向量指令格式出 现的指令与不指定存储器访问的以通用向量指令格式出现的指令区分开;即在无存储器访 问705的指令模板与存储器访问720的指令模板之间进行区分。存储器访问操作读取和/ 或写入到存储器层次(在一些情况下,使用寄存器中的值来指定源和/或目的地地址),而 非存储器访问操作不这样(例如,源和/或目的地是寄存器)。尽管在一个实施例中,该字 段还在三种不同的方式之间选择以执行存储器地址计算,但是替代实施例可支持更多、更 少或不同的方式来执行存储器地址计算。
[0089] 扩充操作字段750 -其内容区分除基础操作以外还要执行各种不同操作中的哪 一个操作。该字段是针对上下文的。在本发明的一个实施例中,该字段被分成类字段768、 α字段752、以及β字段754。扩充操作字段750允许在单一指令而非2、3或4个指令中 执行多组共同的操作。
[0090] 比例字段760 -其内容允许用于存储器地址生成(例如,用于使用2ttw*索引+ 基址的地址生成)的索引字段的内容的按比例缩放。
[0091] 位移字段762A-其内容用作存储器地址生成的一部分(例如,用于使用2 索 引+基址+位移的地址生成)。
[0092] 位移因数字段762B (注意,位移字段762A直接在位移因数字段762B上的并置指 示使用一个或另一个)一其内容用作地址生成的一部分,它指定通过存储器访问的尺寸 (N)按比例缩放的位移因数,其中N是存储器访问中的字节数量(例如,用于使用2?*索 弓丨+基址+按比例缩放的位移的地址生成)。忽略冗余的低阶位,并且因此将位移因数字段 的内容乘以存储器操作数总尺寸(N)以生成在计算有效地址中使用的最终位移。N的值由 处理器硬件在运行时基于完整操作码字段774 (稍后在本文中描述)和数据操纵字段754C 确定。位移字段762A和位移因数字段762B可以不用于无存储器访问705的指令模板和/ 或不同的实施例可实现两者中的仅一个或不实现两者中的任一个,在这个意义上位移字段 762A和位移因数字段762B是任选的。
[0093] 数据元素宽度字段764 -其内容区分使用多个数据元素宽度中的哪一个(在一些 实施例中用于所有指令,在其他实施例中只用于一些指令)。如果支持仅一个数据元素宽度 和/或使用操作码的某一方面来支持数据元素宽度,则该字段是不需要的,在这个意义上 该字段是任选的。
[0094] 写掩码字段770 -其内容在每一数据元素位置的基础上控制目的地向量操作数 中的数据元素位置是否反映基础操作和扩充操作的结果。A类指令模板支持合并-写掩码 操作,而B类指令模板支持合并写掩码操作和归零写掩码操作两者。当合并时,向量掩码允 许在执行任何操作期间保护目的地中的任何元素集免于更新(由基础操作和扩充操作指 定);在另一实施例中,保持其中对应掩码位具有〇的目的地的每一元素的旧值。相反,当 归零时,向量掩码允许在执行任何操作期间使目的地中的任何元素集归零(由基础操作和 扩充操作指定);在一个实施例中,目的地的元素在对应掩码位具有〇值时被设为〇。该功 能的子集是控制执行的操作的向量长度的能力(即,从第一个到最后一个要修改的元素的 跨度),然而,被修改的元素不一定要是连续的。由此,写掩码字段770允许部分向量操作, 这包括加载、存储、算术、逻辑等。尽管描述了其中写掩码字段770的内容选择了多个写掩 码寄存器中的包含要使用的写掩码的一个写掩码寄存器(并且由此写掩码字段770的内容 间接地标识了要执行的掩码操作)的本发明的实施例,但是替代实施例相反或另外允许掩 码写字段770的内容直接地指定要执行的掩码操作。
[0095] 立即数字段772 -其内容允许对立即数的指定。该字段在实现不支持立即数的通 用向量友好格式中不存在且在不使用立即数的指令中不存在,在这个意义上该字段是任选 的。
[0096] 类字段768 -其内容在不同类的指令之间进行区分。参考图7A-B,该字段的内容 在A类和B类指令之间进行选择。在图7A-B中,圆角方形用于指示专用值存在于字段中 (例如,在图7A-B中分别用于类字段768的A类768A和B类768B)。
[0097] A类指令模板
[0098] 在A类非存储器访问705的指令模板的情况下,α字段752被解释为其内容区分 要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的舍入型操作710和无存 储器访问的数据变换型操作715的指令模板分别指定舍入752Α. 1和数据变换752Α. 2)的 RS字段752Α,而β字段754区分要执行指定类型的操作中的哪一种。在无存储器访问705 指令模板中,比例字段760、位移字段762Α以及位移比例字段762Β不存在。
[0099] 无存储器访问的指令模板一完全舍入控制型操作
[0100] 在无存储器访问的完全舍入控制型操作710的指令模板中,β字段754被解释为 其内容提供静态舍入的舍入控制字段754Α。尽管在本发明的所述实施例中舍入控制字段 754A包括抑制所有浮点异常(SAE)字段756和舍入操作控制字段758,但是替代实施例可 支持、可将这些概念两者都编码成相同的字段或者仅具有这些概念/字段中的一个或另一 个(例如,可仅有舍入操作控制字段758)。
[0101] SAE字段756 -其内容区分是否停用异常事件报告;当SAE字段756的内容指示 启用抑制时,给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序。
[0102] 舍入操作控制字段758 -其内容区分执行一组舍入操作中的哪一个(例如,向上 舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段758允许在每一指令 的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一 个实施例中,舍入操作控制字段750的内容优先于该寄存器值。
[0103] 无存储器访问的指令模板一数据变换型操作
[0104] 在无存储器访问的数据变换型操作715的指令模板中,β字段754被解释为数据 变换字段754Β,其内容区分要执行多个数据变换中的哪一个(例如,无数据变换、混合、广 播)。
[0105] 在Α类存储器访问720的指令模板的情况下,α字段752被解释为驱逐提示字段 752Β,其内容区分要使用驱逐提示中的哪一个(在图7Α中,对于存储器访问时效性725的 指令模板和存储器访问非时效性730的指令模板分别指定时效性的752Β. 1和非时效性的 752Β. 2),而β字段754被解释为数据操纵字段754C,其内容区分要执行多个数据操纵操作 (也称为基元(primitive))中的哪一个(例如,无操纵、广播、源的向上转换、以及目的地的 向下转换)。存储器访问720的指令模板包括比例字段760、以及任选的位移字段762A或 位移比例字段762B。
[0106] 向量存储器指令使用转换支持来执行来自存储器的向量加载并将向量存储到存 储器。如同寻常的向量指令,向量存储器指令以数据元素式的方式与存储器来回传输数据, 其中实际传输的元素由选为写掩码的向量掩码的内容规定。
[0107] 存储器访问的指令模板一时效性的
[0108] 时效性的数据是可能足够快地重新使用以从高速缓存受益的数据。然而,这是提 示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
[0109] 存储器访问的指令模板一非时效性的
[0110] 非时效性的数据是不可能足够快地重新使用以从第一级高速缓存中的高速缓存 受益且应当被给予驱逐优先级的数据。然而,这是提示,且不同的处理器可以不同的方式实 现它,包括完全忽略该提示。
[0111] B类指令模板
[0112] 在B类指令模板的情况下,α字段752被解释为写掩码控制⑵字段752C,其内 容区分由写掩码字段770控制的写掩码操作应当是合并还是归零。
[0113] 在Β类非存储器访问705的指令模板的情况下,β字段754的一部分被解释为RL 字段757Α,其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的 写掩码控制部分舍入控制类型操作712的指令模板和无存储器访问的写掩码控制VSIZE型 操作717的指令模板分别指定舍入757Α. 1和向量长度(VSIZE) 757Α. 2),而β字段754的 其余部分区分要执行指定类型的操作中的哪一种。在无存储器访问705指令模板中,比例 字段760、位移字段762Α以及位移比例字段762Β不存在。
[0114] 在无存储器访问的写掩码控制的部分舍入控制型操作710的指令模板中,β字段 754的其余部分被解释为舍入操作字段759Α,并且停用异常事件报告(给定指令不报告任 何种类的浮点异常标志且不唤起任何浮点异常处理程序)。
[0115] 舍入操作控制字段759Α -正如舍入操作控制字段758,其内容区分执行一组舍入 操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控 制字段759Α允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模 式的控制寄存器的本发明的一个实施例中,舍入操作控制字段750的内容优先于该寄存器 值。
[0116] 在无存储器访问的写掩码控制VSIZE型操作717的指令模板中,β字段754的其 余部分被解释为向量长度字段759Β,其内容区分要执行多个数据向量长度中的哪一个(例 如,128字节、256字节、或512字节)。
[0117] 在Β类存储器访问720的指令模板的情况下,β字段754的一部分被解释为广播 字段757Β,其内容区分是否要执行广播型数据操纵操作,而β字段754的其余部分被解释 为向量长度字段759Β。存储器访问720的指令模板包括比例字段760、以及任选的位移字 段762Α或位移比例字段762Β。
[0118] 针对通用向量友好指令格式700,示出完整操作码字段774包括格式字段740、基 础操作字段742以及数据元素宽度字段764。尽管示出了其中完整操作码字段774包括所 有这些字段的一个实施例,但是在不支持所有这些字段的实施例中,完整操作码字段774 包括少于所有的这些字段。完整操作码字段774提供操作码(opcode)。
[0119] 扩充操作字段750、数据元素宽度字段764以及写掩码字段770允许在每一指令的 基础上以通用向量友好指令格式指定这些特征。
[0120] 写掩码字段和数据元素宽度字段的组合创建各种类型的指令,因为这些指令允许 基于不同的数据元素宽度应用该掩码。
[0121] 在A类和B类内出现的各种指令模板在不同的情形下是有益的。在本发明的一些 实施例中,不同处理器或者处理器内的不同核可支持仅A类、仅B类、或者可支持两类。举 例而言,旨在用于通用计算的高性能通用无序核可仅支持B类,旨在主要用于图形和/或科 学(吞吐量)计算的核可仅支持A类,并且旨在用于两者的核可支持两者(当然,具有来自 两类的模板和指令的一些混合、但是并非来自两类的所有模板和指令的核在本发明的范围 内)。同样,单一处理器可包括多个核,所有核支持相同的类或者其中不同的核支持不同的 类。举例而言,在具有单独的图形和通用核的处理器中,图形核中的旨在主要用于图形和/ 或科学计算的一个核可仅支持A类,而通用核中的一个或多个可以是具有旨在用于通用计 算的仅支持B类的无序执行和寄存器重命名的高性能通用核。不具有单独的图形核的另一 处理器可包括既支持A类又支持B类的一个或多个通用有序或无序核。当然,在本发明的不 同实施例中,来自一类的特征也可在其他类中实现。可使以高级语言撰写的程序成为(例 如,及时编译或者统计编译)各种不同的可执行形式,包括:1)仅具有用于执行的目标处理 器支持的类的指令的形式;或者2)具有使用所有类的指令的不同组合而编写的替代例程 且具有选择这些例程以基于由当前正在执行代码的处理器支持的指令而执行的控制流代 码的形式。
[0122] 示例性专用向量友好指令格式
[0123] 图8是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图8示 出专用向量友好指令格式800,其指定位置、尺寸、解释和字段的次序、以及那些字段中的一 些字段的值,在这个意义上向量友好指令格式800是专用的。专用向量友好指令格式800可 用于扩展x86指令集,并且由此一些字段类似于在现有x86指令集及其扩展(例如,AVX)中 使用的那些字段或与之相同。该格式保持与具有扩展的现有x86指令集的前缀编码字段、 实操作码字节字段、MOD R/M字段、SIB字段、位移字段、以及立即数字段一致。示出来自图 7的字段,来自图8的字段映射到来自图7的字段。
[0124] 应当理解,虽然出于说明的目的在通用向量友好指令格式700的上下文中参考专 用向量友好指令格式800描述了本发明的实施例,但是本发明不限于专用向量友好指令格 式800,除非另有声明。例如,通用向量友好指令格式700构想各种字段的各种可能的尺寸, 而专用向量友好指令格式800被示为具有特定尺寸的字段。作为具体示例,尽管在专用向 量友好指令格式800中数据元素宽度字段764被示为一位字段,但是本发明不限于此(即, 通用向量友好指令格式700构想数据元素宽度字段764的其他尺寸)。
[0125] 通用向量友好指令格式700包括以下列出的按照图8A中示出的顺序的如下字段。
[0126] EVEX前缀(字节0-3) 802 -以四字节形式进行编码。
[0127] 格式字段740(EVEX字节0,位[7:0]) -第一字节(EVEX字节0)是格式字段740, 并且它包含0x62 (在本发明的一个实施例中用于区分向量友好指令格式的唯一值)。
[0128] 第二一第四字节(EVEX字节1-3)包括提供专用能力的多个位字段。
[0129] REX 字段 805 (EVEX 字节 1,位[7-5]) -由 EVEX. R 位字段(EVEX 字节 1,位[7] - R)、 EVEX. X 位字段(EVEX 字节 1,位[6] - X)以及(757BEX 字节 1,位[5] - B)组成。EVEX. R、 EVEX. X和EVEX. B位字段提供与对应VEX位字段相同的功能,并且使用1补码的形式进行编 码,g卩ΖΜΜ0被编码为1111B,ZMM15被编码为0000B。这些指令的其他字段对如在本领域中 已知的寄存器索引的较低三个位(rrr、XXX、以及bbb)进行编码,由此可通过增加 EVEX. R、 EVEX. X 以及 EVEX. B 来形成 Rrrr、Xxxx 以及 Bbbb。
[0130] REX'字段710-这是REX'字段710的第一部分,并且是用于对扩展的32个寄存器 集合的较高16个或较低16个寄存器进行编码的EVEX. R'位字段(EVEX字节1,位[4] - R')。 在本发明的一个实施例中,该位与以下指示的其他位一起以位反转的格式存储以(在公知 x86的32位模式下)与实操作码字节是62的BOUND指令进行区分,但是在MOD R/Μ字段 (在下文中描述)中不接受MOD字段中的值11 ;本发明的替代实施例不以反转的格式存储 该指示的位以及其他指示的位。值1用于对较低16个寄存器进行编码。换句话说,通过组 合EVEX. R'、EVEX. R、以及来自其他字段的其他RRR来形成R' Rrrr。
[0131] 操作码映射字段815(EVEX字节1,位[3:0] -_m)-其内容对隐含的前导操作码 字节(0F、0F 38、或0F 3)进行编码。
[0132] 数据元素宽度字段764 (EVEX字节2,位[7] -W) -由记号EVEX. W表示。EVEX. W 用于定义数据类型(32位数据元素或64位数据元素)的粒度(尺寸)。
[0133] EVEX. vvvv 820 (EVEX 字节 2,位[6:3]-vvvv) - EVEX. vvvv 的作用可包括如下:1) EVEX. vvvv编码第一源寄存器操作数且对具有两个或两个以上源操作数的指令有效,第一 源寄存器操作数以反转(1补码)的形式被指定;2) EVEX. vvvv编码目的地寄存器操作数, 目的地寄存器操作数针对特定向量位移以1补码的形式被指定;或者3)EVEX. vvvv不编码 任何操作数,保留该字段,并且应当包含1111b。由此,EVEX.ww字段820对以反转(1补 码)的形式存储的第一源寄存器指定符的4个低阶位进行编码。取决于该指令,额外不同 的EVEX位字段用于将指定符尺寸扩展到32个寄存器。
[0134] EVEX.U 768类字段(EVEX字节2,位[2]-U) -如果EVEX.U = 0,则它指示A类或 EVEX. U0 ;如果 EVEX. U = 1,则它指示 B 类或 EVEX. U1。
[0135] 前缀编码字段825(EVEX字节2,位[1:0]-ρρ) -提供了用于基础操作字段的附加 位。除了对以EVEX前缀格式的传统SSE指令提供支持以外,这也具有压缩SMD前缀的益 处(EVEX前缀只需要2位,而不是需要字节来表达SMD前缀)。在一个实施例中,为了支 持使用以传统格式和以EVEX前缀格式的SMD前缀(66H、F2H、F3H)的传统SSE指令,将这 些传统SMD前缀编码成SMD前缀编码字段;并且在运行时在提供给解码器的PLA之前被 扩展成传统SMD前缀(因此PLA可执行传统和EVEX格式的这些传统指令,而无需修改)。 虽然较新的指令可将EVEX前缀编码字段的内容直接作为操作码扩展,但是为了一致性,特 定实施例以类似的方式扩展,但允许由这些传统SIMD前缀指定不同的含义。替代实施例可 重新设计PLA以支持2位SMD前缀编码,并且由此不需要扩展。
[0136] α 字段 752 (EVEX 字节 3,位[7] - H1,也称为 EVEX. HI、EVEX. rs、EVEX. RL、EVEX. 写掩码控制、以及EVEX. N;也以α示出)如上所述,该字段是针对上下文的
[0137] β 字段 754(EVEX 字节 3,位[6:4]-SSS,也称为 EVEX. s2_Q、EVEX. r2_Q、EVEX. rrl、 EVEX. LLO、EVEX. LLB ;也以β β β示出)一如先前所述,该字段是针对上下文的。
[0138] REX'字段710 -这是REX'字段的其余部分,并且是可用于对扩展的32个寄存器集 合的较高16个或较低16个寄存器进行编码的EVEX. V'位字段(EVEX字节3,位[3] - V')。 该位以位反转的格式存储。值1用于对较低16个寄存器进行编码。换句话说,通过组合 EVEX. V'、EVEX. vvvv 来形成 V' VVVV。
[0139] 写掩码字段770(EVEX字节3,位[2:0]_kkk) -其内容指定写掩码寄存器中的寄存 器索引,如先前所述。在本发明的一个实施例中,特定值EVEX. kkk = 000具有暗示没有写 掩码用于特定指令的特殊行为(这可以各种方式实现,包括使用硬连线到所有的写掩码或 者旁路掩码硬件的硬件来实现)。
[0140] 实操作码字段830 (字节4)还被称为操作码字节。操作码的一部分在该字段中被 指定。
[0141] MOD R/M字段840 (字节5)包括MOD字段842、Reg字段844、以及R/M字段846。 如先前所述的,MOD字段842的内容将存储器访问和非存储器访问操作区分开。Reg字段 844的作用可被归结为两种情形:对目的地寄存器操作数或源寄存器操作数进行编码;或 者被视为操作码扩展且不用于对任何指令操作数进行编码。R/M字段846的作用可包括如 下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操 作数进行编码。
[0142] 比例、索引、基址(SIB)字节(字节6)-如先前所述的,比例字段750的内容用于 存储器地址生成。SIB. XXX 854和SIB. bbb 856 -先前已经针对寄存器索引Xxxx和Bbbb 提及了这些字段的内容。
[0143] 位移字段762A (字节7-10) -当MOD字段842包含10时,字节7-10是位移字段 762A,并且它与传统32位位移(disp32) -样地工作,并且以字节粒度工作。
[0144] 位移因数字段762B (字节7) -当MOD字段842包含01时,字节7是位移因数字 段762B。该字段的位置与传统x86指令集8位位移(disp8)的位置相同,它以字节粒度工 作。由于disp8是符号扩展的,因此它仅能在-128和127字节偏移量之间寻址;在64字节 高速缓存行的方面,disp8使用可被设为仅四个真正有用的值-128、-64、0和64的8位;由 于常常需要更大的范围,所以使用disp32 ;然而,disp32需要4个字节。与disp8和disp32 对比,位移因数字段762B是disp8的重新解释;当使用位移因数字段762B时,通过将位移 因数字段的内容乘以存储器操作数访问的尺寸(N)来确定实际位移。该类型的位移被称为 disp8*N。这减小了平均指令长度(单个字节用于位移,但具有大得多的范围)。这种压缩 位移基于有效位移是存储器访问的粒度的倍数的假设,并且由此地址偏移量的冗余低阶位 不需要被编码。换句话说,位移因数字段762B替代传统x86指令集8位位移。由此,位移 因数字段762B以与x86指令集8位位移相同的方式(因此在ModRM/SIB编码规则中没有 变化)进行编码,唯一的不同在于,将disp8超载至disp8*N。换句话说,在编码规则或编码 长度中没有变化,而仅在通过硬件对位移值的解释中有变化(这需要按存储器操作数的尺 寸按比例缩放位移量以获得字节式地址偏移量)。
[0145] 立即数字段772如先前所述地操作。
[0146] 完整操作码字段
[0147] 图8B是示出根据本发明的实施例的构成完整操作码字段774的具有专用向量友 好指令格式800的字段的框图。具体地,完整操作码字段774包括格式字段740、基础操作 字段742、以及数据元素宽度(W)字段764。基础操作字段742包括前缀编码字段825、操作 码映射字段815以及实操作码字段830。
[0148] 寄存器索引字段
[0149] 图8C是示出根据本发明的一个实施例的构成寄存器索引字段744的具有专用向 量友好指令格式800的字段的框图。具体地,寄存器索引字段744包括REX字段805、REX' 字段 810、MODR/M. reg 字段 844、MODR/M. r/m 字段 846、VVVV 字段 820、XXX 字段 854 以及 bbb 字段 856。
[0150] 扩充操作字段
[0151] 图8D是示出根据本发明的一个实施例的构成扩充操作字段750的具有专用向量 友好指令格式800的字段的框图。当类(U)字段768包含0时,它表明EVEX.U0(A类768A); 当它包含1时,它表明EVEX. U1 (B类768B)。当U = 0且MOD字段842包含11 (表明无存储 器访问操作)时,α字段752 (EVEX字节3,位[7] - EH)被解释为rs字段752A。当rs字 段752A包含1 (舍入752A. 1)时,β字段754 (EVEX字节3,位[6:4] - SSS)被解释为舍入 控制字段754Α。舍入控制字段754Α包括一位SAE字段756和两位舍入操作字段758。当 rs字段752Α包含0 (数据变换752Α. 2)时,β字段754 (EVEX字节3,位[6:4] - SSS)被解 释为三位数据变换字段754Β。当U = 0且MOD字段842包含00、01或10 (表明存储器访问 操作)时,α字段752(EVEX字节3,位[7] -EH)被解释为驱逐提示(EH)字段752B且β 字段754 (EVEX字节3,位[6:4] -SSS)被解释为三位数据操纵字段754C。
[0152] 当U = 1时,α字段752 (EVEX字节3,位[7] - EH)被解释为写掩码控制(Z)字段 752C。当U = 1且MOD字段842包含11 (表明无存储器访问操作)时,β字段754的一部 分(EVEX字节3,位[4] - SQ)被解释为RL字段757Α ;当它包含1 (舍入757Α. 1)时,β字 段754的其余部分(EVEX字节3,位[6-5] - S2J被解释为舍入操作字段759A,而当RL字段 757A包含0(VSIZE757.A2)时,β字段754的其余部分(EVEX字节3,位[6-5=-?^被解释 为向量长度字段759B(EVEX字节3,位[6-5] -Lg)。当U= 1且MOD字段842包含00、01 或1〇(表明存储器访问操作)时,β字段754(EVEX字节3,位[6:4] -SSS)被解释为向量 长度字段759B (EVEX字节3,位[6-5] - Lg)和广播字段757B (EVEX字节3,位[4] - B)。
[0153] 示例性寄存器架构
[0154] 图9是根据本发明的一个实施例的寄存器架构900的框图。在所示出的实施例中, 有32个512位宽的向量寄存器910 ;这些寄存器被引用为zmmO到zmm31。较低的16zmm寄 存器的较低阶256个位覆盖在寄存器ymm〇-16上。较低的16zmm寄存器的较低阶128个位 (ymm寄存器的较低阶128个位)覆盖在寄存器xmmO-15上。专用向量友好指令格式800对 这些覆盖的寄存器组操作,如在以下表格中所示的。
[0155] 可调节向量长类 操作 寄存器 Jt____ 不包括向量长A(图7A;U=0) 710, 715, 725, zmni寄存器 度字段759B的_[T30_| (向量长度是
[0156] 指令模板___64字节) B (图 7B; 712 zmm寄存器 U=l) (向量长度是 ____64字节) 包括向量长度B (图 7B; 717,727 zmm、ymm、 字段759B的指U=l) 或xmm寄存器 令模板 (向量长度是 64字节、32字 节、或16字 节),取决于向 量长度字段 ___ 759B_
[0157] 换句话说,向量长度字段759B在最大长度与一个或多个其他较短长度之间进行 选择,其中每一这种较短长度是前一长度的一半,并且不具有向量长度字段759B的指令模 板在最大向量长度上操作。此外,在一个实施例中,专用向量友好指令格式800的B类指令 模板对打包或标量单/双精度浮点数据以及打包或标量整数数据操作。标量操作是对zmm/ ymm/xmm寄存器中的最低阶数据元素位置执行的操作;取决于本实施例,较高阶数据元素 位置保持与在指令之前相同或者归零。
[0158] 写掩码寄存器915 -在所示的实施例中,存在8个写掩码寄存器(k0至k7),每一 写掩码寄存器的尺寸是64位。在替代实施例中,写掩码寄存器915的尺寸是16位。如先前 所述的,在本发明的一个实施例中,向量掩码寄存器k0无法用作写掩码;当正常指示k0的 编码用作写掩码时,它选择硬连线的写掩码OxFFFF,从而有效地停用该指令的写掩码操作。
[0159] 通用寄存器925--在所示出的实施例中,有十六个64位通用寄存器,这些寄存 器与现有的x86寻址模式一起使用来寻址存储器操作数。这些寄存器通过名称RAX、RBX、 RCX、RDX、RBP、RSI、RDI、RSP 以及 R8 到 R15 来引用。
[0160] 标量浮点堆栈寄存器组(x87堆栈)945,在其上面重叠了 MMX打包整数平坦寄存器 组950--在所示出的实施例中,x87堆栈是用于使用x87指令集扩展来对32/64/80位浮 点数据执行标量浮点运算的八元素堆栈;而使用MMX寄存器来对64位打包整数数据执行操 作,以及为在MMX和XMM寄存器之间执行的一些操作保存操作数。
[0161] 本发明的替代实施例可以使用较宽的或较窄的寄存器。另外,本发明的替代实施 例可以使用更多、更少或不同的寄存器组和寄存器。
[0162] 示例性核架构、处理器和计算机架构
[0163] 处理器核可以用出于不同目的的不同方式在不同的处理器中实现。例如,这样的 核的实现可以包括:1)旨在用于通用计算的通用有序核;2)预期用于通用计算的高性能通 用无序核;3)旨在主要用于图形和/或科学(吞吐量)计算的专用核。不同处理器的实现 可包括:1)包括旨在用于通用计算的一个或多个通用有序核和/或旨在用于通用计算的一 个或多个通用无序核的CPU;以及2)包括旨在主要用于图形和/或科学(吞吐量)的一个 或多个专用核的协处理器。这样的不同处理器导致不同的计算机系统架构,其可包括:1) 在与CPU分开的芯片上的协处理器;2)在与CPU相同的封装中但分开的管芯上的协处理 器;3)与CPU在相同管芯上的协处理器(在该情况下,这样的协处理器有时被称为诸如集 成图形和/或科学(吞吐量)逻辑等专用逻辑,或被称为专用核);以及4)可以将所描述 的CPU(有时被称为应用核或应用处理器)、以上描述的协处理器和附加功能包括在同一管 芯上的芯片上系统。接着描述示例性核架构,随后描述示例性处理器和计算机架构。
[0164] 示例性核架构
[0165] 有序和无序核框图
[0166] 图10A是示出根据本发明的各实施例的示例性有序流水线和示例性的寄存器重 命名的无序发布/执行流水线的框图。图10B是示出根据本发明的各实施例的要包括在处 理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核 的框图。图10A-B中的实线框示出了有序流水线和有序核,而可选增加的虚线框示出了寄 存器重命名的、无序发布/执行流水线和核。给定有序方面是无序方面的子集的情况下,将 描述无序方面。
[0167] 在图10A中,处理器流水线1000包括取出级1002、长度解码级1004、解码级1006、 分配级1008、重命名级1010、调度(也称为分派或发布)级1012、寄存器读取/存储器读取 级1014、执行级1016、写回/存储器写入级1018、异常处理级1022和提交级1024。
[0168] 图10B示出了包括耦合到执行引擎单元1050的前端单元1030的处理器核1090, 且执行引擎单元和前端单元两者都耦合到存储器单元1070。核1090可以是精简指令集计 算(RISC)核、复杂指令集计算(CISC)核、超长指令字(VLIW)核或混合或替代核类型。作 为又一选项,核1090可以是专用核,诸如例如网络或通信核、压缩引擎、协处理器核、通用 计算图形处理器单元(GPGPU)核、或图形核等等。
[0169] 前端单元1030包括耦合到指令高速缓存单元1034的分支预测单元1032,该指令 高速缓存单元耦合到指令转换后备缓冲器(TLB) 1036,该指令转换后备缓冲器耦合到指令 取出单元1038,指令取出单元耦合到解码单元1040。解码单元1040(或解码器)可解码指 令,并生成从原始指令解码出的、或以其他方式反映原始指令的、或从原始指令导出的一个 或多个微操作、微代码进入点、微指令、其他指令、或其他控制信号作为输出。解码单元1040 可使用各种不同的机制来实现。合适的机制的示例包括但不限于查找表、硬件实现、可编程 逻辑阵列(PLA)、微代码只读存储器(ROM)等。在一个实施例中,核1090包括(例如,在解 码单元1040中或否则在前端单元1030内的)用于存储某些宏指令的微代码的微代码ROM 或其他介质。解码单元1040耦合到执行引擎单元1050中的重命名/分配单元1052。
[0170] 执行引擎单元1050包括重命名/分配器单元1052,该重命名/分配器单元1052 耦合至引退单元1054和一个或多个调度器单元1056的集合。调度器单元1056表示任何 数目的不同调度器,包括预留站、中央指令窗等。调度器单元1056耦合到物理寄存器组单 元1058。每个物理寄存器组单元1058表示一个或多个物理寄存器组,其中不同的物理寄 存器组存储一种或多种不同的数据类型,诸如标量整数、标量浮点、打包整数、打包浮点、向 量整数、向量浮点、状态(例如,作为要执行的下一指令的地址的指令指针)等。在一个实 施例中,物理寄存器组单元1058包括向量寄存器单元、写掩码寄存器单元和标量寄存器单 元。这些寄存器单元可以提供架构向量寄存器、向量掩码寄存器、和通用寄存器。物理寄存 器组单元1058与引退单元1054重叠以示出可以用来实现寄存器重命名和无序执行的各种 方式(例如,使用重新排序缓冲器和引退寄存器组;使用将来的文件、历史缓冲器和引退寄 存器组;使用寄存器映射和寄存器池等等)。引退单元1054和物理寄存器组单元1058耦 合到执行群集1060。执行群集1060包括一个或多个执行单元1062的集合和一个或多个存 储器访问单元1064的集合。执行单元1062可以对各种类型的数据(例如,标量浮点、打包 整数、打包浮点、向量整型、向量浮点)执行各种操作(例如,移位、加法、减法、乘法)。尽管 一些实施例可以包括专用于特定功能或功能集合的多个执行单元,但其他实施例可包括全 部执行所有功能的仅一个执行单元或多个执行单元。调度器单元1056、物理寄存器组单元 1058和执行群集1060被示为可能有多个,因为某些实施例为某些类型的数据/操作创建分 开的流水线(例如,标量整型流水线、标量浮点/打包整型/打包浮点/向量整型/向量浮 点流水线,和/或各自具有其自己的调度器单元、物理寄存器组单元和/或执行群集的存储 器访问流水线--以及在分开的存储器访问流水线的情况下,实现其中仅该流水线的执行 群集具有存储器访问单元1064的某些实施例)。还应当理解,在使用分开的流水线的情况 下,这些流水线中的一个或多个可以为无序发布/执行,并且其余流水线可以为有序发布/ 执行。
[0171] 存储器访问单元1064的集合耦合到存储器单元1070,该存储器单元包括耦合到 数据高速缓存单元1074的数据TLB单元1072,其中数据高速缓存单元耦合到二级(L2)高 速缓存单元1076。在一个示例性实施例中,存储器访问单元1064可以包括加载单元、存储 地址单元和存储数据单元,这些单元中的每一个单元耦合到存储器单元1070中的数据TLB 单元1072。指令高速缓存单元1034还耦合到存储器单元1070中的二级(L2)高速缓存单 元1076。L2高速缓存单元1076耦合到一个或多个其他级的高速缓存,并最终耦合到主存 储器。
[0172] 作为示例,示例性寄存器重命名的、无序发布/执行核架构可以如下实现流水线 1000 :1)指令取出1038执行取出和长度解码级1002和1004 ;2)解码单元1040执行解码 级1006 ;3)重命名/分配器单元1052执行分配级1008和重命名级1010 ;4)调度器单元 1056执行调度级1012 ;5)物理寄存器组单元1058和存储器单元1070执行寄存器读取/存 储器读取级1014 ;执行群集1060执行执行级1016 ;6)存储器单元1070和物理寄存器组单 元1058执行写回/存储器写入级1018 ;7)各单元可牵涉到异常处理级1022 ;以及8)引退 单元1054和物理寄存器组单元1058执行提交级1024。
[0173] 核1090可支持一个或多个指令集(例如,x86指令集(具有与较新版本一起添加 的一些扩展);加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集;加利福尼州桑尼 维尔市的ARM控股的ARM指令集(具有诸如NEON等可选附加扩展)),其中包括本文中描述 的各指令。在一个实施例中,核1090包括用于支持打包数据指令集扩展(例如,AVXUAVX2 和/或先前描述的一些形式的一般向量友好指令格式(U = 0和/或U= 1))的逻辑,从而 允许很多多媒体应用使用的操作能够使用打包数据来执行。
[0174] 应当理解,核可支持多线程化(执行两个或更多个并行的操作或线程的集合),并 且可以按各种方式来完成该多线程化,此各种方式包括时分多线程化、同步多线程化(其 中单个物理核为物理核正在同步多线程化的各线程中的每一个线程提供逻辑核)、或其组 合(例如,时分取出和解码以及此后诸如用Intel?超线程化技术来同步多线程化)。
[0175] 尽管在无序执行的上下文中描述了寄存器重命名,但应当理解,可以在有序架构 中使用寄存器重命名。尽管所示出的处理器的实施例还包括分开的指令和数据高速缓存单 元1034/1074以及共享L2高速缓存单元1076,但替代实施例可以具有用于指令和数据两 者的单个内部高速缓存,诸如例如一级(L1)内部高速缓存或多个级别的内部高速缓存。在 一些实施例中,该系统可包括内部高速缓存和在核和/或处理器外部的外部高速缓存的组 合。或者,所有高速缓存都可以在核和/或处理器的外部。
[0176] 具体的示例性有序核架构
[0177] 图11A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑 块之一(包括相同类型和/或不同类型的其他核)。根据应用,这些逻辑块通过高带宽的互 连网络(例如,环形网络)与一些固定的功能逻辑、存储器I/O接口和其它必要的I/O逻辑 通信。
[0178] 图11A是根据本发明的各实施例的单个处理器核以及它与管芯上互连网络1102 的连接及其二级(L2)高速缓存的本地子集1104的框图。在一个实施例中,指令解码器1100 支持具有打包数据指令集扩展的x86指令集。L1高速缓存1106允许对进入标量和向量单 元中的高速缓存存储器的低等待时间访问。尽管在一个实施例中(为了简化设计),标量 单元1108和向量单元1110使用分开的寄存器集合(分别为标量寄存器1112和向量寄存 器1114),并且在这些寄存器之间转移的数据被写入到存储器并随后从一级(L1)高速缓存 1106读回,但是本发明的替代实施例可以使用不同的方法(例如使用单个寄存器集合或包 括允许数据在这两个寄存器组之间传输而无需被写入和读回的通信路径)。
[0179] L2高速缓存的本地子集1104是全局L2高速缓存的一部分,该全局L2高速缓存被 划分成多个分开的本地子集,即每个处理器核一个本地子集。每个处理器核具有到其自己 的L2高速缓存1104的本地子集的直接访问路径。被处理器核读出的数据被存储在其L2 高速缓存子集1104中,并且可以与其他处理器核访问其自己的本地L2高速缓存子集并行 地被快速访问。被处理器核写入的数据被存储在其自己的L2高速缓存子集1104中,并在 必要的情况下从其它子集清除。环形网络确保共享数据的一致性。环形网络是双向的,以 允许诸如处理器核、L2高速缓存和其它逻辑块之类的代理在芯片内彼此通信。每个环形数 据路径为每个方向1012位宽。
[0180] 图11B是根据本发明的各实施例的图11A中的处理器核的一部分的展开图。图 11B包括L1高速缓存1104的L1数据高速缓存1106A部分,以及关于向量单元1110和向量 寄存器1114的更多细节。具体地说,向量单元1110是16宽向量处理单元(VPU)(见16宽 ALU 1128),该单元执行整型、单精度浮点以及双精度浮点指令中的一个或多个。该VPU通 过混合单元1120支持对寄存器输入的混合、通过数值转换单元1122A-B支持数值转换、并 通过复制单元1124支持对存储器输入的复制。写掩码寄存器1126允许断言所得的向量写 入。
[0181] 具有集成存储器控制器和图形器件的处理器
[0182] 图12是根据本发明的各实施例可能具有一个以上核、可能具有集成存储器控制 器、以及可能具有集成图形器件的处理器1200的框图。图12中的实线框示出具有单个核 1202A、系统代理1210、一个或多个总线控制器单元1216的集合的处理器1200,而虚线框的 可选附加示出具有多个核1202A-N、系统代理单元1210中的一个或多个集成存储器控制器 单元1214的集合以及专用逻辑1208的替代处理器1200。
[0183] 因此,处理器1200的不同实现可包括:1) CPU,其中专用逻辑1208是集成图形和/ 或科学(吞吐量)逻辑(其可包括一个或多个核),并且核1202A-N是一个或多个通用核 (例如,通用的有序核、通用的无序核、这两者的组合);2)协处理器,其中核1202A-N是旨 在主要用于图形和/或科学(吞吐量)的多个专用核;以及3)协处理器,其中核1202A-N 是多个通用有序核。因此,处理器1200可以是通用处理器、协处理器或专用处理器,诸如例 如网络或通信处理器、压缩引擎、图形处理器、GPGPU(通用图形处理单元)、高吞吐量的集 成众核(MIC)协处理器(包括30个或更多核)、或嵌入式处理器等。该处理器可以被实现 在一个或多个芯片上。处理器1200可以是一个或多个衬底的一部分,和/或可以使用诸如 例如BiCM0S、CM0S或NM0S等的多个加工技术中的任何一个技术将处理器1200实现在一个 或多个衬底上。
[0184] 存储器层次结构包括在各核内的一个或多个级别的高速缓存、一个或多个共享高 速缓存单元1206的集合、以及耦合至集成存储器控制器单元1214的集合的外部存储器 (未示出)。该共享高速缓存单元1206的集合可以包括一个或多个中间级高速缓存,诸如 二级(L2)、三级(L3)、四级(L4)或其他级别的高速缓存、末级高速缓存(LLC)、和/或其组 合。尽管在一个实施例中,基于环的互连单元1212将集成图形逻辑1208、共享高速缓存单 元1206的集合以及系统代理单元1210/集成存储器控制器单元1214互连,但替代实施例 可使用任何数量的公知技术来将这些单元互连。在一个实施例中,可以维护一个或多个高 速缓存单元1206和核1202A-N之间的一致性(coherency)。
[0185] 在一些实施例中,核1202A-N中的一个或多个核能够多线程化。系统代理1210包 括协调和操作核1202A-N的那些组件。系统代理单元1210可包括例如功率控制单元(PCU) 和显示单元。P⑶可以是或包括用于调整核1202A-N和集成图形逻辑1208的功率状态所需 的逻辑和组件。显示单元用于驱动一个或多个外部连接的显示器。
[0186] 核1202A-N在架构指令集方面可以是同构的或异构的;S卩,这些核1202A-N中的两 个或更多个核可能能够执行相同的指令集,而其他核可能能够执行该指令集的仅仅子集或 不同的指令集。
[0187] 示例性计算机架构
[0188] 图13-16是示例性计算机架构的框图。本领域已知的对膝上型设备、台式机、手持 PC、个人数字助理、工程工作站、服务器、网络设备、网络集线器、交换机、嵌入式处理器、数 字信号处理器(DSP)、图形设备、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播 放器、手持设备以及各种其他电子设备的其他系统设计和配置也是合适的。一般地,能够包 含本文中所公开的处理器和/或其它执行逻辑的多个系统和电子设备一般都是合适的。
[0189] 现在参见图13,所示为根据本发明的一个实施例的系统1300的框图。系统1300 可以包括一个或多个处理器1310、1315,这些处理器耦合到控制器中枢1320。在一个实 施例中,控制器中枢1320包括图形存储器控制器中枢(GMCH) 1390和输入/输出中枢 (Ι0Η) 1350(其可以在分开的芯片上);GMCH 1390包括存储器和图形控制器,存储器1340 和协处理器1345耦合到该存储器和图形控制器;Ι0Η 1350将输入/输出(I/O)设备1360 耦合到GMCH1390。或者,存储器和图形控制器中的一个或两者可以被集成在处理器内(如 本文中所描述的),存储器1340和协处理器1345直接耦合到处理器1310以及控制器中枢 1320,控制器中枢1320与Ι0Η 1350处于单个芯片中。
[0190] 附加处理器1315的任选性质用虚线表示在图13中。每一处理器1310、1315可包 括本文中描述的处理核中的一个或多个,并且可以是处理器1200的某一版本。
[0191] 存储器1340可以是例如动态随机存取存储器(DRAM)、相变存储器(PCM)或这两者 的组合。对于至少一个实施例,控制器中枢1320经由诸如前端总线(FSB)之类的多分支总 线、诸如快速通道互连(QPI)之类的点对点接口、或者类似的连接1395与处理器1310、1315 进行通信。
[0192] 在一个实施例中,协处理器1345是专用处理器,诸如例如高吞吐量MIC处理器、网 络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。在一个实施例中,控 制器中枢1320可以包括集成图形加速器。
[0193] 在物理资源1310、1315之间可以存在包括架构、微架构、热、和功耗特征等的一系 列品质度量方面的各种差异。
[0194] 在一个实施例中,处理器1310执行控制一般类型的数据处理操作的指令。协处理 器指令可嵌入在这些指令中。处理器1310将这些协处理器指令识别为应当由附连的协处 理器1345执行的类型。因此,处理器1310在协处理器总线或者其他互连上将这些协处理 器指令(或者表示协处理器指令的控制信号)发布到协处理器1345。协处理器1345接受 并执行所接收的协处理器指令。
[0195] 现在参考图14,所示为根据本发明的一实施例的更具体的第一示例性系统1400 的框图。如图14所示,多处理器系统1400是点对点互连系统,并包括经由点对点互连1450 耦合的第一处理器1470和第二处理器1480。处理器1470和1480中的每一个都可以是处 理器1200的某一版本。在本发明的一个实施例中,处理器1470和1480分别是处理器1310 和1315,而协处理器1438是协处理器1345。在另一实施例中,处理器1470和1480分别是 处理器1310和协处理器1345。
[0196] 处理器1470和1480被示为分别包括集成存储器控制器(MC)单元1472和1482。 处理器1470还包括作为其总线控制器单元的一部分的点对点(P-P)接口 1476和1478 ;类 似地,第二处理器1480包括点对点接口 1486和1488。处理器1470、1480可以使用点对点 (P-P)电路1478、1488经由P-P接口 1450来交换信息。如图14所示,頂C 1472和1482将 各处理器耦合至相应的存储器,即存储器1432和存储器1434,这些存储器可以是本地附连 至相应的处理器的主存储器的部分。
[0197] 处理器1470、1480可各自经由使用点对点接口电路1476、1494、1486、1498的各个 P-P接口 1452U454与芯片组1490交换信息。芯片组1490可以可选地经由高性能接口 1439 与协处理器1438交换信息。在一个实施例中,协处理器1438是专用处理器,诸如例如高吞 吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。
[0198] 共享高速缓存(未示出)可以被包括在任一处理器之内,或被包括在两个处理器 外部但仍经由P-P互连与这些处理器连接,从而如果将某处理器置于低功率模式时,可将 任一处理器或两个处理器的本地高速缓存信息存储在该共享高速缓存中。
[0199] 芯片组1490可经由接口 1496耦合至第一总线1416。在一个实施例中,第一总线 1416可以是外围组件互连(PCI)总线,或诸如PCI Express总线或其它第三代I/O互连总 线之类的总线,但本发明的范围并不受此限制。
[0200] 如图14所示,各种I/O设备1414可以连同总线桥1418耦合到第一总线1416,总 线桥将第一总线1416耦合至第二总线1420。在一个实施例中,诸如协处理器、高吞吐量MIC 处理器、GPGPU的处理器、加速器(诸如例如图形加速器或数字信号处理器(DSP)单元)、现 场可编程门阵列或任何其他处理器的一个或多个附加处理器1415耦合到第一总线1416。 在一个实施例中,第二总线1420可以是低引脚计数(LPC)总线。各种设备可以被耦合至第 二总线1420,在一个实施例中这些设备包括例如键盘/鼠标1422、通信设备1427以及诸如 可包括指令/代码和数据1430的盘驱动器或其它大容量存储设备的存储单元1428。此外, 音频I/O 1424可以被耦合至第二总线1420。注意,其它架构是可能的。例如,代替图14的 点对点架构,系统可以实现多分支总线或其它这类架构。
[0201] 现在参考图15,所示为根据本发明的实施例的更具体的第二示例性系统1500的 框图。图14和图15中的相同部件用相同附图标记表示,并从图15中省去了图14中的某 些方面,以避免使图15的其它方面变得模糊。
[0202] 图15示出处理器1470、1480可分别包括集成存储器和I/O控制逻辑("CL") 1472 和1482。因此,CL 1472、1482包括集成存储器控制器单元并包括I/O控制逻辑。图15不 仅示出存储器1432、1434耦合至CL 1472、1482,而且还示出I/O设备1514也耦合至控制逻 辑1472、1482。传统I/O设备1515被耦合至芯片组1490。
[0203] 现在参考图16,所示为根据本发明的一实施例的SoC 1600的框图。在图12中, 相似的部件具有同样的附图标记。另外,虚线框是更先进的SoC的可选特征。在图16中, 互连单元1602被耦合至:应用处理器1610,该应用处理器包括一个或多个核202A-N的集 合以及共享高速缓存单元1206 ;系统代理单元1210 ;总线控制器单元1216 ;集成存储器控 制器单元1214 ;-组或一个或多个协处理器1620,其可包括集成图形逻辑、图像处理器、音 频处理器和视频处理器;静态随机存取存储器(SRAM)单元1630 ;直接存储器存取(DMA)单 元1632 ;以及用于耦合至一个或多个外部显示器的显示单元1640。在一个实施例中,协处 理器1620包括专用处理器,诸如例如网络或通信处理器、压缩引擎、GPGPU、高吞吐量MIC处 理器、或嵌入式处理器等等。
[0204] 本文公开的机制的各实施例可以被实现在硬件、软件、固件或这些实现方法的组 合中。本发明的实施例可实现为在可编程系统上执行的计算机程序或程序代码,该可编程 系统包括至少一个处理器、存储系统(包括易失性和非易失性存储器和/或存储元件)、至 少一个输入设备以及至少一个输出设备。
[0205] 可将程序代码(诸如图14中示出的代码1430)应用于输入指令,以执行本文描述 的各功能并生成输出信息。可以按已知方式将输出信息应用于一个或多个输出设备。为了 本申请的目的,处理系统包括具有诸如例如数字信号处理器(DSP)、微控制器、专用集成电 路(ASIC)或微处理器之类的处理器的任何系统。
[0206] 程序代码可以用高级程序化语言或面向对象的编程语言来实现,以便与处理系统 通信。在需要时,也可用汇编语言或机器语言来实现程序代码。事实上,本文中描述的机制 不限于任何特定编程语言的范围。在任一情形下,该语言可以是编译语言或解释语言。
[0207] 至少一个实施例的一个或多个方面可以由存储在机器可读介质上的表示性指令 来实现,指令表示处理器中的各种逻辑,指令在被机器读取时使得该机器制作用于执行本 文所述的技术的逻辑。被称为"IP核"的这些表示可以被存储在有形的机器可读介质上,并 被提供给多个客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。
[0208] 这样的机器可读存储介质可以包括但不限于通过机器或设备制造或形成的物品 的非瞬态的有形安排,其包括存储介质,诸如:硬盘;任何其它类型的盘,包括软盘、光盘、 紧致盘只读存储器(CD-ROM)、紧致盘可重写(CD-RW)以及磁光盘;半导体器件,例如只读存 储器(ROM)、诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)之类的随机 存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪存、电可擦除可编程只读存储器 (EEPR0M);相变存储器(PCM);磁卡或光卡;或适于存储电子指令的任何其它类型的介质。
[0209] 因此,本发明的各实施例还包括非瞬态的有形机器可读介质,该介质包含指令或 包含设计数据,诸如硬件描述语言(HDL),它定义本文中描述的结构、电路、装置、处理器和 /或系统特征。这些实施例也被称为程序产品。
[0210] 仿真(包括二进制变换、代码变形等)
[0211] 在一些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指 令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形、 仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用 软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处 理器上且部分在处理器外。
[0212] 图17是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进 制指令转换成目标指令集中的二进制指令的框图。在所示的实施例中,指令转换器是软件 指令转换器,但作为替代,该指令转换器可以用软件、固件、硬件或其各种组合来实现。图17 示出可以使用x86编译器1704来编译利用高级语言1702的程序,以生成可以由具有至少 一个x86指令集核的处理器1716原生执行的x86二进制代码1706。具有至少一个x86指 令集核的处理器1716表示任何处理器,这些处理器能通过兼容地执行或以其他方式处理 以下内容来执行与具有至少一个x86指令集核的英特尔处理器基本相同的功能:1)英特尔 x86指令集核的指令集的本质部分,或2)目标为在具有至少一个x86指令集核的英特尔处 理器上运行的应用或其它程序的目标代码版本,以便取得与具有至少一个x86指令集核的 英特尔处理器基本相同的结果。x86编译器1704表示用于生成x86二进制代码1706(例 如,目标代码)的编译器,该二进制代码1706可通过或不通过附加的链接处理在具有至少 一个x86指令集核的处理器1716上执行。类似地,图17示出可以使用替代的指令集编译 器1708来编译利用高级语言1702的程序,以生成可以由不具有至少一个x86指令集核的 处理器1714 (例如具有执行加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集、和 /或执行加利福尼亚州桑尼维尔市的ARM控股公司的ARM指令集的核的处理器)原生执行 的替代指令集二进制代码1710。指令转换器1712被用来将x86二进制代码1706转换成 可以由不具有x86指令集核的处理器1714原生执行的代码。该转换后的代码不大可能与 替代性指令集二进制代码1710相同,因为能够这样做的指令转换器难以制造;然而,转换 后的代码将完成一般操作并由来自替代指令集的指令构成。因此,指令转换器1712通过仿 真、模拟或任何其它过程来表示允许不具有x86指令集处理器或核的处理器或其它电子设 备执行x86二进制代码1706的软件、固件、硬件或其组合。
【权利要求】
1. 一种响应于单个使用掩码的向量打包一元编码指令在计算机处理器中执行使用掩 码的向量打包一元编码的方法,所述指令包括源向量寄存器操作数、目的地写掩码寄存器 操作数和操作码,所述方法包括以下步骤: 执行所述单个使用掩码的向量打包一元编码指令,以确定所述源向量寄存器操作数的 每个打包数据元素位置中的一元编码值; 如果可能,以逐位格式将每个所确定的一元编码值存储到所述目的地掩码寄存器中。
2. 如权利要求1所述的方法,其特征在于,每个所确定的一元编码值以以下格式存储: 写掩码中其最高有效位位置为1值,且在目的地写掩码寄存器中有效性低于所述1值位位 置的位位置中零个或更多个0跟随所述1值。
3. 如权利要求1所述的方法,其特征在于,所述源向量寄存器的最低有效打包数据元 素位置的一元编码值被编码在所述目的地写掩码寄存器的最低有效位中。
4. 如权利要求1所述的方法,其特征在于,所述目的地写掩码寄存器是16位。
5. 如权利要求1所述的方法,其特征在于,所述目的地写掩码寄存器是64位。
6. 如权利要求1所述的方法,其特征在于,如果不能以逐位格式存储所有所确定的一 元编码值,输出编程器可见的异常。
7. 如权利要求1所述的方法,其特征在于,所述执行和储存步骤还包括: 将所述源向量寄存器的数据元素位置设置为最低有效数据元素位置; 确定所述数据元素位置的值; 判断所述目的地写掩码寄存器中是否有足够的未使用位位置来写入所述数据元素位 置的一元编码值; 如果所述目的地写掩码寄存器中没有足够的未使用位位置来写入所述数据元素位置 的一元编码值,输出异常以指示所述指令不能按需完成;以及 如果在所述目的地写掩码寄存器中有足够的未使用位位置来写入所述数据元素位置 的一元编码值,将0写入到所述目的地写掩码寄存器的值减1个未使用最低有效数据元素 位置中,并且将1写入下一最低有效未使用数据元素位置中。
8. 如权利要求7所述的方法,其特征在于,进一步包括: 在写入所述一元编码值之后,判断所述目的地写掩码寄存器中是否剩余足够的未使用 数据元素位置来写入另一一元编码值; 如果在所述目的地写掩码寄存器中剩余足够的未使用数据元素位置来写入另一一元 编码值,确定所述源向量寄存器中下一最低有效数据元素位置的值; 如果在所述目的地写掩码寄存器中没有剩余足够的未使用数据元素位置来写入另 一一元编码值,输出编码器可见的异常。
9. 一种制品,包括: 其上存储指令表示的有形机器可读存储介质,其中所述指令的格式指定向量寄存器作 为其源操作数并且指定单个写掩码寄存器作为其目的地,所述指令格式包括操作码,所述 操作码响应于单个指令的单次发生,指示机器导致如下操作:确定所述源向量寄存器操作 数的每个打包数据元素位置的一元编码值,以及如果可能,以逐位格式将每个所确定的一 元编码值存储到所述目的地掩码寄存器中。
10. 如权利要求9所述的制品,其特征在于,每个所确定的一元编码值以以下格式存 储:写掩码中其最高有效位位置为1值且在所述目的地写掩码寄存器中有效性低于所述1 值位位置的位位置中零个或更多个0值跟随所述1值。
11. 如权利要求9所述的制品,其特征在于,所述源向量寄存器的最低有效打包数据元 素位置的一元编码值被编码在所述目的地写掩码寄存器的最低有效位中。
12. 如权利要求9所述的制品,其特征在于,所述目的地写掩码寄存器是16位。
13. 如权利要求9所述的制品,其特征在于,所述目的地写掩码寄存器是64位。
14. 如权利要求9所述的制品,其特征在于,如果不能以逐位格式存储所有所确定的一 元编码值,输出编程器可见的异常。
15. 如权利要求9所述的制品,其特征在于,所述确定和存储包括: 将所述源向量寄存器的数据元素位置设置为最低有效数据元素位置; 确定所述数据元素位置的值; 判断所述目的地写掩码寄存器中是否有足够的未使用位位置以写入所述数据元素位 置的一元编码值; 如果所述目的地写掩码寄存器中没有足够的未使用位位置来写入所述数据元素位置 的一元编码值,输出异常以指示所述指令不能按需完成;以及 如果在所述目的地写掩码寄存器中有足够的未使用位位置来写入所述数据元素位置 的一元编码值,将0写入到所述目的地写掩码寄存器的值减1个未使用最低有效数据元素 位置中,并且将1写入下一最低有效未使用数据元素位置中。
16. 如权利要求9所述的制品,其特征在于,还包括: 在写入所述一元编码值之后,判断所述目的地写掩码寄存器中是否有足够的未使用数 据元素位置来写入另一一元编码值; 如果在所述目的地写掩码寄存器中剩余足够的未使用数据元素位置来写入另一一元 编码值,确定所述源向量寄存器中下一最低有效数据元素位置的值; 如果在所述目的地写掩码寄存器中没有剩余足够的未使用数据元素位置来写入另 一一元编码值,输出编码器可见的异常。
17. -种装置,包括: 硬件解码器,用于解码单个使用掩码的向量打包一元编码指令,所述指令包括源向量 寄存器操作数、目的地写掩码寄存器操作数和操作码; 执行逻辑,用于确定所述源向量寄存器操作数的每个打包数据元素位置的一元编码 值,并且如果可能,以逐位格式将每个所确定的一元编码值存储到所述目的地掩码寄存器 中。
18. 如权利要求17所述的装置,其特征在于,每个所确定的一元编码值以以下格式存 储:写掩码中其最高有效位位置为1值,且在所述目的地写掩码寄存器中有效性低于所述1 值位位置的位位置中零个或更多个0值跟随所述1值。
19. 如权利要求17所述的装置,其特征在于,所述源向量寄存器的最低有效打包数据 元素位置的一元编码值被编码在所述目的地写掩码寄存器的最低有效位中。
20. 如权利要求17所述的装置,其特征在于,所述目的地写掩码寄存器是16位。
【文档编号】G06F9/30GK104126166SQ201180076391
【公开日】2014年10月29日 申请日期:2011年12月23日 优先权日:2011年12月23日
【发明者】E·乌尔德-阿迈德-瓦尔, T·威尔豪姆 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1