耐刮擦的触摸传感器的制造方法

文档序号:6497418阅读:280来源:国知局
耐刮擦的触摸传感器的制造方法
【专利摘要】本发明公开了一种用于制造耐刮擦的触摸传感器的方法,该方法包括:(1)将非聚合物的保护性涂层溶液施用于触摸传感器;以及(2)通过固化所述保护性的涂层溶液而形成交联的聚合物结构。
【专利说明】耐刮擦的触摸传感器
[0001]相关申请的交叉引用
[0002]本申请要求享有于2011年10月25日提交的、标题为“具有耐刮擦层的触摸传感器图案化电极”的美国临时专利申请N0.61/551,030的优先权,并且其通过参照并入本文中。
【背景技术】
[0003]触摸屏技术已成为许多现代电子器件诸如桌式计算机和移动电话的一个重要部分。典型地,触摸屏技术包括使用作为显示器零件的电阻式或电容式传感器层。由于使用者直接接触屏幕的水平增加,用于采用这种技术的装置的屏幕经常容易受损。这种损伤典型地包括屏幕本身的划痕和断裂,取决于使用的材料及其用途的不同而异。因此,电阻式和电容式触摸传感器通常包括放置在显示器结构的顶部上的半透明的电绝缘盖,以保护触摸传感器面板并使之与环境条件、磨损、氧气以及有害的化学试剂隔离。
[0004]电阻式和电容式触摸屏技术需要透明并且具有传导性质的材料,以便其是功能性的。对于触摸屏传感器应用,氧化铟锡(ITO)是当前最广泛使用的金属氧化物,这是因为它是光学透明的,并且具有合理的传导性能。ITO常用于制作用于液晶显示器、平板显示器、触摸面板、太阳电池板和飞机挡风玻璃的透明传导性涂层。在电阻式触摸屏中,当使用者用手指或触针触摸屏幕时,ITO膜被推动与ITO玻璃接触,产生允许处理器计算触摸事件的坐标并且处理对触摸点的正常响应的电压信号。尽管ITO的使用是公知的并且是被接受的技术,但它不是理想的。采用ITO的主要问题是与其它金属相比,除了其易碎性之外,供应有限并且铟的成本增加、缺乏挠性以及传导率低。
[0005]如先前指出的,典型的是采用玻璃或聚酯层作为触摸屏面板中的保护盖。而聚酯膜,尽管是柔性的,但仅能提供最小级别的硬度。特别地,所述膜提供了介于从大约2H到4H范围内的表面硬度。因此聚酯膜对刮擦敏感。另一方面,能产生高于7H的铅笔硬度读数的玻璃盖提供了非常好的刮擦保护。然而,这种玻璃盖不提供高水平的挠性,并且因此当用硬的表面撞击时对断裂敏感。

【发明内容】

[0006]当前公开的内容涉及一种耐刮擦的触摸传感器,所述触摸传感器包括透明的绝缘基材,在所述基材的第一侧上形成的第一传导层,在所述基材的第二侧上形成的第二传导层,以及被施用于所述第一传导层和第二传导层的至少一个的耐刮擦的保护性涂层,所述涂层包括交联的聚合物结构。
[0007]其它的实施例涉及一种制造耐刮擦的触摸传感器的方法,包括:(I)将保护性的涂层溶液施用于触摸传感器;以及(2)通过固化所述保护性的涂层溶液而形成交联的聚合物结构。
【专利附图】

【附图说明】[0008]现在将参照附图更加详细地描述本发明的示例性实施例,其中:
[0009]图1示出了一种典型的电容式触摸屏的横截面图;
[0010]图2示出了一个供选的电容式触摸传感器屏幕的顶视图;
[0011]图3示出了图2所示的电容式触摸传感器屏幕的等角透视图;
[0012]图4示出了根据本发明一个实施例的线性的聚合物结构(A)和交联的聚合物结构(B);
[0013]图5描述了用于施用根据本发明一个实施方案的透明的耐刮擦涂层的涂层施用系统的不意图;
[0014]图6示出了根据本发明一个实施方案的固化过程;
[0015]图7示出了具有根据本发明一个实施方案的透明的耐刮擦涂层的触摸传感器屏幕的等角透视图;
[0016]图8描述了用于应用根据本发明一个实施方案的透明的耐刮擦涂层的涂层施用系统的一个供选实施例的示意图;
[0017]图9示出了根据本发明一个实施方案的母版辊实施例的等角透视图;
[0018]图10示出了具有根据本发明一个实施方案的透明的耐刮擦涂层的触摸传感器屏幕的一个供选实施方案的等角透视图;以及
[0019]图11示出了用于在耐刮擦屏幕的表面上进行铅笔硬度测试的设备。
【具体实施方式】
[0020]以下讨论涉及本发明的各种实施例。尽管这些实施例的一个或多个可以是优选,但公开的实施例不应当被解释为或者用于对包括权利要求书在内的本文范围的限制。另夕卜,本领域技术人员将理解以下描述具有广义的应用,并且对任何实施例的讨论仅意味着是对该实施例的举例说明,并非希望宣布包括权利要求书在内的本文范围被局限于该实施例。
[0021]如本文中使用的,词“大约”指“加上或者减去10%”。另外,如本文中使用的,词“透明的”指允许光波以90 %或更大的透射率传输的任何材料。
[0022]图1示出了一种典型的电容式触摸屏100的横截面图。触摸屏100包括在两侧上涂覆有两层透明的传导性材料104的透明绝缘基材102。在一种典型的布置中,透明的传导性材料104由ITO组成,然而,透明的传导性材料104也可以由传导性的塑料、银(Ag)、金(Au)、铝合金和其它材料组成。
[0023]顶部的透明电绝缘盖106通过透明的电绝缘粘合剂108被粘附到透明的传导性材料104的顶层。适合用于透明的电绝缘盖106的材料实例包括聚酯薄膜、玻璃和聚碳酸酯塑料。另外,一种适合的透明的电绝缘粘合剂108的实例为3M#8142。
[0024]现在参照图2,示出了根据优选实施方案的电容式触摸传感器屏幕200的顶视图。屏幕200大体上包括薄的柔性透明绝缘基材210、水平轴203、垂直轴201、透明的传导性电容式栅格202以及透明的传导性电容式尾部204。
[0025]如在图2和图3中最佳示出的,栅格202进一步由在平行于水平轴203的方向上并且在绝缘基材210的一侧上延伸的第一多条传导线208组成。第二多条传导线212在平行于垂直轴201的方向上并且在绝缘基材210的相对侧上延伸。第一多条传导线208和第二多条传导线212被绝缘基材210隔离,并且形成栅格202,该栅格反过来使得能够识别使用者与屏幕相互作用的点。传导性电容式栅格202的实例可以包括9X16阵列或更多的传导线,具有的表面面积处于大约2.5X2.5mm至2.1X2.1m的范围内。
[0026]栅格202也可以在交互电容原理下操作,由此栅格202在每一个第一多条传导线208和每一个第二多条传导线212的每个交叉点处组成电容器。例如,9X16阵列将具有144个独立电容器。电压随后被应用到第一多条传导线208和第二多条传导线212,从而带动手指或传导触针接近传感器的表面,改变降低交互电容的局部电场。可以测量在栅格上的每个单个点处的电容变化,以便通过测量水平轴203和垂直轴201中的电压而准确地确定触摸位置。因此,交互电容可允许多触摸操作,在那里多个手指、手掌或触针能够同时被准确地追踪。
[0027]向后参照图2,尾部204包括设置在绝缘基材210的一侧上并且与第一多条传导线208连接的电引线214和电连接器216。类似地,尾部204同样包括设置在绝缘基材210的相对侧上并且与第二多条传导线212相连的电引线215和电连接器217。
[0028]在一些实施例中,屏幕200的第一多条传导线208、第二多条传导线212、电引线214、电连接器216、电引线215和电连接器217可以由铜、银、金、镍、锡、钯和传导性聚合物组成。另外,在一些实施例中,绝缘基材210可以包括聚对苯二甲酸乙二酯(PET)膜、金属、纸或玻璃。特别地,适合用于基材204的材料可以包括DuPont/TeijinMelinex454和Dupont/Teijin Melinex ST505,后者为专门为涉及热处理的过程而设计的热稳定膜。
[0029]在触摸屏装置中应用的大多数保护性涂层呈现基于聚合物的分子结构。聚合物是由化学地结合数千个相对小的被称为单体的分子而产生的相当大的分子。单体由于其分子间的作用力弱,能够以气态、液态或者结构上弱的分子结构的形式存在。
[0030]图4示出了线性的聚合物结构A和交联的聚合物结构B的实例。如本文中使用的,术语“交联的”指将单体或聚合物链互相连结的化学键(共价的或离子的)。在典型的聚合反应中,具有双官能团的单体被连接在一起,以形成线性的聚合物结构A中的聚合物。然而,利用基于含有线性聚合物结构A的聚合物的涂层制成的膜,通常不是抗刮擦的。因此,为了增加涂层膜的耐刮擦性,需要增强聚合物涂层的机械强度。
[0031]交联的聚合物结构B以三维结构形式被连结在一起,增加了聚合物链内的分子间作用力(通常是共价键),并且降低了聚合物链的松弛,松弛通常表现为受压下的凹痕或擦伤。因此,基于含有交联的聚合物结构B的聚合物的涂层膜将趋于具有耐刮擦性能。
[0032]尽管对于交联的聚合物结构而言分子强度较高,但是通过溶液过程将聚合物施用或者涂覆到基材上可能是不可能的。这是由于事实上当交联的聚合物被放置在溶剂中时,交联的聚合物不能溶解在任何溶剂中,并且仅能膨胀。涂层成分通常需要处于液态,以允许分子移动并且更有效地发生反应。具有低密度交联材料的材料表现为粘性的、像液体的凝胶,而具有高密度交联网的材料在其固态时是非常刚硬的。因此,为了在以液体形式被施用于基材或屏幕后产生交联的结构,有必要在涂层被施用于形成交联结构。
[0033]本发明的实施方案采用了基于不源于聚合物链的交联结构的耐刮擦的保护性涂层。作为替代,涂层可以由同时在不同的结合点发生作用以产生交联的三维聚合物结构的单体组成,显示出了非常高的交联密度,并且因此显示耐刮擦性能。特别地,透明的耐刮擦性涂层可以包括单官能和多官能的丙烯酸系单体和低聚物。该涂层可以被施用于触摸传感器屏幕上,保护屏幕不受环境条件、化学品、磨损、擦伤、刮擦的影响,从而消除了需要使用如图1所示的额外的隔离玻璃或PET盖106。
[0034]现在参照图5,示出了用于施用透明的耐刮擦涂层504至触摸传感器屏幕200的涂层施用系统500。涂层施用系统500通常包括容器502,容器进一步包括液态的透明涂层溶液503。为了将保护性涂层504施用于屏幕200,屏幕200可以被浸入包含在容器502内的涂层溶液503中,并且随后以恒定的速度和温度取回,以避免任何起伏。在一些实施例中,仅栅格202需要保护性涂层504,由于这是使用者将作用的区域。因此,电引线214、215和电连接器216、217可能不需要保护,这是由于使用者不与它们作用。然而,在其它的实施例中,耐刮擦涂层504可以被施用于至少一部分的电引线214、215和电连接器216、217。
[0035]简单地参照图7,示出了屏幕200和涂层504的组合在通过以上在图5中描述的涂层施用系统500后的等角透视图。
[0036]再次参照图5,耐刮擦涂层504的厚度可以至少部分地由从容器502取回屏幕200的速度限定。更特别地,在液体有时间向下流回容器502内之前,较快的取回速度将更多的液体向上拉到屏幕200的表面上。在一些实施例中,取回速度可以从大约I英寸/分钟改变到I英尺/分钟,而厚度可以处于从大约5到50微米的范围内,20微米是优选的。可能影响耐刮擦涂层504的厚度的其它因素可以包括所用溶剂的粘性、密度、挥发性以及涂层溶液503的固形物含量。在一些实施例中,耐刮擦涂层504显示了 70%至80%固形物含量和浓度处于大约1%至大约6%范围的光引发剂以及大约20%至30%的溶剂的组合,以调节粘性。将溶剂加入到涂层溶液503中不影响耐刮擦涂层504的性能,因为溶剂在施用后蒸发。
[0037]现在参照图6,在透明的耐刮擦涂层504经由涂层施用系统500 (图5)被施用于屏幕200后,涂层504通过固化过程600被固化。固化过程600通常包括传送器601和紫外光光源602。操作期间,屏幕200和涂层504的组合沿着传送器601移动,从而紫外光光源602在涂层504经过时固化涂层。在一些实施例中,紫外光光源602为工业等级UVA光源,其将使涂层504在非常短的时间段内固化。特别地,固化可以发生在大约0.1至2.0秒的数量级。另外,在一些实施例中,紫外光光源602具有的波长为大约280至480nm,目标强度处于0.5至20.0J/cm2的范围内。而且,为了实现更高级别的交联密度,上述紫外光固化过程应当在惰性气体环境中或者在基本无氧气的环境中实施。适合用于该过程的惰性气体实例为氮气。
[0038]在其它的实施例中,通过热固化过程而完成耐刮擦涂层504的固化。在热固化过程中,屏幕200和涂层504的组合通过热炉内的线传送器,由此热辐射被应用以固化耐刮擦涂层504,并且允许在其中形成交联的聚合物结构。被施用于耐刮擦涂层504上的热辐射在大约5到300秒的时间段内可以处于从大约70°C到100°C的温度范围内。而且,为了实现更高水平的交联密度,上述热固化过程应当在惰性气体环境中或在基本无氧气的环境中进行。适合用于该过程的惰性气体实例为氮气或二氧化碳。
[0039]在更另外的实施例中,通过将电离辐射施用于涂层504而实现耐刮擦涂层504的固化。例如,在示出的实施例中,电子束固化过程被用于固化涂层504。电子束固化过程应用电子释放器404来固化耐刮擦涂层。更特别地,电子束固化过程利用高能电子以受控的剂量快速聚合并且交联聚合材料。当采用电子束固化过程时,不需要在透明的耐刮擦涂层504内使用热或光引发剂,这是因为溶液内的电子充当引发剂。被施用于耐刮擦涂层504的电子束剂量可以处于从大约0.5到5.0兆拉特的范围内。如同采用其它的固化方法一样,为了实现更高水平的交联密度,上面描述的电子束固化过程应当在惰性气体环境中或在基本无氧气的环境中进行。适合用于该过程的惰性气体实例为氮气。
[0040]交联密度指给定的聚合物内交联键的百分比。所述密度与反应时间和温度相关。通常,较高的密度和较快的反应导致较高的交联的密度。用于涂层504的交联密度,对于紫外光固化过程(EX:图6中示出的涂层施用系统500)可以处于从大约60%到70%的范围内,对于热固化过程处于50%到60%的范围内,并且对于电子束固化过程高达80%。根据前面的描述,根据制造前景,当考虑处理速度、成本和能量需求时,紫外光固化过程为有效的固化方法。
[0041]现在参照图8,示出了涂层施用系统800的一个供选实施方案。尽管涂层施用系统500 (图5)采用了浸涂方法,但供选的涂层施用系统800采用胶版印刷法或凹板印刷法将涂层溶液504施用于第一多条传导线208。涂层施用系统通常包括展开辊802、料片清洁器804、胶版印刷模块809、紫外光光源816和收卷辊803。操作期间,屏幕200从展开辊802展开,经过料片清洁器804,在那里灰尘颗粒和杂质被去除,并且进入胶版印刷模块809,在那里涂层504被沉积到屏幕200的表面上。如上所描述的,屏幕200和涂层504的组合随后移动通过紫外光光源816,在那里涂层504被固化,并且形成交联的聚合物结构。最后,屏幕200和涂层504的组合被沉积到收卷辊803上。下面将更加详细地描述上面提到的步骤和模块。
[0042]胶版印刷模块809通常包括涂层盘808、传输辊810、网纹辊812、刮墨刀814和母板806。涂层盘808含有许多涂层溶液503并且被定位成使包含在涂层盘808中的涂层溶液503的某部分被沉积到在固定轴上旋转的传输辊810上。涂层溶液503随后在网纹辊812接触传输辊810的点从传输辊810转移到网纹辊812。在一些实施例中,网纹辊812由钢芯或铝芯构成,并且其外表面被工业陶瓷覆盖,陶瓷的表面含有大量非常细小的被称为单元的凹陷。
[0043]过量的涂层随后通过刮墨刀814刮走。刮墨刀814被放置在固定的位置,从而在过量涂层被刮走后,仅特别预期量的涂层溶液503保留在网纹辊812上。测定量的涂层溶液503随后被沉积到旋转的母版辊806上,从而涂层溶液503被沉积到屏幕200的表面上。母版辊810具有沿着其外表面分布的印刷图案902,其可能匹配设置在屏幕200上的第一多条传导线208的取向,从而涂层溶液503可以仅分布在使用者将作用的屏幕200区域上。在其它的实施例中,将沿着屏幕200的整个表面均匀地印刷涂层溶液503。简单地参照图9,示出了母版辊806的一个实施例的等角透视图,从而更加详细地呈现出印刷图案。回来参照图8,一旦屏幕200和涂层504的组合离开胶版印刷模块809,它朝向紫外光光源816移动,从而涂层溶液504以如上描述的相同方式被固化。
[0044]参照图10,示出了屏幕200和涂层504的组合在通过以上在图8中描述的涂层施用系统800后的等距图。
[0045]现在参照图11,示出了按照用于测量涂层504的表面硬度的测试方法ASTM D3363的铅笔硬度测试1100。为了进行测试,从呈现6B到9H硬度的一组铅笔中选择铅笔1104。从最高到最低硬度选择,第一支铅笔1104被加载到测量推车1106内。在该测试中使用的测量推车1106是可以从BAMR购买的Elcometer3080。该测量仪器使铅笔1104能够被保持在大约7.5N的恒定压力和适当的角度下,这增加了测试的再现性。利用加载的铅笔1104,测量推车1106在涂层504的表面上移动。如果铅笔1104留下了划痕,则使用下一支较软的铅笔1104,并且重复该过程。不留下划痕的第一支铅笔1104的硬度数被视为涂层504的铅笔硬度。
[0046]利用从大约5至50微米的厚度,由PET制成的基材膜1102的顶部上的涂层504的铅笔硬度被测量为从2H直到8H。表1中示出了施用于PET基材204的涂层202的性能特征。
【权利要求】
1.耐刮擦的触摸传感器,其包括: 透明的绝缘基材; 在所述基材的第一侧上形成的第一传导层; 在所述基材的第二侧上形成的第二传导层;以及 被施用于所述第一传导层和第二传导层中至少一个的耐刮擦的保护性涂层,所述涂层包括交联的聚合物结构。
2.根据权利要求1所述的耐刮擦的触摸传感器,其中: 所述第一传导层还包括第一多条传导线;以及 所述第二传导层还包括第二多条传导线。
3.根据权利要求1所述的耐刮擦的触摸传感器,其中所述耐刮擦的保护性涂层的交联密度为至少50%。
4.制造耐刮擦的触摸传感器的方法,该方法包括: 将非聚合物的保护性涂层溶液施用于触摸传感器;以及 通过固化所述保护性涂层溶液而形成交联的聚合物结构。
5.根据权利要求4所述的方法,其中施用所述非聚合物的保护性涂层包括施用单官能和多官能的丙烯酸系单体和低聚物的溶液。
6.根据权利要求4所述的方法,其中固化所述保护性涂层溶液在惰性气体环境中进行。
7.根据权利要求4所述的方法,其中形成所述交联的聚合物结构实现了50%或者更高的交联密度。
8.根据权利要求4所述的方法,还包括: 在所述耐刮擦的触摸传感器上形成第一多条传导线;以及 在所述耐刮擦的触摸传感器上形成第二多条传导线; 其中所述第一多条传导线和所述第二多条传导线分别被沉积到所述透明的绝缘基材的第一侧和第二侧上。
9.根据权利要求8所述的方法,其中施用所述非聚合物的保护性涂层溶液包括将所述保护性的涂层溶液仅施用于所述第一多条传导线。
10.根据权利要求4所述的方法,其中施用所述非聚合物的保护性涂层溶液包括将所述触摸传感器屏幕浸入含有所述保护性的涂层溶液的容器内。
11.根据权利要求4所述的方法,其中施用所述非聚合物的保护性涂层溶液包括胶版印刷法。
12.根据权利要求4所述的方法,其中施用所述非聚合物的保护性涂层溶液包括狭缝式模头涂覆技术或凹板涂覆技术。
13.根据权利要求4所述的方法,其中固化所述保护性的涂层溶液包括施用具有从280到480nm的波长的紫外光光源。
14.根据权利要求4所述的方法,其中固化所述保护性的涂层溶液包括将电离辐射施用于所述保护性的涂层溶液。
15.根据权利要求14所述的方法,其中施用所述电离辐射包括施用从0.5至5兆拉特范围内的电子剂量。
16.根据权利要求4所述的方法制作的耐刮擦的触摸传感器屏幕。
17.根据权利要求16所述的耐刮擦的触摸传感器屏幕,其中在固化所述保护性的涂层溶液后,所述非聚合物的保护性涂层溶液的交联密度大于或等于50%。
【文档编号】G06F3/045GK103959219SQ201280058273
【公开日】2014年7月30日 申请日期:2012年10月24日 优先权日:2011年10月25日
【发明者】罗伯特·J·佩特卡维奇, 金丹良 申请人:尤尼皮克塞尔显示器有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1