一种图像处理方法和设备与流程

文档序号:12603899阅读:来源:国知局
一种图像处理方法和设备与流程

技术特征:
1.一种图像处理方法,其特征在于,包括:获取被拍摄对象发生畸变的图像;根据至少一组镜头光学畸变模型与重投影误差值之间的映射关系,选择重投影误差值小于设定阈值的镜头光学畸变模型,其中,所述镜头光学畸变模型包含光学畸变类型、畸变阶数和畸变系数,所述重投影误差值用于表征针对一个标定对象,所述标定对象的理论畸变图像坐标值与所述标定对象的实际畸变图像坐标值之间的差值;利用所述镜头光学畸变模型对获取的发生畸变的图像进行光学畸变矫正,得到光学畸变矫正后的图像,在确定获取的发生畸变的图像中包含了设定对象时,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向;根据确定的所述设定对象发生区域畸变的强度和方向,选择区域畸变矫正参数;利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。2.如权利要求1所述的方法,其特征在于,利用所述镜头光学畸变模型对获取的发生畸变的图像进行光学畸变矫正,包括:确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,其中,所述理想图像坐标值用于表征所述被拍摄对象在未发生光学畸变图像中的坐标值;利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值;根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点;根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值。3.如权利要求2所述的方法,其特征在于,确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,包括:虚拟一张没有发生光学畸变的网格图像,将所述被拍摄对象映射在所述网格图像中,得到所述被拍摄对象的理想图像;确定所述理想图像中每一个网格点的理想图像坐标值。4.如权利要求3所述的方法,其特征在于,利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值,包括:读取终端设备的内参矩阵以及所述内参矩阵的逆矩阵;针对所述理想图像中每一个网格点的理想图像坐标值,执行:从所述理想图像中选择一个网格点,利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值。5.如权利要求4所述的方法,其特征在于,利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值,包括:利用终端设备的内参矩阵的逆矩阵,将选择的网格点的理想图像坐标值转换得到第一针孔平面坐标值;利用选择的所述镜头光学畸变模型,将所述第一针孔平面坐标值转换得到畸变的第二针孔平面坐标值,其中,所述畸变的第二针孔平面坐标值为选择的网格点对应的第一针孔平面坐标值基于选择的所述镜头光学畸变模型发生光学畸变得到的;利用所述终端设备的内参矩阵,将所述畸变的第二针孔平面坐标值转换得到理论光学畸变图像坐标值。6.如权利要求5所述的方法,其特征在于,根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点,包括:计算所述理论光学畸变图像坐标值与所述获取的发生畸变的图像中包含的每一个像素点的实际光学畸变图像坐标值之间的距离值,确定计算得到的距离值小于设定门限对应的像素点。7.如权利要求6所述的方法,其特征在于,根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值,包括:对查找到的像素点的像素值进行插值计算,得到所述被拍摄对象的理想图像坐标值在所述理想图像中的像素值。8.如权利要求7所述的方法,其特征在于,所述得到光学畸变矫正后的图像,包括:在得到所述理想图像中每一个网格点的像素值时,将得到的所述理想图像作为获取的发生畸变的图像进行光学畸变矫正后的图像。9.如权利要求1至8任一所述的方法,其特征在于,所述镜头光学畸变模型与重投影误差值之间的映射关系,包括:针对一种镜头光学畸变模型,选取标定对象;将所述标定对象映射至网格图像中,得到所述标定对象的理想图像坐标值;利用所述镜头光学畸变模型,将得到的所述标定对象的理想图像坐标值转换成理论畸变图像坐标值;通过光学成像设备的成像功能将所述标定对象映射至图像传感器中得到发生光学畸变的图像,并确定发生光学畸变的图像中的像素点的实际畸变图像坐标值;根据所述理论畸变图像坐标值与所述实际畸变图像坐标值的差值,确定所述镜头光学畸变模型对应的重投影误差值;建立所述镜头光学畸变模型与确定的重投影误差值之间的映射关系。10.如权利要求1所述的方法,其特征在于,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向,包括:确定所述设定对象在获取的发生畸变的图像中的第一位置坐标集合,以及确定所述设定对象在光学畸变矫正后的图像中的第二位置坐标集合;针对所述设定对象中的至少一个像素点,分别确定该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值;根据该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向。11.如权利要求10所述的方法,其特征在于,利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像,包括:利用选择的所述区域畸变矫正参数,对所述第一位置坐标集合中包含的每一个像素点的坐标值进行矫正;根据所述矫正后的第一位置坐标集合和所述第二位置坐标集合,确定所述设定对象的像素点在矫正后的所述第一位置坐标集合中的坐标值与所述像素点在所述第二位置坐标集合中的坐标值之间的转换规则;利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。12.如权利要求11所述的方法,其特征在于,利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,包括:根据所述光学畸变矫正后的图像,虚拟区域畸变矫正后的网格图像,其中,所述区域畸变矫正后的网格图像中包含的网格点的个数与所述光学畸变矫正后的图像包含的像素点个数相同、相同位置上的网格点的坐标值与像素点的坐标值相同;针对所述网格图像中的每一个网格点,执行以下操作:从所述网格图像中选择一个网格点,利用确定的转换规则,将所述网格点的坐标值转换得到区域畸变坐标值;根据所述区域畸变坐标值和光学畸变矫正后的图像中包含的像素点的坐标值,查找坐标值与所述区域畸变坐标值之间的距离值小于设定距离值的像素点;根据查找到的所述像素点的像素值,计算得到选择的网格点在网格图像中的像素值。13.一种图像处理设备,其特征在于,所述图像处理设备包括:成像设备、图像传感器和处理器,其中,所述图像传感器和所述处理器之间通过总线连接;所述成像设备,用于将被拍摄对象映射至所述图像传感器上;所述图像传感器,用于获取被拍摄对象发生畸变的图像;所述处理器,用于根据至少一组镜头光学畸变模型与重投影误差值之间的映射关系,选择重投影误差值小于设定阈值的镜头光学畸变模型,其中,所述镜头光学畸变模型包含光学畸变类型、畸变阶数和畸变系数,所述重投影误差值用于表征针对一个标定对象,所述标定对象的理论畸变图像坐标值与所述标定对象的实际畸变图像坐标值之间的差值;利用所述镜头光学畸变模型对所述图像传感器获取的发生畸变的图像进行光学畸变矫正,得到光学畸变矫正后的图像,在确定获取的发生畸变的图像中包含了设定对象时,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向;根据确定的所述设定对象发生区域畸变的强度和方向,选择区域畸变矫正参数;利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。14.如权利要求13所述的图像处理设备,其特征在于,所述处理器利用所述镜头光学畸变模型对获取的发生畸变的图像进行光学畸变矫正,具体用于:确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,其中,所述理想图像坐标值用于表征所述被拍摄对象在未发生光学畸变图像中的坐标值;利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值;根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点;根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值。15.如权利要求14所述的图像处理设备,其特征在于,所述处理器确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,具体用于:虚拟一张没有发生光学畸变的网格图像,将所述被拍摄对象映射在所述网格图像中,得到所述被拍摄对象的理想图像;确定所述理想图像中每一个网格点的理想图像坐标值。16.如权利要求15所述的图像处理设备,其特征在于,所述处理器利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值,具体用于:读取终端设备的内参矩阵以及所述内参矩阵的逆矩阵;针对所述理想图像中每一个网格点的理想图像坐标值,执行:从所述理想图像中选择一个网格点,利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值。17.如权利要求16所述的图像处理设备,其特征在于,所述处理器利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值,具体用于:利用终端设备的内参矩阵的逆矩阵,将选择的网格点的理想图像坐标值转换得到第一针孔平面坐标值;利用选择的所述镜头光学畸变模型,将所述第一针孔平面坐标值转换得到畸变的第二针孔平面坐标值,其中,所述畸变的第二针孔平面坐标值为选择的网格点对应的第一针孔平面坐标值基于选择的所述镜头光学畸变模型发生光学畸变得到的;利用所述终端设备的内参矩阵,将所述畸变的第二针孔平面坐标值转换得到理论光学畸变图像坐标值。18.如权利要求17所述的图像处理设备,其特征在于,所述处理器根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点,具体用于:计算所述理论光学畸变图像坐标值与所述获取的发生畸变的图像中包含的每一个像素点的实际光学畸变图像坐标值之间的距离值,确定计算得到的距离值小于设定门限对应的像素点。19.如权利要求18任一所述的图像处理设备,其特征在于,所述处理器根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值,具体用于:对查找到的像素点的像素值进行插值计算,得到所述被拍摄对象的理想图像坐标值在所述理想图像中的像素值。20.如权利要求19所述的图像处理设备,其特征在于,所述处理器,具体用于:在得到所述理想图像中每一个网格点的像素值时,将得到的所述理想图像作为获取的发生畸变的图像进行光学畸变矫正后的图像。21.如权利要求13至20任一所述的图像处理设备,其特征在于,所述镜头光学畸变模型与重投影误差值之间的映射关系,包括:针对一种镜头光学畸变模型,选取标定对象;将所述标定对象映射至网格图像中,得到所述标定对象的理想图像坐标值;利用所述镜头光学畸变模型,将得到的所述标定对象的理想图像坐标值转换成理论畸变图像坐标值;通过光学成像设备的成像功能将所述标定对象映射至图像传感器中得到发生光学畸变的图像,并确定发生光学畸变的图像中的像素点的实际畸变图像坐标值;根据所述理论畸变图像坐标值与所述实际畸变图像坐标值的差值,确定所述镜头光学畸变模型对应的重投影误差值;建立所述镜头光学畸变模型与确定的重投影误差值之间的映射关系。22.如权利要求13所述的图像处理设备,其特征在于,所述处理器确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向,具体用于:确定所述设定对象在获取的发生畸变的图像中的第一位置坐标集合,以及确定所述设定对象在光学畸变矫正后的图像中的第二位置坐标集合;针对所述设定对象中的至少一个像素点,分别确定该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值;根据该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向。23.如权利要求22所述的图像处理设备,其特征在于,所述处理器利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像,具体用于:利用选择的所述区域畸变矫正参数,对所述第一位置坐标集合中包含的每一个像素点的坐标值进行矫正;根据所述矫正后的第一位置坐标集合和所述第二位置坐标集合,确定所述设定对象的像素点在矫正后的所述第一位置坐标集合中的坐标值与所述像素点在所述第二位置坐标集合中的坐标值之间的转换规则;利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。24.如权利要求23所述的图像处理设备,其特征在于,所述处理器利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,具体用于:根据所述光学畸变矫正后的图像,虚拟区域畸变矫正后的网格图像,其中,所述区域畸变矫正后的网格图像中包含的网格点的个数与所述光学畸变矫正后的图像包含的像素点个数相同、相同位置上的网格点的坐标值与像素点的坐标值相同;针对所述网格图像中的每一个网格点,执行以下操作:从所述网格图像中选择一个网格点,利用确定的转换规则,将所述网格点的坐标值转换得到区域畸变坐标值;根据所述区域畸变坐标值和光学畸变矫正后的图像中包含的像素点的坐标值,查找坐标值与所述区域畸变坐标值之间的距离值小于设定距离值的像素点;根据查找到的所述像素点的像素值,计算得到选择的网格点在网格图像中的像素值。25.一种图像处理设备,其特征在于,包括:获取模块,用于获取被拍摄对象发生畸变的图像;选择模块,用于根据至少一组镜头光学畸变模型与重投影误差值之间的映射关系,选择重投影误差值小于设定阈值的镜头光学畸变模型,其中,所述镜头光学畸变模型包含光学畸变类型、畸变阶数和畸变系数,所述重投影误差值用于表征针对一个标定对象,所述标定对象的理论畸变图像坐标值与所述标定对象的实际畸变图像坐标值之间的差值;处理模块,用于利用所述镜头光学畸变模型对获取的发生畸变的图像进行光学畸变矫正,得到光学畸变矫正后的图像,在确定获取的发生畸变的图像中包含了设定对象时,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向;根据确定的所述设定对象发生区域畸变的强度和方向,选择区域畸变矫正参数;利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。26.如权利要求25所述的图像处理设备,其特征在于,所述处理模块利用所述镜头光学畸变模型对获取的发生畸变的图像进行光学畸变矫正,具体用于:确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,其中,所述理想图像坐标值用于表征所述被拍摄对象在未发生光学畸变图像中的坐标值;利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值;根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点;根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值。27.如权利要求26所述的图像处理设备,其特征在于,所述处理模块确定获取的发生畸变的图像对应的被拍摄对象的理想图像坐标值,具体用于:虚拟一张没有发生光学畸变的网格图像,将所述被拍摄对象映射在所述网格图像中,得到所述被拍摄对象的理想图像;确定所述理想图像中每一个网格点的理想图像坐标值。28.如权利要求27所述的图像处理设备,其特征在于,所述处理模块利用所述镜头光学畸变模型,对确定的所述被拍摄对象的理想图像坐标值进行坐标转换,得到所述理想图像坐标值对应的理论光学畸变图像坐标值,具体用于:读取终端设备的内参矩阵以及所述内参矩阵的逆矩阵;针对所述理想图像中每一个网格点的理想图像坐标值,执行:从所述理想图像中选择一个网格点,利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值。29.如权利要求28所述的图像处理设备,其特征在于,所述处理模块利用所述终端设备的内参矩阵、选择的所述镜头光学畸变模型以及所述终端设备的内参矩阵的逆矩阵,对选择的网格点的理想图像坐标值进行坐标转换得到理论光学畸变图像坐标值,具体用于:利用终端设备的内参矩阵的逆矩阵,将选择的网格点的理想图像坐标值转换得到第一针孔平面坐标值;利用选择的所述镜头光学畸变模型,将所述第一针孔平面坐标值转换得到畸变的第二针孔平面坐标值,其中,所述畸变的第二针孔平面坐标值为选择的网格点对应的第一针孔平面坐标值基于选择的所述镜头光学畸变模型发生光学畸变得到的;利用所述终端设备的内参矩阵,将所述畸变的第二针孔平面坐标值转换得到理论光学畸变图像坐标值。30.如权利要求29所述的图像处理设备,其特征在于,所述处理模块根据所述理论光学畸变图像坐标值和所述获取的发生畸变的图像中包含的像素点的实际光学畸变图像坐标值,查找实际光学畸变图像坐标值与所述理论光学畸变图像坐标值之间的距离值小于设定门限的像素点,具体用于:计算所述理论光学畸变图像坐标值与所述获取的发生畸变的图像中包含的每一个像素点的实际光学畸变图像坐标值之间的距离值,确定计算得到的距离值小于设定门限对应的像素点。31.如权利要求30所述的图像处理设备,其特征在于,所述处理模块根据查找到的像素点的像素值,计算得到所述被拍摄对象的理想图像坐标值对应的像素值,具体用于:对查找到的像素点的像素值进行插值计算,得到所述被拍摄对象的理想图像坐标值在所述理想图像中的像素值。32.如权利要求31所述的图像处理设备,其特征在于,所述处理模块,具体用于在得到所述理想图像中每一个网格点的像素值时,将得到的所述理想图像作为获取的发生畸变的图像进行光学畸变矫正后的图像。33.如权利要求32任一所述的图像处理设备,其特征在于,所述镜头光学畸变模型与重投影误差值之间的映射关系,包括:针对一种镜头光学畸变模型,选取标定对象;将所述标定对象映射至网格图像中,得到所述标定对象的理想图像坐标值;利用所述镜头光学畸变模型,将得到的所述标定对象的理想图像坐标值转换成理论畸变图像坐标值;通过光学成像设备的成像功能将所述标定对象映射至图像传感器中得到发生光学畸变的图像,并确定发生光学畸变的图像中的像素点的实际畸变图像坐标值;根据所述理论畸变图像坐标值与所述实际畸变图像坐标值的差值,确定所述镜头光学畸变模型对应的重投影误差值;建立所述镜头光学畸变模型与确定的重投影误差值之间的映射关系。34.如权利要求25所述的图像处理设备,其特征在于,所述处理模块确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向,具体用于:确定所述设定对象在获取的发生畸变的图像中的第一位置坐标集合,以及确定所述设定对象在光学畸变矫正后的图像中的第二位置坐标集合;针对所述设定对象中的至少一个像素点,分别确定该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值;根据该至少一个像素点在所述第一位置坐标集合中的坐标值和该至少一个像素点在所述第二位置坐标集合中的坐标值,确定所述设定对象在获取的发生畸变的图像中发生区域畸变的强度和方向。35.如权利要求34所述的图像处理设备,其特征在于,所述处理模块利用选择的所述区域畸变矫正参数,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像,具体用于:利用选择的所述区域畸变矫正参数,对所述第一位置坐标集合中包含的每一个像素点的坐标值进行矫正;根据所述矫正后的第一位置坐标集合和所述第二位置坐标集合,确定所述设定对象的像素点在矫正后的所述第一位置坐标集合中的坐标值与所述像素点在所述第二位置坐标集合中的坐标值之间的转换规则;利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,得到区域畸变矫正后的图像。36.如权利要求35所述的图像处理设备,其特征在于,所述处理模块利用确定的转换规则,对光学畸变矫正后的图像进行区域畸变矫正,具体用于:根据所述光学畸变矫正后的图像,虚拟区域畸变矫正后的网格图像,其中,所述区域畸变矫正后的网格图像中包含的网格点的个数与所述光学畸变矫正后的图像包含的像素点个数相同、相同位置上的网格点的坐标值与像素点的坐标值相同;针对所述网格图像中的每一个网格点,执行以下操作:从所述网格图像中选择一个网格点,利用确定的转换规则,将所述网格点的坐标值转换得到区域畸变坐标值;根据所述区域畸变坐标值和光学畸变矫正后的图像中包含的像素点的坐标值,查找坐标值与所述区域畸变坐标值之间的距离值小于设定距离值的像素点;根据查找到的所述像素点的像素值,计算得到选择的网格点在网格图像中的像素值。
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1