一种导线舞动失稳分析方法与流程

文档序号:12177451阅读:661来源:国知局

本发明涉及导线防舞技术领域,更具体涉及一种导线舞动失稳分析方法。



背景技术:

随着我国输电线路建设规模的扩大,以及近些年气象条件的演化,使得恶劣气象频发,在冬季冰雪天气状态下,导线形成偏心覆冰后,极易发生舞动现象。目前,导线覆冰舞动已经成为危害输电线路安全稳定运行的一种严重灾害形式,给电网安全造成巨大的威胁。

导线舞动起振条件和舞动特征是工程防舞设计中最重要的两个参数,目前已有的研究成果给出的计算方法或者非常繁琐复杂,不适合实际工程的设计应用;或者较为简单,计算精度不能满足要求。因此实际工程设计中还主要依靠经验取值,严重影响了防舞设计效果。基于工程设计的实际需求,提出一套简单的输电线路舞动失稳特性计算方法,准确、方便地获取导线舞动起振风速和舞动幅值对于提升输电线路防舞设计水平,保证线路安全稳定运行具有重要的意义。



技术实现要素:

本发明的目的是提供一种导线舞动失稳分析方法,对于提升输电线路防舞设计的准确性和有效性具有十分重要的作用。

为实现上述目的,本发明采用以下技术方案:一种导线舞动失稳分析方法,包括:

(1)根据导线偏心覆冰型式确定气动参数和气动载荷;

(2)根据所述气动参数和振子模型建立导线舞动起振风速计算模型计算导线舞动起振风速;

(3)根据所述气动参数和导线舞动起振风速计算模型计算导线舞动幅值特性。

所述导线偏心覆冰型式包括新月型导线偏心覆冰型式、扇型导线偏心覆冰型式和D型导线偏心覆冰型式。

根据确定的导线偏心覆冰型式进行风洞试验,根据其试验结果和起舞条件选择覆冰厚度。

根据所述风洞试验结果,所述D导线偏心覆冰型式较之其它两种导线偏心覆冰型式,更易激发舞动现象;当选择采用所述D导线偏心覆冰型式时,根据其风洞试验结果和起舞条件分析,确定覆冰厚度为15mm。

根据所述风洞试验结果和覆冰厚度确定五阶多项式的气动参数,根据所述气动参数确定气动荷载。

所述气动参数Cy通过下式确定:

式中,bk为拟合系数,α为攻角。

所述导线舞动起振风速计算模型的建立过程为通过采用振子模型,考虑水平和竖直两个自由度,将水平载荷向量Fx和竖直载荷向量Fy在动态攻角β=0处进行泰勒展开,略去高阶项,建立导线舞动起振风速计算模型。

对所述导线舞动起振风速计算模型进行无量纲化处理,引入无量纲时间,基于方程的特征向量,求解方程的稳定性,确定起振风速;

定义特征量

其中,A1=2ξxωs+2μyUyCD0,A2=-μyUy(CL0-CDα0),B1=2ξyyUy(CD0+CLα0),B2=2μyUyCL0,ξy为垂直阻尼比,Uy为折合风速,μy为质量比,CD0,CL0为气动载荷系数,CDα0为气动阻力载荷系数一阶导数,ξx为水平阻尼比,ωs为固有频率;

I:q≥0时

(i)时,

临界无量纲风速为,

式中,

(ii)时,

临界无量纲风速为,

II:q<0时

临界无量纲风速为,

其中,CLα0为气动升力载荷系数一阶导数。

所述导线舞动幅值特性通过下式确定并平均法进行求解:

其中,A1=35b5μy,ξy为阻尼比,Uy为折合风 速,μy为质量比,b1…b5为气动载荷系数,i=1,2,3。

和最接近的现有技术比,本发明提供技术方案具有以下优异效果

1、本发明技术方案可以方便地获取输电线路导线舞动的起振风速和舞动幅值特征,改变目前实际工程中输电线路防舞设计主要依靠经验取值的不利条件;

2、本发明技术方案对于提升输电线路防舞设计的准确性和有效性具有十分重要的作用;

3、本发明技术方案偏心覆冰导线气动参数采用五阶多项式拟合,较之目前普遍采用的三阶多项式拟合,提升了对气动载荷的计算精度;

4、本发明技术方案采用了D型15mm的偏心覆冰形状,考虑了最极端的工况条件,充分体现了实际工程中防舞设计的安全性要求;

5、本发明技术方案将舞动影响参数无量纲化处理,减少了影响参数的数量,分析方法既能体现主导参数的影响,又能得到简便的计算公式;

6、本发明技术方案给出导线舞动起振风速、舞动幅值的简化计算公式,方便工程设计人员的使用,实用性强。

附图说明

图1为本发明实施例方法流程图。

具体实施方式

下面结合实施例对发明作进一步的详细说明。

实施例1:

本例的发明提供一种导线舞动失稳分析方法,包括如图1所示:

(1)根据导线偏心覆冰型式确定气动参数和气动载荷;

(2)根据所述气动参数和振子模型建立导线舞动起振风速计算模型计算导线舞动起振风速;

(3)根据所述气动参数和导线舞动起振风速计算模型计算导线舞动幅值特性。

1.覆冰导线气动载荷选择原则

偏心覆冰导线气动特性是影响舞动激发的最重要参数,目前覆冰导线气动力的获取的途径比较单一,主要通过试验手段,首先基于准稳态假设测量给定覆冰截面导线的空气动力参数曲线,然后通过曲线拟合得到气动参数拟合计算公式,最后由此求得气动力的表达。

实际观测结果表明,导线偏心覆冰主要有三种型式,分别为新月型、扇型和D型。根据风洞试验结果,D型覆冰较之其它两种型式的偏心覆冰,更易激发舞动现象。因此,本发明在气动参数选择上采用D型覆冰的试验结果,根据起舞条件分析,覆冰厚度选择15mm。

气动参数的计算通常根据试验结果采用多项式拟合的方法,得到气动载荷的表达式,根据理论分析,目前常用的三阶多项式拟合对矩形规则截面的情况能满足精度的要求,而对于导线覆冰这种截面形状较为复杂的情况不能满足精度的要求,而气动参数的拟合采用五阶多项式可以满足工程设计精度的要求,因此本发明气动参数的拟合关系式采用五阶多项式。气动载荷与气动参数的关系式为:

式中,Fy为气动升力,ρ为空气密度,Uy为折合风速,D为导线迎风面积,Cy为气动升力系数。式中,bk为拟合系数。

2、导线舞动起振风速计算

采用振子模型,考虑水平和竖直两个自由度,将水平载荷向量Fx和竖直载荷向量Fy在动态攻角α=0处进行泰勒展开,略去高阶项,建立舞动计算计算模型。引入无量纲时间,对计算模型进行无量纲化处理,基于方程的特征向量,求解方程的稳定性,确定起振风速。

定义特征量其中A1=2ξxωs+2μyUyCD0,A2=-μyUy(CL0-CDα0),B1=2ξyyUy(CD0+CLα0),B2=2μyUyCL0,ξy为阻尼比,Uy为折合风速,μy为质量比,CD0,CL0,CDα0为气动载荷系数及其一阶导数。

I:q≥0时

(i)时,

临界无量纲风速为,

式中,

(ii)时,

临界无量纲风速为,

II:q<0时

临界无量纲风速为,

3、导线舞动幅值特性计算

根据步骤2中所给出的分析模型,利用平均法进行求解,得到气动参数取五阶多项式拟合条件下,导线舞动的幅值特性表达式,

其中,

A1=35b5μy,ξy为阻尼比,Uy为折合风速,μy为质量比,b1…b5为气动载荷系数。

根据上述步骤,给定导线结构参数、风速条件,可以直接得到导线舞动的起舞风速及舞动后的幅值特性,为输电线路防舞设计的参数取值提供直接的技术支撑。

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员尽管参照上述实施例应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1