检测闪光和辉光反应中的分析物的制作方法

文档序号:15235248发布日期:2018-08-21 20:26阅读:210来源:国知局

在用于化学计量等的许多应用中,样本的间接测量和直接测量(例如浓度)被用来开发可以用来根据间接测量来预测直接测量的校准曲线。在某些情况下,y可以是一个或多个间接测量(例如多变量数据)并且x可以是直接测量。可以在x和y之间形成校准曲线,并对x和y的分布作了正态性假设。

在许多情况下,直接变量x是连续的,并且残差分析可以被用来确定校准曲线。这样的预测不适用于在其中x是类变量(即x对应于两个(二进制)或更多类)的情况。在许多应用中,直接测量可以是一个类变量;并且在这种情况下,逻辑回归或判别分析可以被用来基于间接测量以及间接测量与直接测量之间的关系来预测该类。在逻辑回归中,基于在每类中的似然/概率来指定分类。对间接测量进行正态性假设,并且分类是根据优势比计算来实现的。

在判别分析中,计算来自不同类的间接测量的线性距离,并基于最小的距离来指定该类。在这种情况下,对间接测量的分布也作了正态性假设。在某些应用中,有兴趣的是将在截止附近的类从一个类区别至另一个类,例如在确定分析物在样本中的存在或不存在的情况下。

但是,可能难以准确地执行这样的区别,从而缩小了敏感性和特异性。当随着时间存在多个间接测量时可能甚至更难以准确确定这样的区别,就像在闪光(flash)反应中可能发生的那样(例如,包括耐甲氧西林金黄色葡萄球菌(mrsa))。



技术实现要素:

实施例可以提供分析物(例如mrsa)在样本中的存在或不存在的准确测量。例如,样本可以经受活化试剂(潜在地在已经添加初始试剂之后),这可以促使随着时间增加并且然后减小的闪光信号。可以使用检测器来从闪光信号测量信号数据点。实施例可以确定拟合信号数据点的回归函数。可以确定回归函数的准确度项,以及信号对背景项。信号对背景项和准确度项之间的差可以被用作与阈值相比较以确定样本中是否存在分析物的得分。

在一个方面中,提供一种用于确定样本对分析物来说是否是阳性(positive)的方法,该方法包括:使用检测器收集多个背景数据点,该背景数据点是在背景时间间隔期间收集的;使用检测器收集多个信号数据点,其中该多个信号数据点是在背景时间间隔之后的信号时间间隔期间收集的,其中该信号时间间隔包括在用活性试剂活化样本之后的时间的一部分;由计算机系统使用多个背景数据点和多个信号数据点来计算信号对背景比;由计算机系统确定拟合多个信号数据点的回归函数,其中该回归函数至少包括二阶多项式;由计算机系统计算拟合多个信号数据点的回归函数的准确度值;由计算机系统通过利用信号对背景项调整准确度项来计算得分,该准确度项包括准确度值,并且信号对背景项包括信号对背景比;以及将该得分与分类阈值相比较以便确定样本对该分析物为阳性或阴性(negative)的分类。在该方法的一个实施例中,如果该得分小于阈值,则确定该样本对分析物是阴性,并且如果该得分大于或等于阈值,则确定该样本对分析物是阳性。在一个实施例中,该方法进一步包括计算回归函数相对于多个信号数据点的平方误差的加权和;以及通过用准确度值乘以平方误差的加权和来计算准确度项。在一个实施例中,该准确度值是从以下各项选择的:包括r平方、调整的r平方、f测试的p值和平方的预测残差和(press)统计量。在一个实施例中,该回归函数包括二阶项的抛物线系数,并且其中该准确度项包括乘以抛物线系数的准确度值。在一个实施例中,该方法进一步包括通过用信号对背景比乘以第一常数的倒数来计算信号对背景项。在一个实施例中,选取用来获得关于具有针对分析物的存在的已知结果的代表性数据集的期望敏感性和特异性的阈值。在一个实施例中,该分析物是耐甲氧西林金黄色葡萄球菌。在一个实施例中,该检测器是光检测器,并且其中该多个信号数据点形成发光信号。在一个实施例中,该分析物是耐甲氧西林金黄色葡萄球菌(mrsa)。在一个实施例中,该背景时间间隔在样本通过活性试剂的活化之前,并且其中在样本的活化之前从样本收集多个背景数据点。在一个实施例中,该方法进一步包括计算背景数据点的至少一部分的中值;使用该中值来计算偏差;使用中值和偏差的和来确定第一截止值;对比第一截止值更大的第一数目的背景数据点计数;将第一数目与第二截止值相比较;以及当第一数目大于第二截止值时,确定存在误差。在一个实施例中,该方法进一步包括使样本相对于检测器重新定位。在一个实施例中,直到如根据第一数目小于或等于第二截止值而确定校正了误差才收集该多个信号数据点。在一个实施例中,该方法进一步包括计算背景数据点的至少一部分的均值;将该均值与预定因子相比较;以及当该均值大于预定因子时,确定存在误差。在一个实施例中,该方法进一步包括当检测器的传感器被阻挡时使用所收集的数据点来确定预定因子。在一个实施例中,直到如根据第一数目小于或等于第二截止值而确定校正了误差才收集该多个信号数据点。在一个实施例中,该方法进一步包括由计算机系统来确定多个信号数据点的最大值,其中使用最大值的时间来确定回归函数。在这里,在一个实施例中,该回归函数以最大值的时间为中心。在一个实施例中,该方法进一步包括使用多个信号数据点来确定高阶回归函数,该高阶回归函数是4阶多项式或更高阶多项式;计算该高阶回归函数的准确度度量;将该多个信号数据点的最大值与一个或多个初始阈值相比较;基于与该一个或多个初始阈值的比较来选择准确度阈值;以及将该准确度度量与准确度阈值相比较以基于准确度度量小于准确度阈值来确定样本是否对分析物是阴性。在一个实施例中,该方法进一步包括基于大于准确度阈值的准确度度量来确定样本对分析物可能是阳性;以及继续进行到使用得分与分类阈值的比较来确定样本对分析物是阳性还是阴性的分类。在一个实施例中,该方法进一步包括通过将统计平滑函数应用于多个信号数据点来对多个信号数据点进行滤波以获得经过滤波的数据集;以及使用经过滤波的数据集来确定高阶回归函数。在一个实施例中,对多个信号数据点进行滤波包括:对信号数据点的至少一部分中的每一个:计算邻近数据点和信号数据点的中值;以及用中值替换信号数据点。在一个实施例中,根据三个信号数据点来确定该中值中的每一个。在这里,在一个实施例中,该信号数据点的一部分从开始信号数据点偏移一个数据点并且在信号时间间隔的终止信号数据点之前使一个数据点结束,其中用最后两个信号数据点的中值替换结束信号数据点,其中如果开始信号数据点大于对应值加上标准偏差的具体倍数则用来自高阶回归函数的对应值替换开始信号数据点,并且其中准确度度量是拟合经过滤波的数据集的高阶回归函数。在一个实施例中,该一个或多个初始阈值包括第一初始阈值和第二初始阈值,其中当最大值大于第一初始阈值时该准确度阈值是第一常数,并且其中当最大值小于第一初始阈值并且大于第二初始阈值时该准确度阈值是第二常数,并且其中当最大值小于第二初始阈值时根据经验函数来确定该准确度阈值,该经验函数基于多个信号数据点的最大值来提供准确度阈值。在一个实施例中,该方法进一步包括通过以下各项来确定经验函数:对于已知是阳性的信号的多个不同最大值中的每一个:通过将信号与表现统计分布的噪声进行卷积来执行蒙特卡罗模拟的迭代,其中该迭代中的每一个中的噪声水平取决于在信号中观测到的噪声;为迭代的每一个确定相应高阶回归函数的相应准确度度量;确定相应准确度度量的平均值和标准偏差;通过从平均值减去标准偏差乘以缩放因子来确定准确度数据点;使经验函数的参数拟合至准确度数据点来获得为信号的输入峰值提供准确度阈值的经验函数。在一个实施例中,该方法进一步包括执行多个信号数据点的线性回归;确定线性回归的斜率的置信区间的下界和上界是否包括零;以及当置信区间的下界和上界时将样本识别成阴性。在一个实施例中,该置信区间被选取成10%。

其他实施例针对与本文中描述的方法相关联的系统和计算机可读介质。

在这里,在另一方面中,提供一种计算机产品,其包括存储用于控制计算机系统来执行上述方法中的任一个的操作的多个指令的计算机可读介质。在另一方面中,提供一种系统,其包括上述计算机产品和用于执行存储在计算机可读介质上的指令的一个或多个处理器。在另一方面中,提供一种系统,其包括用于执行上述方法中的任一个的装置。在另一方面中,提供一种系统,其包括检测器以及被配置成执行上述方法中的任一个的一个或多个处理器。在另一方面中,提供一种系统,其包括分别执行上述方法中的任一个的步骤的模块。

可以参考下面的详细描述和附图来获得对本发明的实施例的本质和优点的更好理解。

附图说明

图1是根据实施例的用于细菌识别的系统的框图。

图2示出根据本发明的实施例的来自相应样本的耐甲氧西林金黄色葡萄球菌(mrsa)信号和甲氧西林敏感金黄色葡萄球菌(mssa)信号的典型图200。

图3示出根据本发明的实施例的描绘从对mrsa是阳性的样本和对mrsa是阴性的样本产生的代表性数据的图300。

图4是根据本发明的实施例的用于检测样本中的目标分析物的方法400的流程图。

图5描绘根据本发明的实施例的敏感性和特异性的值与阈值(t)的关系的示例。

图6是根据本发明的实施例的用于确定样本对分析物是否是阳性的方法的流程图。

图7是示出使用最大信号与根据本发明的实施例的得分之间的准确度结果的比较的表700。

图8a和8b示出对使用最大信号的分类的准确度结果和使用根据本发明的实施例的得分的准确度结果进行比较的图表。

图9示出可与根据本发明的实施例的系统和方法一起使用的示例计算机系统的框图。

具体实施方式

区别耐甲氧西林金黄色葡萄球菌(mrsa)和甲氧西林敏感金黄色葡萄球菌(mssa)可能是困难的。例如如在pct公开wo2014/160418、wo2014/164768和wo2015/164746中描述的用于确定mrsa是否存在于样本中的一些测试包括闪光反应。可以通过检测器来检测此类闪光信号,例如根据在各个时间处检测到的信号数据点。此类闪光信号可以在各种分析物的各种反应中出现。分析物的示例包括基于活细胞发光测定的那些。

然而,对于mssa和mrsa两者来说都出现闪光信号,尽管在闪光信号中存在差异。作为确定信号对背景比的一部分,实施例可以多次分析信号数据点。多个信号数据点的使用可以提供比简单使用最大值更大的准确度。还可以执行回归。尽管可以将二次函数用于回归,但是还可以使用对于诸如第三、第四、第五或第六阶的其他多项式函数的回归。可以通过减去或加上信号对背景项来调整回归拟合的准确度项以提供可以提供用于区别阳性和阴性样本的高敏感性和特异性的得分。

一些实施例不需要关于间接测量的分布的任何假设,并且分类可以优化用于实现最优敏感性和特异性的目标函数。实施例可以通过使用间接测量的平均值来提供更大的敏感性和/或特异性(或更大总数)。在mrsa和mssa上使用平均值将不是最优的,因为若干mrsa样本将具有非常高的信号值,而一些mrsa将具有非常靠近mssa样本的信号值。

i.闪光反应。

在一些实施例中,设计用于分析物在样本中的检测的系统和方法。可以基于由包括样本和活性试剂的闪光反应产生的信号来检测分析物。在一个示例中,设计一种用于经由发光测定来检测mrsa的存在的系统(包括活性试剂的示例)。该测定可以采用当经由第二试剂活化时促使有活力的mrsa细胞产生发光信号的第一试剂。可以采用检测器(例如基于光电倍增管(pmt)的检测器)来收集数据。

可以分析所收集的数据来基于所收集的数据的特性区别mrsa的存在和mrsa的不存在。可以执行分析来针对分析物的存在提供样本的准确测量。可以基于从已知分别对mrsa是阳性和阴性样本的参考数据来选取分析的参数,以使得该结果产生关于参考数据的期望敏感性和特异性。

可以基于任何适当的参考测定(包括被接受为标准的那些)来将参考数据识别为对mrsa是阳性/阴性。在下面的示例中,如在2011年5月1日发行的fda文档初稿–建立用于耐甲氧西林金黄色葡萄球菌(mrsa)和金黄色酿脓葡萄球菌(sa)的检测和区别的基于核酸的体外诊断设备的性能特性中描述的,基于用于mrsa检测的增殖培养方法来将参考数据确定为对mrsa是阳性/阴性。此类测试具有高准确度,但是耗时的且运行起来成本高,并且因此在许多情况下不实际。可以从包括人为样本或临床样本的各种各样的得分得到所收集的数据。例如,在后面的章节中描述的示例中使用来自为了mrsa监督的目的而收集的鼻拭子的临床样本数据。

a.系统

在一些实施例中,可以使用在pct公开wo2015/164746中描述的消耗品和在描述测定和性能的pct公开wo2014/160418中描述的运行mrsa测定来采用在pct公开wo2014/164768中描述的系统。

用于检测和识别目标细胞(例如细菌)或其他分析物的系统、设备和方法可以包括转导颗粒,其可以识别目标细胞并结合目标细胞并且将经设计的核苷酸递送至目标细胞中。如在图1的框图中示出的,在一些实施例中,系统100包括经基因设计的转导颗粒110、容器120、报告物130、检测仪器140和计算机系统150。该系统100被配置成操纵、处理和/或致动容器120以及/或者检测仪器140,以使得当与包含特定目标的样本s混合时转导颗粒110可以产生报告物130。以这种方式,该系统100以及与其相关联的方法可以被认为是“可切换”测定,这意味着直到状况(例如目标细胞的存在)是使得产生报告物130,在样本中才存在报告物130的量。检测仪器140可以是光电倍增管(pmt)。该pmt检测来自反应物的光子以随着时间提供信号。

该转导颗粒110可以是能够将报告物dna和/或rna递送至目标细胞中的任何适当颗粒。例如,在一些实施例中,可以从噬菌体得到转导颗粒,或者该转导颗粒可以是能够将核酸分子引入样本s中的目标细菌中的非生物学得到的载体(vector)。该转导颗粒110进一步设计和/或配置成载送经设计的分子,例如重组dna、rna、核苷酸、质粒、核酶、适体和/或蛋白质。在一些实施例中,该转导颗粒110不包含来自从其得到转导颗粒的病毒载体(例如噬菌体)的任何dna。类似阐述的,在一些实施例中,转导颗粒是没有能够表现与病毒(从其得到病毒载体)相关联的野生型病毒功能的野生型dna的病毒载体。

在一些实施例中,该转导颗粒110不能经由溶胞或溶原循环来复制。通过消除来自转导颗粒的各种形式的复制,将在报告物分子的产生期间保持目标细胞(即不会被破坏、杀死或溶胞),由此提高与其一起使用的方法的准确度和可靠性。特别地,因为病毒颗粒的野生型病毒功能可以表现溶原复制并且需要用于溶胞复制的能力,所以抑制复制(replicative)功能(例如溶胞循环)的尝试可能不会提供在某些测定群体中不产生的溶胞循环的充分确定性。

可以通过与一个或多个目标细胞相关联和/或专用于一个或多个目标细胞来表征转导颗粒110。类似阐述的,转导颗粒110被按配方制造成将核酸分子结合并递送到目标细胞中。例如,可以选择转导颗粒、可以将转导颗粒设计和/或产生为结合任何细菌,例如埃希氏杆菌、分枝杆菌、葡萄球菌、李斯特菌、梭菌、肠球菌、链球菌、螺杆菌、立克次体、嗜血杆菌、异短杆菌、不动杆菌、博代氏杆菌、假单胞菌、气单胞菌、放线杆菌、巴氏杆菌、弧菌、军团菌属、芽孢杆菌、眉藻属、甲烷球菌属、寡养单胞菌、衣原体、奈瑟菌、沙门氏菌、志贺菌、弯曲菌和耶尔森菌。

该转导颗粒110可以进一步被产生和/或设计成包含用于表达可以被检测(例如经由仪器140)的报告物130的基因和/或核酸分子。该报告物130可以是细菌荧光素酶、真核荧光素酶、荧光蛋白(例如gfp等等)、适用于色度检测的酶(例如辣根过氧化物酶)、适用于免疫检测的蛋白质(例如蛋白质a等等)、适用于免疫检测的肽或肽标签(例如三倍flag、等等)和/或起到适体作用或表现酶活性的核酸。更特别地,该转导颗粒110不会自主产生报告物130和/或不会包括报告物130。作为代替,该转导颗粒110被配置成将包含在其中的经设计的核酸分子传达至目标细胞(例如细菌),以使得经设计的核酸分子使用细菌dna的自然转录和翻译功能以产生报告物130。因此,报告物130可以被视为“可切换”报告物,这意味着直到使得产生报告物130的状况(例如目标细胞的存在)在样本中才存在报告物130的量。以这种方式,某些方法可能不包括非结合报告物130的冲洗,不包括计及报告物等等的初始量的信号减法。因此,该系统100和与其相关联的方法允许均匀测定的开发。进一步地,可能不需要温度循环,并且以例如37°c的低温加热达短的时间可能是足够的。

可以通过在启动子的控制下将报告物分子合并到非复制转导颗粒110(或本文中公开的其他转导颗粒中的任一个)中来开发以便报告有活力的细菌和/或目标细胞的存在的用来促进报告物130的表达而按配方制造的报告物系统和本文中公开的报告物系统中的任一个。当该转导颗粒110将报告物系统引入转导颗粒110的宿主范围内的细胞中时,该启动子能够驱动报告物分子的表达。

在一个实施例中,可以使用任何适当的系统来开发和/或执行mssa/mrsa报告物测定。在这样的实施例中,从金黄色葡萄球菌特定噬菌体开发非复制转导颗粒(例如转导颗粒110等等),并且合并在构成的启动子的控制下细菌荧光素酶基因luxab。当该转导颗粒将报告物系统引入金黄色葡萄球菌中时,该构成的启动子可以表达适用于报告有活力的金黄色葡萄球菌的存在的luxab。此外,如果在使转导颗粒与金黄色葡萄球菌细胞混合之前或与之同时,还添加抗生素头孢西丁或类似的抗生素,如果细胞不包含并表达meca基因,则在测定中将不表达luxab,因此指示细胞是mssa(即对头孢西丁的抑制敏感)。然而,如果该细胞不包含和表达meca基因,则将在测定中表达luxab,因此指示细胞是mrsa(即抵抗头孢西丁的抑制)。

尽管被描述为为了报告物有活力细菌的存在而开发,但是在其他实施例中,可以开发用于报告目标细菌内的目标基因的存在的报告物130以及可适用报告物系统中的任一个。在该系统中,将无启动子的报告物基因放置在与目标基因序列同源的核酸序列的下游,并且将该报告物构造插入非复制转导颗粒中。当转导颗粒将报告物构造引入目标细胞中时,将不表达报告物基因,除非目标细胞包含目标基因,并且同源重组事件将报告物基因集成在目标细胞中的目标基因位点内以使得报告物基因变成可操作链接至目标细胞内的目标基因启动子。

在一个此类实施例中,可以通过将金黄色葡萄球菌特定非复制转导颗粒(例如转导颗粒110、转导颗粒160等等)合并到由与无启动子细菌荧光素酶基因(luxab)的meca基因上游同源的核酸序列组成的报告物构造中来开发mrsa报告物系统。当转导颗粒将报告物构造引入目标金黄色葡萄球菌细胞时,将不表达报告物基因除非目标细胞包含目标meca基因并且同源重组事件将luxab基因集成在目标细胞中的meca基因位点内以使得报告物基因变成可操作链接至目标细胞内的meca基因启动子。

在一些实施例中,转导颗粒110、包含在该转导颗粒110和/或与其相关联的报告物系统内的核酸分子可以包括在美国专利公开no.2010/0112549中示出且描述的重组噬菌体的各部分中的任一个。

该样本s可以是可能包含目标分析物的任何样本(例如人类鼻拭子、血液、尿液、兽医样本、食物样本和/或环境样本)。在一些实施例中,该样本s可以是不需要任何准备(例如不需要任何分离或冲洗步骤)从源获得的原始样本。因此,系统100和与其相关联的方法可以是同源的。在一些实施例中,样本s可以包括低负荷的目标细胞(例如用于mrsa检测的鼻拭子)。当与此类样本一起使用时,该系统100以及与其相关联的方法可以包括用来促进细胞复制的加热和/或繁殖时段,这导致报告物分子130的更高产量,例如以生成比最小信号阈值更大的信号。

在其他实施例中,样本s可以具有更高负荷的目标细胞(例如阳性细菌血培养)。在这种情况下,不需要细胞复制来产生足以识别目标细胞的阳性信号。在一些此类实施例中,可以将样本保持在具体状况,例如保持在大于或等于接近室温25°c或37°c的温度达例如小于近似4小时的预定义时间段。在此类实施例中,将样本s保持在该温度和时间段以使得产生足以生成可测信号的报告物分子130的数量,这与细胞复制无关。在此类实施例中,将该样本保持在预定义温度达更长的时间段,例如6小时、8小时、一直到18小时或甚至更长。

在一些实施例中,容器120可以包含第一试剂(例如细菌营养或生长介质(例如最小基本介质)和/或适当缓冲液(例如amies、pbs、tris、hepes等等))以用于将目标细胞保持在有活力的状态,促进细菌细胞生长等等。在一些实施例中,还可以将抗菌素(例如头孢西丁)包括在第一试剂中,例如当想要有活力细胞测定时。可以将包含目标细胞的样本s添加至容器120,之后将转导颗粒110添加至容器120。如果存在目标细胞,则转导颗粒110将其中包含的核酸序列传递至目标单元中以使得包含在转导颗粒110中的核苷酸与目标细胞的基因(例如宿主细菌)集成。

在一些实施例中,该容器120被配置成使样本s与容器120之外的区域流体隔离。在此类实施例中,在将转导颗粒110混合在样本s中之前使转导颗粒110保持与样本s流体隔离。在一些实施例中,该保持可以包括保持样本s达使得多个报告物分子130的量足以产生独立于目标细胞复制而产生的信号的时间段。如本文中描述的,混合包括在保持区域和容器120之间的隔离的同时将转导颗粒110设置在样本s中。

在一些实施例中,该容器120可以被配置成包括按配方制造成与报告物分子130反应以产生、催化和/或增强信号的产生的活性试剂。例如,报告物分子130可以是荧光素酶,并且容器120可以被配置成包含被按配方制造成触发、发起和/或催化可由信号的产生检测到的发光反应的醛试剂。在一种实现中,容器120的盖可以包含通过系统100的仪器经由致动(例如爆开水泡)与转导样本混合的活性试剂(例如在水泡中)。

在各种实施例中,该活性试剂可以包括6-碳醛(己醛)、13-碳醛(十三醛)和/或14-碳醛(十四醛),将其间的所有变化的碳链长度醛类包括在内。在一些实施例中,容器120可以被配置成在被设置在样本s中之前保持活性溶剂与样本s流体隔离。以这种方式,可以控制活性试剂在样本s中的递送定时。在一些实施例中,该系统100可以包括用于在任何适当时间和/或以任何适当方式添加活性试剂以引起可检测的信号的机构。例如,如在本文中更详细描述的,在一些实施例中,系统100和/或容器120可以包括用来以预定速度(或流速)将活性试剂运送至样本s中以提升期望混合水平的机构。

该仪器140可以是用来检测报告物分子130和/或通过报告物分子130催化的反应的任何适当仪器。例如,该仪器140可以包括光学(例如光电倍增管、荧光计、光谱仪、横向流测定上的色度检测、基于成像的检测、ccd、用于检测生物发光的发光检测器、色度或荧光微阵列)和/或电子检测装置(例如电化学传感器、安培传感器、电位传感器、电导传感器、阻抗传感器、库仑传感器和/或任何其他电化学传感器)。

仪器140与分析所测得的数据的计算机系统150连接。该连接可以是有线或无线的。作为无线连接的一个示例,仪器140处的可移除数据存储设备可以存储所测得的数据,并且存储设备可以被移除并插入计算机系统150中。

在一些实施例中,该系统100和/或与其相关联的方法可以被配置成不需要目标细胞的任何放大的快速测试。使用本文中描述的系统100和方法,对于包含来自转导颗粒110的核酸序列的目标细胞,可能需要相对小的时间(例如1小时、2小时、3小时或4小时、高达18小时)来产生可以被检测的足够量的报告物分子130。在一些实施例中,在样本s的收集和/或转导颗粒110的添加之后该系统100可以被配置成封闭系统。在一些实施例中,所述另一方式是在样本s的添加之后保持容器与外部环境流体隔离。这可以例如降低污染的机会。如上面描述的,因为系统100可以容纳原始样本,所以系统100以及与其相关联的方法不需要远离样本s的任何冲洗或流体传递步骤。该系统100因此可以易于操作,该系统100是迅速的、不昂贵的且易于自动化的。在一些实施例中,该系统100可以是可被配置成在各种体制例如(有活力的细胞报告物、基因报告物、测量细菌对抗菌素的抵抗性和/或敏感性、以及/或者细菌毒素检测等等)中操作的平台系统。

b.代表性数据和区别问题

实施例包括闪光类型的反应,并且还可以包括可以看到辉光(glow)信号的后期区域。发光测定可以处于许多不同类型。发光测定是使用基质(substrate)(活性试剂)的化学或酶促反应。在报告物分子是细菌荧光素酶(luxab)的情况下,基质可以是脂肪醛(例如十三醇)。当通过化学或酶促反应作用于基质时,光作为副产品而发出。两种主要类型的发光反应是闪光和辉光。该闪光发光反应可以快速发生,例如在几秒或分钟之内,发出非常亮的信号。然而,辉光发光测定可以持续几小时,但是通常不会向闪光发光测定那么亮。

如上描述的,当活性试剂活化反应物或从反应物生成的分子时(例如响应于转导颗粒由细菌生成的报告物分子),可由样本来产生闪光信号。但是,可以由其他类似分析物(以及目标分析物)来生成闪光信号。例如,针对mssa和mrsa生成闪光信号。这对将样本分类为对目标分析物为阳性或阴性的区别分析提出了一个问题。

图2示出根据本发明的实施例的来自相应样本的mrsa信号和mssa信号的典型图200。水平轴对应于时间。垂直轴对应于由检测器(例如pmt)测量的信号强度。所测得的数据包括基线测量(在活性试剂被添加之前收集的数据)和基质测量(在活性试剂被添加之后收集的信号数据)。此类信号可以产生除了mrsa之外的其他分析物。

尽管两个信号被示为具有不同最大值(对于mssa约400并且对于mrsa约1050),但是最大值可以靠近地更多。一些mssa样本甚至可以具有比对于一些mrsa样本的最大值更高的最大信号值(峰值)。阳性信号可以具有从非常低峰值到高峰值的宽范围。类似信号的该噪声可以造成区别阳性样本和阴性样本的问题。因此,仅仅使用最大值会提供太多的假阳性,例如在期望敏感性和特异性以下,如在下面示出的。进一步地,峰值可以在各个时间点处出现。

为了解决这些困难,实施例可以使用随着时间的多个信号值,并且不仅仅是单个值,以便分析信号数据的动力学范围。实施例还可以分析其峰值周围的信号的曲率,作为区别阳性和阴性样本的一种方式。此类技术可以将重点放在区别彼此非常靠近的信号以便提供期望的敏感性和特异性。现在讨论此类接近的数据。

图3示出根据本发明的实施例的描绘从对mrsa是阳性的样本和为mrsa是阴性的样本产生的代表性数据的图300。该数据由通过pmt与时间的关系产生的相对光单位(rlu)组成,在这种情况下数据是每四分之一秒从pmt收集的。

在图300中,n是从数据点1至数据点19的数据的19数据点区域。在该时间段期间,快门机构阻挡pmt传感器并且因此由pmt产生的数据代表pmt的噪声。接下来,打开快门并且插入测定管以使得pmt传感器在由接下来的20个数据点(具体地数据点20-39)组成的时段期间被暴露于该管。在此20个点的区内,b是18数据点区,其包括数据点21-38并且被认为是在之前信号的活化出现的“背景数据点”。最后,在数据点40处使信号活化。该活化出现在示出信号的快速增加和减小的“注入尖峰(injectionspike)”中。该注入尖峰包括数据点40-42。在注入尖峰之后是信号sn,其是来自数据点43-59的数据的17数据点区域。信号sn包括具有峰值的闪光区域310。

相应地,在注入活性试剂之前,存在背景信号的测量。如下面解释的,可以由该背景数据进行预信号检查。例如,该背景可以是不规则的并且需要检测器被重置,例如使容器120重新就位。背景区域的数据点还可以被用来计算背景(基线)均值和背景的标准偏差,它可以被用在确定用于对信号分类中的信号对背景比中。

在其他实施例中,可以在从0至4.75秒(例如对应于区域n)的每四分之一秒完成暗计数测量,在这种情况下可以忽略对于区别分析的此类暗测量。可以在从5至9.75秒的每四分之一秒完成背景测量,并且在从10至19.75秒完成基质(信号)测量。暗计数测量可以被用于检查仪器稳定性并且不在区别分析中使用。该背景测量可以提供关于仪器至仪器的差别的信息并且可以组合到利用基质(信号)数据的统计量(得分)中以实现均匀校准(例如可能不需要仪器至仪器校准)。

ii.通用流程。

实际上,检测系统可以产生从除了目标分析物之外的因素导出的数据。这些数据可以从由跨反应性分析物(例如mssa)、系统噪声和来自外部源的畸变光等产生的非特定信号导出。此类数据可以产生假阳性、假阴性和零结果。已经开发考虑此类畸变数据来限制假阳性、假阴性和零结果的实施例。除了执行信号检查来区别阳性和阴性结果之外,可以应用信号前和信号后检查。例如,信号前检查可以将样本标记成重新定位在检测器设备中以尝试清除畸变。在一些实现中,此类信号前检查可以完成高达三次,并且然后将在没有偏见的情况下继续进行测量。在信号后检查的情况下,标记的样本可以被设计为无效或阴性。

图4是根据本发明的实施例的用于检测样本中的目标分析物的方法400的流程图。可以使用系统100来实施方法400。例如可以使用计算机系统来执行方法400的各部分。在框410处,用检测器来检测背景数据点。可以在将样本插入(例如插入容器120中)之后检测背景数据点。可以将背景数据从检测仪器传送至计算机系统以用于早期分析,例如作为信号前检查的一部分。

在框420处,执行信号前检查。在发起任何反应并且收集信号数据点之前执行该检查。因此,该检查被称为“信号前”检查。可以执行一个或多个信号前检查。在下面更详细地描述示例信号前检查。示例信号前检查可以确定是否存在系统的结构方面,例如是否没有适当地连接检测仪器。在一些实施例中,如果信号前检查通过,则方法400可以继续进行。

在框430处,通过将活性试剂添加至样本来发起反应。该反应可以引起要被发出的信号例如光信号。如上所述,该反应可以用于检测mrsa的示例。

在框440处,用检测器来检测信号数据点。该信号数据点在闪光区域中可以具有峰值,例如当信号对分析物是阳性时。可以分析信号数据点来确定样本中是否存在分析物。

在框450处,执行信号后检查。在信号数据点被收集之后执行该检查。因此,该检查被称为“信号后”检查。可以执行一个或多个信号后检查。下面更详细地描述示例信号后检查。示例信号后检查可以确定信号数据点是否示出畸变,并且因此指示误差。另一示例信号后检查可以使用定制的准则来识别低的阳性信号。在一些实施例中,如果信号后检查通过,则该方法400可以继续进行。

在框460处,基于信号数据点和背景数据点来确定样本对目标分析物是否是阳性。作为一个示例,可以确定信号对背景项。可以执行回归(例如至少二阶多项式),并且回归拟合的量的准确度项可以被用来扣除差回归拟合的信号。

该确定是样本的分类的一个示例。例如,实施例可以使用信号对背景项和准确度项来确定与阈值相比较以确定分类的得分。分类的示例包括分析物的存在或不存在、不确定或存在或不存在的置信水平。

iii.分类。

实施例可以优化用于在闪光反应中确定样本对目标分析物是否是阳性的分类过程。可以执行该优化来提供最优敏感性和特异性。例如,可以选择得分的一个或多个参数来优化敏感性和特异性的总和,潜在地满足等于到大于95%的敏感性和特异性的要求。

通常地,在判别式分析中,导出间接测量(y)的线性组合,其以可以基于各类之间的平均距离来以关于间接测量的未来观察的方式分离直接测量(x)的类。相比之下,实施例可以导出最大化的得分和阈值。该方法可以扩展至x对应于多个类并且y可以是单变量或多变量的情况。在一些实施例中,不作出关于y的理论概率分布的假设。

考虑用于使上百分之95的mssa样本和下百分之95的mrsa样本分离(相区别)以便分别提供95%特异性和95%敏感性的不同统计量。对于该分类来说,该统计量可以是单变量或多变量的。示例统计量是:(1)利用基质数据的部分样本的截距和斜率(例如对于从10秒至19.75秒的不同时段);(2)利用基质和基线数据的部分样本的截距和斜率(对于从10秒至19.75秒和从5至9.75秒的不同时段);(3)基质数据的部分样本的和/基线数据的和;以及(4)基质数据的部分样本的和/基线数据的最大值。对于(1),基于从10至19.75秒的数据点的线性回归,可以为每个样本确定截距和斜率。然后针对这两类的百分比来分析这些截距和斜率。同样应用于(2)。下面定义单变量统计量。

作为确定单变量统计量的一部分,获得对于多个样本的关于间接和直接测量的第一数据。将关于间接测量的多变量数据简化成一个统计量。例如,实施例可以将n个收集的数据点提取成将两个分类(群集)分离的一个度量。在下面的示例中,一个度量(得分)可以以mssa的上百分之95低于mrsa的下百分之95的方式来将间接测量分离成两个类。相应地,实施例可以提供分类系统实现指定的敏感性和特异性的目标。

a.信号对背景和曲率的使用

为了确定样本是否包含目标分析物(mrsa),实施例可以计算得分(s)并且将该得分的值与分类阈值(t)相比较。如果该得分大于或等于阈值,则该样本的确对目标分析物是阳性,而如果该得分小于阈值,则确定该样本对目标分析物是阴性。该得分和阈值还可以被定义成对要确定成阴性和阳性的那些具有相反的关系。

在一些实施例中,经由公式s=rsn-cxs≥t来计算得分。该rsn项是信号对背景项。该cxs项是将回归函数拟合至信号数据点的准确度的度量的准确度项。可以通过公式来计算rsn,在这里y是信号数据点(sn)的和,例如在pkst和pkend之间的数据点,在这里pkst=43并且pkend=59。因此,y可以如下定义:。y项有效地集成在峰值周围。

bm可以被定义为bm=ps*bm。因此,bm是背景数据点的均值(或中值、模或不同项的和)bm和包括信号数据点的总数据点(例如ps=17)的积。bs是背景数据点的标准偏差(或范围或四分位数)bs和常数w的积:bs=w*bs。cxs是二次最小均方回归的抛物线系数(x2)和二次最小均方回归的确定系数r2(或准确度的任何测量)的积:cxs=r2*x2。对于下凹函数(比如在闪光区域中),x2为负。因此,良好凹拟合将增加s的值,因为从rsn减去cxs项。在准确度项包括抛物线系数的实施例中,抛物线系数可以充当准确度值使得分减小多少的加权因子。

当存在差回归拟合(即当信号的动力学不是占主导地位的二次项)时准确度度量(例如r2)变得更小。阳性信号是占主导地位的二次项,并且因此良好拟合将增加得分。x2的值对下凹信号(即开口向下的抛物线)是阴性,如在图3中呈现的。如果使用除了x2之外的不同加权因子(例如就是1),则可以将准确度项添加至信号对背景项。等同地,加权因子可以是-1,以使得仍可以使用s=rsn-cxs。

可以通过使用来自已知对目标分析物(例如mrsa)是阳性和阴性的样本的代表性数据集来计算s来选取常数w和t,以便实现指定的敏感性和特异性,例如≥90%的敏感性和≥95%的特异性。为了优化用于截止附近的数据的算法,即对于包含最低量目标分析物的样本,可以使用已知对目标分析物是阴性的上百分之95的数据和已知对目标分析物是阳性的下百分之95的数据。

然后可以基于下面的准则来分析数据:

真阳性(tp):产生s≥t的已知mrsa阳性样本;

真阴性(tn):产生s<t的已知mrsa阴性样本;

假阳性(fp):产生s≥t的已知mrsa阴性样本;以及

假阴性(fn):产生s<t的已知mrsa阳性样本。

可以使用来自已知样本的代表性数据集和下面的公式来计算敏感性和特异性:敏感性=tp/(tp+fn)以及特异性=tn/(tn+fp)。以这种方式,可以选取常数w和t以使得算法实现期望的敏感性和特异性。在一个实现中,期望的敏感性是≥90%并且期望的特异性是≥95%。

图5描绘根据本发明的实施例的当参数w具有为15的值时,敏感性和特异性的值与阈值(t)的关系的示例。基于该数据分析,为t选取为18的值以优化敏感性和特异性。t的另一示例值是12。

b.示例

作为一个示例,可以如下确定该得分:

该和是针对10.75的时间和14.75的时间之间的信号数据点。平均值针对5.25至9.50之间的背景数据。stdev是5.25至9.50之间的背景数据的标准偏差。

抛物线拟合意味着在10.75和14.75之间的九个数据点上生成二阶最小平方回归。x2系数对应于最小平方回归曲线的二阶系数。抛物线拟合数据点#5在局部最大值(10.75-14.75)处,以便有效地使抛物线的中心在局部最大值上,在任一侧上具有四个数据点(时间上一秒)。在一些实施例中,如果存在具有相同值的多个点(例如两个邻近点具有相同的局部最大值),则可以选取最靠近注入峰值的一个。

如果局部最大值(10.75-14.75)在10.75和11.5之间,则抛物线拟合的中心将在11.75周围。如果局部最大值(10.75-14.75)在14.0和14.75之间,则抛物线拟合的中心将在13.75周围。

相应地,在一些实施例中,目标分析物的存在的分类可以使用信号对背景项和抛物线拟合方法两者。为了计算信号对背景项(rsn),可以使用两个可配置参数来计算信号数据的和(y):pis-跨注入尖峰的数据点的数目(例如设置成3);以及pss-构成具体范围的数据点的数目(设置成17)。信号数据是在第一基质数据点的开始之后在pis数据点处开始的所检测到的基质数据点的pss数据点。计算排除第一和最后数据点的背景数据点的均值(bm)并且用该均值(bm)乘以pss。排除第一和最后数据点的基线读取的标准偏差(bs)乘以参数w,例如为15的固定常数。可以将信号对背景项计算为rsn=(y–bm)/(w*bs)

可以如下计算信号数据至抛物线拟合的准确度项cxs。找到信号数据的最大数据点(m)。可以使用关于信号数据的九个(9)数据点的二阶最小均方回归、使用在m的任一侧上的四个数据点来计算抛物线拟合。如果m的时间点是自信号数据开始的3个数据点或更少数据点,则抛物线拟合的中心可以在信号数据的开始之后的4个数据点的时间点上。如果m的时间点在自信号数据结束的3个数据点内,则抛物线拟合的中心可以在自信号数据的结束的4个数据点的时间点上。可以通过用准确度值乘以来自抛物线拟合的x2项的系数(例如确定系数值r2(r平方))来计算cxs。准确度值的其他示例是经过调整的r平方、f测试的p值、和平方的预测残差和(press)统计量。

可以将原始得分s计算为s=rsn-cxs。阈值t(例如12)的可配置参数可以被用来确定样本是否是阳性/阴性。如果st,则样本是阳性(mrsa),否则样本是阴性(非mrsa)。

c.方法

图6是根据本发明的实施例的用于确定样本对分析物是否是阳性的方法600的流程图。可以至少部分由计算机系统来执行方法600。

在框610处,使用检测器来收集多个背景数据点。作为一个示例,检测器可以是光检测器(例如pmt)。检测器的其他示例包括ph或基于离子/电荷的检测器。在背景时间间隔期间收集背景数据点。例如如在图3中利用区域b示出的,在接收信号之前可以出现背景时间间隔。

在框620处,使用检测器来收集多个信号数据点。在信号时间间隔(其可以在背景时间间隔之后)期间收集多个信号数据点。该信号时间间隔包括在用活性试剂活化样本之后的时间的一部分。例如,该信号时间间隔可以对应于图3的sn区域。

在框630处,计算机系统可以使用多个背景数据点和多个信号数据点来计算信号对背景比。在一个实施例中,该信号对背景比被计算为小于背景均值的信号曲线下面的面积的比,并且该结果除以背景的标准偏差,例如信号对背景比可以被计算为,在这里bs是背景的标准偏差。在章节iii中描述信号对背景比的其他示例。例如,信号对背景比rsn可以被确定为:

。可以将除了均值之外的其他统计值用于bm,例如中值、模或不同项的和。除了标准偏差之外,偏差的其他度量也可以被用于bs。例如,值的具体范围、值的百分比、值的等级或值的四分位数。在另一示例中,可以排除该bm项,这将导致不同分类阈值。

在框640处,计算机系统可选地可以确定多个信号数据点的最大值。该最大值可以对应于信号曲线的峰值。例如,图3示出闪光区域310中的峰值。如果处于最高的两个信号数据点相等,则一些实施例可以使用任一个作为最大值。在另一实施例中,可以在两个此类信号数据点之间取峰值。

在框650处,计算机系统确定拟合多个信号数据点的回归函数。该回归函数至少包括二阶多项式。可以使用例如在回归函数中心的最大值的时间来确定回归。该回归可以将最小平方用作用于确定回归函数的三个参数的最佳拟合的度量。

可以在具体间隔中限定在确定回归中使用的多个信号数据点,即可以不使用所有信号数据点。例如,可以确定信号数据的最大值并且将其用于使用在最大值之前的数据点(例如4个)和最大值之后的数据点(例如4个)来进行数据的回归。因此,可以使用邻近最大值的点。在使用最大值的任一侧上的四个数据点的实施例中,如果最大值位于自信号数据的开始的三个数据点或更少的数据点,则抛物线拟合的中心可以在信号数据开始之后的第四数据点的时间点上。如果最大值位于离信号数据的结束的三个数据点或更少的数据点,则抛物线拟合的中心可以在信号数据的结束之前的第四数据点的时间点上。在一个实现中,如果两个或更多数据点具有相同的最大值,则使用第一个。

在一些实现中,如果信号的最大值小于预定量,则可以将回归的中心设置成最小预定量。在其他实现中,如果信号的最大值大于预定量,则可以将回归的中心设置成最大预定量。

在框660处,计算机可以计算拟合多个信号数据点的回归函数的准确度值。在一些实施例中,该准确度值是确定系数r2。其他实施例可以使用在信号数据点和回归函数之间的差的平方的和,在这种情况下可以例如通过数据点的数目、数据中的方差等等来使平方的和标准化。

在框670处,该计算机系统通过利用信号对背景项调整准确度项来计算得分。可以通过减法或加法来完成该调整。该准确度项包括准确度值。例如,该准确度项可以包括回归函数的二阶项的抛物线系数。具体来说,该准确度项可以包括乘以抛物线系数的准确度值,如上面对于cxs描述的。该信号对背景项包括信号对背景比。例如,可以通过信号对背景比乘以第一常数的倒数来计算信号对背景项。

在框680处,将该得分与分类阈值相比较以确定样本对分析物是阳性还是阴性的分类。该分类阈值(例如上文被称为t)可以区别阳性和阴性样本。可以选择t的值来优化所实现的敏感性和特异性,例如在图5中示出的。可以使用多于一个分类阈值。在此类实施例中,该分类可以包括除了阳性或阴性之外的其他分类,诸如对于阳性或阴性的不同置信水平。不确定是分类的一个示例。

d.信号对背景项

作为确定信号对背景项sn的一部分,可以通过集成随着时间出现的多个数据点(例如对于新的数据点每¼秒检测的数据点)来执行纵向分析。该纵向分析可以对应于信号部分,在这种情况下在快速上升和下降的高峰值上可能偏好持久值。可以使用平均背景来考虑特定于给定测量的提升信号(例如不同检测器可以具体不同的增益)。分母中的偏差项可以考虑噪声(例如一个系统可以具有比另一个更多的噪声)。

信号对背景项还可以包括缩放因子。例如,信号对背景比可以乘以1/w,在这里w是常数(例如15)。可以通过优化所实现的敏感性和特异性来确定用于参数w的值。在一些实施例中,可以以这种方式确定两个参数w和t。可以针对作为维度的w和t确定三维图,并且第三维是针对敏感性和特异性的百分比的图。因此,如在图5中对于w的固定值完成的那样,可以同时确定对于w和t的最优值。

在各个实施例中,信号sn(例如注入峰值之后的17个点)可以是比17更小或更大的区域,只要它跨过信号的闪光部分。该区域被集成为上述y项。在sn个点的情况下,可能重要的是如上所述以关于峰值的集成为中心。同样,均值背景(来自上面的bm项)可以是比上面的示例更大或更小的区域,并且被用来提供均值背景和标准偏差(来自上面的bm项)二者。对于更快速测量来说,较小的区域将牺牲一些精度,并且相应地更大区域可提供对于更慢测量的一些增加的精度。

e.准确度项

准确度项可以测量信号数据点的峰值动力学,即峰值是否具有闪光反应的特性。具体来说,该准确度项将峰值动力学与二次项或其他回归函数相关以便帮助阳性和阴性样本之间的区别。如果信号的峰值类似于所选取的回归函数,则更可能的是样本是阳性,因为回归函数被选取为类似于阳性信号。该准确度值测量信号数据点(或信号数据点的一部分)如何紧密地类似于回归函数。

在一些实现中,准确度项是由回归产生的二次项系数(即上面的x2)与确定系数r2的积。存在对准确度项中的这两个度量的备选。例如可以从数据的更高阶多项式拟合(例如第4阶或第五阶)导出x2项。此外,在回归中分析的数据的区域可以比在上面提供的示例区域更小或更大。类似于对于项r2,可以使用准确度的备选度量,例如所谓的经过调整的r2和预测性r2

在准确度项包括抛物线系数的实施例中,抛物线系数可以充当准确度值使得分减小多少的加权因子。阳性信号通常将是向下凹的,其具有对于抛物线系数的负值。因此,准确度项通常将为负,当利用信号对背景项来调整准确度项时会使得分增加。可以使用任何适当的加权因子,例如仅仅-1。如果抛物线系数为正,则这减小得分,因为阳性信号会向上凸甚至是不太可能的。

iv.信号前检查。

在基质的注入之前应用这些检查,这是闪光反应的开始。

a.识别畸变背景数据。

不稳定数据可以是可能产生不可靠数据的出故障的pmt的结果。在运行良好的pmt中,预期系统中的噪声用来展示泊松统计并且预期噪声的标准偏差等于噪声的均值的平方根。基于该领悟,实施例可以检查是否从背景收集到未预期的数据。除了泊松分布之外还可以使用其他统计分布,例如对于不同类型的检测器。

因此,可以分析在注入之前的背景数据点,例如图3的区域b中的背景数据点。确定中值。对于分布来说该中值和均值应该是相同的。对于泊松分布,方差与均值相同。背景的数据点应该遵循泊松分布。因此,如果中值示出与均值不同的特性,则可以将背景识别为畸变,例如归因于具有检测器的样本容器的不适当安装。

作为检查的一部分,可以将中值视为均值。该中值对异常值不敏感。将该中值用于确定背景数据点的标准偏差std。对比2*std加上中值更大数目的数据点计数。如果数据点的数目大于阈值(例如5),则背景噪声太大并且需要重新安装样本容器。高噪声是信号中促使读数被提升的假象的指示。

在一个示例实现中,从背景的每个数据点减去背景的中值并且将剩余物与背景的中值的平方根与第一常数的积相比较。对于该计算使用中值而不是均值,以便对畸变信号中会存在的数据点异常值不敏感。对于非畸变数据,中值和均值具有相同的统计值。列举了公式的左手侧产生大于等式的右手侧的数字的数据点的数目。如果该和大于第二常数,则确定背景正产生非预期数据,并且认为该系统不适用于进一步数据分析。在此类情况下,可以利用pmt来使样本容器重新就位。如果该和小于或等于第二常数,则确定背景不产生非预期数据并且认为该系统适用于进一步数据分析。可以凭经验确定第一和第二常数并且将它们分别选取为2和5。

因此,一些实施例可以计算背景数据点的至少一部分的中值,并且然后使用该中值来计算偏差。例如,该偏差可以是中值的平方根,其可以对应于泊松分布的标准偏差。可以使用中值和偏差的和来确定第一截止值。该第一截止值可以等于减去中值并且然后将结果得到的数据点与偏差项相比较(例如偏差的2倍)。2是上面提到的第一常数的一个示例。可以对大于第一截止值的第一数目的背景数据点计数并且将其与第二截止值相比较(例如对于上面的第二常数被称为5)。当第一数目大于第二截止值时,确定存在误差。该误差可以是利用系统(例如检测器)的问题的结果。可以向用户发送作为误差的指示的警示。

当在收集多个信号数据点之前完成测试时,可以再次连接该系统以使得样本不会浪费。可以再次执行该信号前检查以确保误差仍不存在。因此,在一个实施例中,直到如根据第一数目小于或等于第二截止值而确定校正了误差才收集该多个信号数据点。在其他实施例中,可以完成高达指定次数(例如3)的重定位并且然后如果没有被求解,则方法可以继续进行。才收集该多个信号数据点

b.均值大于阈值

提升的背景信号可以是会产生不可靠数据的有故障pmt的结果,或者它可能归因于其他因素,包括来自外部源的畸变光、测定中信号的过早活化,这可能导致不可靠的结果。实施例可以检查是否观察到提升的背景。可以将背景的均值与预定因子(例如40)相比较。

如果背景的均值大于预定因子,则确定背景被提升,并且认为该系统不适用于进一步的数据分析。在此类情况下,可以利用pmt使样本容器重新就位。如果背景的均值小于或等于预定因子,则确定背景不提升,并且认为系统适用于进一步数据分析。

可以从检测器噪声的分析选取预定因子。在使检测器暴露于样本之前,可以获得数据收集的在前时段(例如来自图3的区域n)。在该在前时段中,快门机构可以阻挡来自检测器传感器的光。可以使用该“暗”数据的统计值来动态选取预定因子。例如,可以将该预定因子计算为暗数据的均值或暗数据的均值与常数的积。

v.信号后检查。

在收集信号数据之后应用下面的检查。可以在得分用于确定关于分析物的分类的之前或之后来完成信号后检查(例如经由方法600)。

a.使用动态阈值进行筛选。

对于具有小峰值的信号,敏感性和特异性可以进一步增加。可以执行单独的阈值分析;并且如果信号通过该初始阈值,然后可以以另一阈值测试来执行方法600。因为由目标分析物产生的信号展示特定动力学特性,所以可以基于信号的动力学特性的分析来区别非从目标分析物产生的非特定信号与由目标分析物产生的特定信号。

在一些实施例中,用作峰值的动态(自适应)阈值可以非常小。该初始阈值测试被用来确定是否继续进行。该初始阈值可以基于信号的量值。如果峰值量值低于固定阈值,则可以使用自适应阈值。如果信号通过该测试,则可以执行上面的评分。但是如果它失败了,则将信号识别成阴性。

因为峰值较小,所以数据点中的泊松波动具有更多影响。因此,小的实际阳性信号将看起来充满噪声。基于最大值在哪里(在某些水平之间),然后确定对于小的阳性信号的预期噪声的量。基于已知的阳性信号来确定对于小的阳性信号的噪声量。

对于给定峰值,例如使用基于在真实信号中看到的预期噪声水平的蒙特卡罗技术来确定预期噪声的量。例如,可以识别真实信号并且信号值减小。对于基于泊松统计量的每个峰值预期的噪声水平来实施蒙特卡罗。该蒙特卡罗技术可以使用信号无噪声特性测定信号。可以在数学上将该单个无噪声信号缩放至不同的信号水平,包括预期的低水平信号。在每个缩放水平处,使用蒙特卡罗技术来确定预期噪声的量。可以对于已缩放的信号水平的范围来完成该确定以表征在各个信号水平的预期噪声。

基于噪声的模拟,可以确定函数拟合(例如四阶拟合)的预期准确度(例如r2)。对于多个峰值来完成这个,并且在它们之间执行内插。该内插可以在逻辑尺度(例如2),所以当峰值变得更小时存在更精细的渐变。因此,对于任何峰值,可以基于最大值来确定准确度阈值。如果对于当前信号的准确度值高于阈值,则信号通过,并且实施例可以继续进行至评分阈值(例如框460)。

在一个示例中,实施例可以检查下面这些。如果sn区域的线性回归的标准误差高于阈值(即强信号),则预期信号分布图是平滑的并且不能展示向上凸的分布图。如果信号在阈值以下(即弱信号),则预期峰值分布图成为‘有噪声的’并且可以用利用泊松分布或其他统计分布的噪声卷积的4阶多项式来建模,例如如果使用不同于pmt的检测器。如果信号不展示这些特性,则不将其标记为特定信号,并且上述评分方法不会处理数据。

在一个实现中,分析sn信号区域中的数据点(例如范围从43-59)。首先通过计算在sn区域的结束之前以从开始偏移1起始且以1结束的每三个邻近数据点的中值来对数据滤波,因此跳过被不同处理的端点。结果得到的中值替换3个数据点的中间。

用最后两个数据点的中值替换最右边的数据点;因为它在尾部,所以这是良好近似。最左边的数据点邻近注入峰值,pis区域。为了对该最左边的点滤波,其作为异常值进行测试(例如比从经过滤波的数据的四阶多项式拟合计算的最左边点的值加上其标准偏差的具体倍数(例如3)更大)。如果最左边点是异常值,则替换外推值(从经过滤波的数据的四阶多项式拟合计算的最左边点的值)。然后执行包括经过处理的端点的经过滤波的数据的四阶多项式拟合并且计算拟合的r平方值。将该峰值确定为sn信号区域中的最大值(例如范围从43-59)。如果峰值高于大的峰值阈值(例如810rul)并且拟合的r平方小于一阈值(例如0.97),则数据被标记为畸变。如果拟合的r平方(或其他准确度度量)高于该阈值,则该过程可以继续进行来确定得分。

如果峰值低于低峰值阈值(被选取为200rlu),则可以计算自适应准确度阈值(例如r平方阈值)。否则,可以使用常数r平方阈值(0.93048)。可以将自适应阈值计算为峰值高度(最大值)的各个幂的线性组合,在这种情况下该幂可以是峰值高度的对数。可以通过拟合在不同峰值处确定的准确度度量(例如r2)来确定线性组合的系数。例如,可以使用下面的公式来计算自适应r平方阈值:

,在这里peak是峰值。

作为一个示例,可以以下面的方式来凭经验确定b0=-0.69650、b1=1.37009以及b2=-0.28814。通过执行针对分析物被确定是阳性的数据的4阶多项式拟合并且展示低峰值阈值以下的峰值来确定该公式中b常数的值。然后在利用展示泊松分布的噪声10,000次迭代卷积的拟合数据上进行蒙特卡罗模拟。在一个实现中,来自单个缩放无噪声信号的每个单独值是均值。该均值被用来为信号中的该点产生单一泊松分布的值(带噪声的值)。对于信号中的每个点来完成这个以模拟10,000个蒙特卡罗迭代的每次迭代所需的一个信号。

为由被调整用于改变低峰值阈值以下的峰值的拟合数据组成的模拟数据进行模拟。为每个峰值计算来自该模拟的r平方的平均值和标准偏差。然后在这些低峰值和减去r平均(自适应阈值)的3个标准偏差的均值r平方之间建立数学关系。常数b0、b1和b2表示该数学关系,其是对于低峰值的自适应r平方阈值。

如果信号数据的r平方小于r平方的自适应阈值,则将该信号数据标记为畸变(即负)。如果该数据的四阶多项式拟合的二次参数为正,并且如果该数据的标准误差小于预定值(例如25),则还可以将该信号数据标记为畸变。对于该测试,r平方阈值或者是对于小于200rlu的峰值的自适应r平方阈值或者是对于更大峰值的0.93048的常数r平方阈值(其小于大的峰值阈值)。

因此,可以使用多个信号数据点来确定高阶回归函数,其中该高阶回归函数是四阶多项式或更高阶多项式。可以使用一些信号数据点或所有信号数据点。计算高阶回归函数的准确度度量,例如r2值。可以将该多个信号数据点的最大值与一个或多个初始阈值(例如大的且低峰值阈值以上)相比较。基于与一个或多个初始阈值的比较来选择准确度阈值。例如,如上面描述的,不同r2阈值可以被用于不同峰值,包括使用经验函数或对于不同初始阈值的常数。将准确度度量与准确度阈值相比较以基于准确度度量小于准确度阈值来确定样本是否对分析物是阴性。如果准确度度量大于或等于准确度阈值,则实施例可以继续进行以确定得分并且将其与分类阈值相比较,例如如对于图6所述的。

b.线性检查。

如果信号展示线性和平坦分布图则可以将它标记为畸变。实施例可以在范围从43至79的扩展sn区域中执行数据点的线性回归。如果线性回归的斜率的置信区间(例如10%)的下限和上限包括值零,则数据被标记为畸变。因此,如果信号具有接近零的斜率,则该数据可以被标记为畸变,例如无峰值。

vi.结果。

a.敏感性和特异性

使用在wo2014/164768中描述的系统和在pct/us15/27519中描述的盒来经由如在wo2014/160418中描述的mrsa非复制转导颗粒测定来收集并处理来自匿名医院患者捐赠者的182个鼻拭子样本。在该测定中,数据被产生为rlu值与时间的关系,例如在图3中描绘的。然后使用本发明的实施例的得分算法(标记为s/b-quad)以及经由最大rlu的分析来分析该数据。

对于最大rlu分析,通过分析来自由包含金黄色葡萄球菌组成的120个阴性控制样本的最大rlu和样本中的非mrsa来产生截止值。该截止值由阴性控制样本的平均最大rlu、平均值加上阴性控制样本的最大rlu的标准偏差的1倍、平均值加上标准偏差的两倍和平均值加上标准偏差的三倍组成。为了确定临床样本是否对mrsa是阳性,将来自临床样本的最大rlu与截止值相比较。如果临床样本的最大rlu小于截止值,则该样本被视为对mrsa是阴性,否则如果最大rlu大于或等于截止值,则样本被视为对mrsa是阳性。

在图7中总结来自该分析的结果。该分析不包括信号前检查或信号后检查。因此,结果示出由方法600引起的改进。如在2011年5月1日发布的fdadraftdocument–establishingtheperformancecharacteristicsofnucleicacid-basedinvitrodiagnosticdevicesforthedetectionanddifferentiationofmethicillin-resistantstaphylococcusaureus(mrsa)andstaphylococcusaureus(sa)’中描述的通过比较如经由参考增殖基于培养的测定而确定的对于每个分析的mrsa阳性/阴性结果与对于每个样本的已知mrsa结果来计算敏感性、特异性、阳性预测值、阴性预测值和包括对于每个度量的95%置信区间的上界和下界的百分比一致性。

如可以从结果看到的,评分分析(s/b-quad)产生比基于最大rlu进行的分析的结果优秀的结果,在这种情况下评分结果产生的值大于对于所有性能度量的90%。

该评分算法的实施例的优秀性能对算法考虑rlu的形状与时间结果的关系的事实有贡献,而最大rlu分析没有。其结果是,最大rlu分析易于产生不一致的结果。

b.高背景信号

图8a和8b示出比较使用最大信号和准确度结果、使用根据本发明的实施例的得分的分类的准确度结果的图表。

当与基于最大rlu的分析相比较时,特别地当系统展示非特定光的信号(例如高背景信号)时,图8a和8b中的数据凸显了评分算法的优势。该图示出rlu与来自针对mrsa的存在而测试的8个临床样本的时间数据的关系。水平点线示出基于mrsa阴性控制样本的平均最大rlu以及平均最大rlu加上mrsr阴性控制样本的最大rlu的一个、两个和三个标准偏差的rlu阈值。通过参考方法将样本1-4示出为对mrsa是阳性,而通过参考方法示出样本5-8对mrsa是阴性。评分算法将样本1-4分类为mrsa阳性并且样本5-8分类为mrsa阴性,表明与参考方法的100%一致性。在平均最大rlu加上两个标准偏差被用来确定样本的分类的情况下,已经将样本2、4、5、6、7和8分类为阴性,因此导致两个假阴性结果和四个假阳性结果。

vii.计算机系统。

在本发明的示例性实施例中,可以通过使用常规个人计算机系统来实施该方法,该常规个人计算机系统包括但不限于用来输入数据集的输入设备(诸如键盘、鼠标等等);用来表示曲线区域中感兴趣的具体点的显示设备(诸如监视器);用来实施该方法中的每个步骤所需的处理设备(诸如cpu);网络接口(诸如调制解调器),用来存储数据集的数据存储设备,在处理器上运行的计算机代码等等。

本文中提到的计算机系统中的任一个可以利用任何适当数目的子系统。在图9中示出在计算机系统10中的此类子系统的示例。在一些实施例中,计算机系统包括单个计算机装置,在这种情况下该子系统可以是计算机装置的部件。在其他实施例中,计算机系统可以包括多个计算机装置,每一个都是具有内部部件的子系统。计算机系统可以包括桌上型和膝上型计算机、平板电脑、移动电话和其他移动设备。

图9中示出的子系统经由系统总线75互连。示出了附加的子系统,诸如打印机74、键盘78、(一个或多个)存储设备79、监视器76(其耦合至显示器适配器82)以及其他。耦合至i/o控制器71的外围设备和输入/输出(i/o)设备可以通过本领域中已知的任何数目的装置(诸如输入/输出(i/o)端口77(例如usb、火线®))连接至计算机系统。例如,i/o端口77或外部接口81(例如以太网、wi-fi、等等)可以被用来将计算机系统10连接至广域网(诸如因特网、鼠标输入设备或扫描仪)。经由系统总线75的互连允许中央处理器73与每个子系统通信并且控制来自系统存储器72或者(一个或多个)存储设备79(例如固定盘,诸如硬盘驱动器或光盘)的指令的执行以及信息在各子系统之间的交换。系统存储器72和/或(一个或多个)存储设备79可以包含计算机可读介质。另一子系统是数据收集设备85,诸如相机、麦克风、加速度计等等。可以将本文中提到的数据中的任一个从一个部件输出至另一个部件并且可以输出至用户。

计算机系统可以包括多个相同的部件或子系统,例如通过外部接口81或通过内部接口连接在一起。在一些实施例中,计算机系统、子系统或装置可以通过网络通信。在这样的实例中,一个计算机可以被视为客户端以及另一计算机可以被视为服务器,在这种情况下每个都可以是相同计算机系统的一部分。客户端和服务器中的每一个都可以包括多个系统、子系统或部件。

应该理解,在具有处于模块化或集成方式的通常可编程的处理器的情况下,可以使用硬件(例如专用集成电路或现场可编程门阵列)和/或使用计算机软件以控制逻辑的形式来实施本发明的实施例中的任一个。如本文中使用的,处理器包括单核处理器、同一集成芯片上的多核处理器或单个电路板上的或联网的多个处理单元。基于本文中提供的公开内容和教导,本领域普通技术人员将会知道并认识到用来使用硬件以及硬件和软件的组合来实施本发明的实施例的其他方式和/或方法。

在本申请中描述的软件部件或功能中的任一个可以被实施为使用例如常规或面向对象的技术要由处理器使用任何适当的计算机语言(诸如例如java、c、c++、c#、面向对象的c、swift或脚本语言,诸如perl或python)来执行的软件代码。该软件代码可以被存储为用于存储和/或传输的计算机可读介质上的一系列指令或命令。适当的非瞬时计算机可读介质可以包括随机存取存储器(ram)、只读存储器(rom)、磁性介质(诸如硬盘驱动器或软盘)、或光学介质(诸如压缩盘(cd)或dvd(数字多功能盘))、闪速存储器等等。计算机可读介质可以是此类存储或传输设备的任何组合。

还可以使用适用于经由符合各种各样的协议的有线、光学和/或无线网络(包括因特网)的传输的载波信号来对此类程序加密并传送此类程序。照此,可以使用利用此类程序编码的数据信号来创建根据本发明的实施例的计算机可读介质。可以利用兼容设备来包装利用程序代码编码的计算机可读介质或者可以与其他设备分开地提供该计算机可读介质(例如经由互联网下载)。任何此类计算机可读介质可以驻留在单个计算机产品(例如硬盘驱动器、cd或整个计算机系统)上或其内部,并且可以存在于系统或网络内的不同计算机产品上或其内部。计算机系统可以包括监视器、打印机或用于向用户提供本文中提到的结果中的任一个的其他适当的显示器。可以整个或部分地利用包括一个或多个处理器的计算机系统来执行本文中描述的方法中的任一个,该一个或多个处理器可以被配置成执行步骤。因此,实施例可以针对被配置成执行本文中描述的方法中的任一个的步骤的计算机系统,其潜在地具有执行相应步骤或相应步骤组的不同部件。尽管被呈现为带编号的步骤,但是可以同时或按不同顺序来执行本文中的方法的步骤。另外,这些步骤的部分可以与来自其他方法的其他步骤的部分一起使用。而且,步骤的所有或部分可能是可选的。另外,可以利用模块、单元、电路或用于执行这些步骤的其他装置来执行方法中的任一个的步骤中的任一个。

可以以任何适当的方式来组合特定实施例的具体细节。然而,本发明的其他实施例可以针对与每个单独方面或这些单独方面的具体组合有关的具体实施例。已经为了说明和描述的目的呈现了本发明的示例实施例的上面的描述。不打算使它成为详尽的或者将本发明限于所述的精确形式,并且鉴于上面的教导许多修改和变化是可能的。

打算使“一”、“一个”或“该”的列举意指“一个或多个”,除非专门指示为相反的。“或”的使用打算意指“包括性的或”,并且不是“排他性的或”,除非专门相反地指示。对“第一”部件的引用不一定需要提供第二部件。此外,对“第一”或“第二”部件的引用不将所引用的部件限于特定位置,除非明确阐述。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1