一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法与流程

文档序号:12720351阅读:749来源:国知局
一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法与流程

本发明属于三维阵列天线方向图综合研究领域,具体涉及一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法。



背景技术:

随着各种先进的高性能探测传感器的出现,战机面临的战场环境越来越复杂。机载雷达天线是包含飞机上的所有雷达天线,其性能的好坏直接决定了飞机在复杂环境下作战的生存能力。随着三维阵列技术研究的深入,越来越多的三维阵列被应用到机载雷达上,将天线阵元安装在飞机表面,使得三维阵列天线与飞机表面共形,既不影响飞机的气动性能,又能使得机载雷达天线获得更高的工作性能,机载三维阵列天线技术已经成为一个研究热点。

分布式三维阵列的阵列布局优化是研究机载机会阵雷达的一个关键问题。为了使得机载机会阵雷达天线方向图能够具有方向性强、主瓣窄、旁瓣低等特性,分布式三维阵列的优化设计已经成为非常重要的技术。分布式三维阵列天线的优化布阵技术是对阵列的各种参数包括阵元的位置、工作状态、激励系数、极化方式等进行优化设计,以实现满足阵列结构和天线方向图综合的最佳效果。如何设计分布式三维阵列的激励权值和阵元的分布位置,使得分布式三维阵列能够在空间内产生方向性系数高、旁瓣低的方向图是半个多世纪来国内外学者一直研究的一个重要内容。国内外学者已经在三维阵列辐射方向图综合研究方面做出了大量的工作,采用多种优化算法对辐射方向图的综合进行研究,其中经典的方向图综合算法,如Woodward-Lawson算法、Dolph-Chebyshev算法、Fourier算法、Taylor算法等,主要被应用在线阵和平面阵列的方向图综合中。

但是三维阵列天线的方向图综合对阵列的辐射方向、旁瓣、极化等都有要求,是一个多目标优化问题(Multi-objective Optimization Problem,MOP),且三维阵列阵元的指向各不相同,阵列因子与阵元因子不再满足方向图乘积定理,因此不能采用经典的方向图综合算法进行求解。



技术实现要素:

本发明所要解决的主要技术问题是:在考虑三维阵列对低旁瓣和主波束辐射的多目标优化要求情况下,优化阵元激励幅度和相位,实现低旁瓣方向图的综合。

本发明提出了一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法,该方法提高了算法的优化性能,能够高效快速地实现对三维阵列方向图的旁瓣抑制。

本发明解决其技术问题是通过以下技术方案实现的:

一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法,首先,对三维阵列天线方向图综合进行建模分析,给出三维阵列天线辐射方向图综合的基本数学模型,且在阵列辐射方向的约束条件下构建低旁瓣方向图综合的多目标函数maxDco,在第一旁瓣抑制的约束条件下构建低旁瓣方向图综合的多目标函数然后,利用拉格朗日乘数法得到极化方向性系数最大的激励W,以激励W作为偏好信息加入MOPSO算法中,并设定粒子最大游动速度从而在此最优解附近产生初始种群,并对三维阵列天线辐射方向图综合的基本数学模型进行迭代计算求解;同时,构建低旁瓣方向图综合的凸优化模型,利用凸优化工具求解不同门限约束εi下相应的最优解,可得到低旁瓣约束条件下的三维阵列天线方向图。

进一步的,包括以下步骤:

步骤1:对三维阵列天线方向图综合进行建模和分析,给出阵列天线辐射方向图综合的基本数学模型,通过所述基本数学模型构建在阵列辐射方向约束条件下的低旁瓣方向图综合的多目标函数maxDco,且通过所述基本数学模型构建在第一旁瓣抑制的约束条件下低旁瓣方向图综合的多目标函数

步骤2:根据阵元类型、子阵间距、阵元分布模型、阵元的指向、共极化类型、主瓣的目标综合角度、旁瓣约束区域和电平得到天线阵在远场的合成电场强度求出在整个空间内天线辐射的平均功率Pav、在目标辐射方向上的辐射功率Pco和第一旁瓣的平均功率Ps1

步骤3:利用拉格朗日乘数法构建代价函数J,得到阵列极化方向性系数最大时的阵列权值激励W作为最优解,以得到的这个最优解作为偏好信息加入MOPSO算法中,并且设定粒子最大游动速度,从而在此最优解附近产生初始种群并迭代计算,在构成的Pareto最优解集中选择粒子,构成阵列的激励权系数,由给出的激励显示三维方向图并计算旁瓣电平;

步骤4:基于步骤1和步骤2的工作,将三维阵列方向图的旁瓣抑制问题转化为凸优化问题,构建低旁瓣方向图综合的凸优化模型,设定第i个旁瓣区域中的最大平均功率归一化值约束εi,利用凸优化工具求解不同门限约束εi下相应的最优解,进而可得到低旁瓣约束条件下的三维阵列天线方向图。

进一步的,步骤1中给出阵列天线辐射方向图综合的基本数学模型的具体方法为:建立阵列天线坐标系,阵列共设有N个阵元,为阵列辐射方向的单位矢量,为波束在该坐标系下的方位角,θ为波束在该坐标系下的俯仰角,P点为第p个阵元的位置,M点为远场任一一点;

步骤1中在阵列辐射方向的约束条件下低旁瓣方向图综合的多目标函数maxDco为:

其中,Dco为阵列天线的极化方向性系数,Pav为整个空间内天线辐射的平均功率,Pco为在目标辐射方向上的辐射功率;

步骤1中在第一旁瓣抑制的约束条件下低旁瓣方向图综合的多目标函数为:

其中,Ps1为第一旁瓣的平均功率。

进一步的,所述步骤2中得到天线阵在远场的合成电场强度进而求出在整个空间内天线辐射的平均功率Pav、在目标辐射方向上的辐射功率Pco和第一旁瓣的平均功率Ps1的具体方法为:

将步骤1中三维阵列天线的相位参考点选为坐标原点O,不考虑互耦时,各天线阵元在其远场M点的合成电场强度为

其中,表示天线阵在远场的合成电场强度,j为虚数单位,K为自由空间的传播系数,且K=2π/λ,λ为工作波长,wp为第p个阵元的加权激励,符号*表示对wp求共轭复数,Rp为第p个阵元距离M点的距离,为第p个阵元在阵列天线坐标系下的方向性函数,对于三维阵列,进行和θ方向的分解,表示为

为极化方向上的单位矢量,为θ极化方向上的单位矢量,为极化方向上的阵元方向性函数,为θ极化方向上的阵元方向性函数;(2)式中,对于远场条件下的M点,其位置矢量为P点到M点的矢量表示为

为第p个阵元的位置矢量,表示成

为x坐标轴的单位矢量,为y坐标轴的单位矢量,为z坐标轴的单位矢量,rpx为在方向上的分量,rpy为在方向上的分量,rpz为在方向上的分量;

由(3)式,距离Rp表示为

其中,为阵列辐射方向单位矢量,其方位角和俯仰角分别为θ,表示为:

为与的点乘,为一标量,距离进一步得

则(1)式中,天线阵在远场的合成电场强度表示为

表现了阵元位置对方向图的影响,表现了阵元类型对方向图的影响;

也表示成和θ极化方向的电场和:

也用矩阵的形式表示成W为N维的激励矢量,表示成W=[w1 w2 … wN]T,H表示求解矩阵的共轭转置操作;

阵列的导向矢量Bθ表示成

则在空间任意角度辐射方向的场强功率为

由(4)式,整个空间内天线辐射的平均功率Pav表示成

Q为N×N维矩阵,Q表示成Pco为在目标辐射方向上的辐射功率,数学表达式为为指定方向的方位角,θM为指定方向的俯仰角,为共极化方向;Ps1为第一旁瓣的平均功率,表达式为S1为第一旁瓣的面积,Ω1为阵列方向图的旁瓣区。

进一步的,所述步骤3的具体方法如下:要使三维阵列天线方向图的方向性系数最大,可使得阵列的平均功率最小,设定最大辐射方向为极化,优化问题表述为

(5)式中,BθM为期望方向的导向矢量,W为阵列权值;利用拉格朗日乘数法构造代价函数J为J=WHQW+λ(1-WHBθM),对WH求导,代价函数J最小时,取其导数为零,即QW-λBθM=0,进一步简化得

W=λQ-1BθM (6)

将(5)式中的BθMHW=1代入(6)式中,得出λ=(BθMHQ-1BθM)-1,将λ代入(6)式得优化的权值WB为WB=(BθMHQ-1BθM)-1Q-1BθM

进一步的,所述步骤4中将三维阵列方向图的旁瓣抑制问题转化为凸优化问题,构建低旁瓣方向图综合的凸优化模型具体方法为:对于三维阵列的低旁瓣方向图综合,设定最大辐射方向为极化,用数学公式表示为

其中共设置I个旁瓣区域,εsi为第i个旁瓣区域中设定的最大平均功率归一化值;

进一步表示为

对复对称矩阵进行Hermitian矩阵分解,得到

(7)式进一步表示为

(8)式表述的优化问题为凸优化问题。

进一步的,改进的MOPSO算法包括:(1)对三维阵列天线方向图综合的建模;(2)方向图综合目标的设定,包括共极化类型、主瓣的目标综合角度、旁瓣约束区域和电平;(3)创建工作子阵,考虑遮挡关系的设定:当αp≤90°时,第p个阵元处于工作状态,否则处于关闭状态;其中αp是第p个阵元指向矢量与阵列辐射方向的夹角;(4)初始化粒子种群;(5)初始化外部比较集和Pareto解的自适应网格;(6)分别根据MOPSO算法的粒子速度更新公式和位置更新公式进行更新粒子的速度和位置;(7)计算粒子适应度;(8)更新外部比较集;(9)判断种群迭代是否结束,结束的条件是已经达到种群的最大迭代次数,或者结束的条件是已经得到满足要求的非支配解;(10)在构成的Pareto最优解集中选择粒子,构成阵列的激励权系数;(11)由给出的激励显示三维方向图并计算旁瓣电平。

本发明的有益效果为:

1.本发明的优点是改进的MOPSO算法和凸优化算法既在低旁瓣和极化方向性系数性能上都优于MOPSO算法,整体方向图综合性能更优,还使系统优化时间大大降低,提高了算法的优化性能。产生该优点的原因是本发明利用拉格朗日乘数法得到极化方向性系数最大的激励作为偏好信息加入算法迭代求解过程中,并将三维阵列低旁瓣方向图综合这一高维非线性多目标复杂问题转化为凸优化问题,利用凸优化工具求解不同门限约束下相应的最优解,得到低旁瓣约束条件下的三维阵列天线方向图。

2.本发明提出的基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法,不仅考虑了三维阵列在辐射方向和第一旁瓣抑制的约束条件下的方向图综合性能,而且提高了算法的优化性能。

附图说明

图1是本发明建立的阵列天线坐标系的示意图;

图2是本发明改进的MOPSO算法流程示意图;

图3是本发明三维阵列天线方向图旁瓣抑制流程示意图;

图4为机头锥形阵列天线示意示意图;

图5为主瓣和第一旁瓣区域设计示意图;

图6为MOPSO算法Pareto前沿示意图;

图7为改进MOPSO和MOPSO算法的Pareto前沿比较示意图;

图8为MOPSO和改进MOPSO算法分别在第一旁瓣平均功率最小时的方向示意图;

图9为减少粒子数的MOPSO算法Pareto前沿示意图;

图10为在不同旁瓣功率约束系数下的方向示意图;

图11为不同旁瓣功率约束系数下的俯仰切面的方向示意图。

具体实施方式

下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。

本领域的技术人员可以理解,除非另外定义,这里使用的所有术语具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。

一种基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法,首先,对三维阵列天线方向图综合进行建模分析,给出三维阵列天线辐射方向图综合的基本数学模型,且在阵列辐射方向的约束条件下构建低旁瓣方向图综合的多目标函数maxDco,在第一旁瓣抑制的约束条件下构建低旁瓣方向图综合的多目标函数然后,利用拉格朗日乘数法得到极化方向性系数最大的激励W,以激励W作为偏好信息加入MOPSO算法中,并设定粒子最大游动速度从而在此最优解附近产生初始种群,并对三维阵列天线辐射方向图综合的基本数学模型进行迭代计算求解;同时,构建低旁瓣方向图综合的凸优化模型,利用凸优化工具求解不同门限约束εi下相应的最优解,可得到低旁瓣约束条件下的三维阵列天线方向图,达到旁瓣抑制的目的。

具体包括以下步骤:

步骤1:构建两类约束条件下的目标函数

对三维阵列天线方向图综合进行建模和分析,给出阵列天线辐射方向图综合的基本数学模型,通过该基本数学模型构建在阵列辐射方向约束条件下的低旁瓣方向图综合的多目标函数maxDco,且通过该基本数学模型构建在第一旁瓣抑制的约束条件下低旁瓣方向图综合的多目标函数

步骤1中给出阵列天线辐射方向图综合的基本数学模型的具体方法为:建立阵列天线坐标系,阵列共设有N个阵元,为阵列辐射方向的单位矢量,为波束在该坐标系下的方位角,θ为波束在该坐标系下的俯仰角,P点为第p个阵元的位置,M点为远场任一一点。

步骤1中在阵列辐射方向的约束条件下低旁瓣方向图综合的多目标函数maxDco为:

其中,Dco为阵列天线的极化方向性系数,Pav为整个空间内天线辐射的平均功率,Pco为在目标辐射方向上的辐射功率;

步骤1中在第一旁瓣抑制的约束条件下低旁瓣方向图综合的多目标函数为:

其中,Ps1为第一旁瓣的平均功率。

步骤2:求解整个空间内天线辐射的平均功率Pav等参数

根据阵元类型、子阵间距、阵元分布模型、阵元的指向、共极化类型、主瓣的目标综合角度、旁瓣约束区域和电平得到天线阵在远场的合成电场强度求出在整个空间内天线辐射的平均功率Pav、在目标辐射方向上的辐射功率Pco和第一旁瓣的平均功率Ps1

步骤2中得到天线阵在远场的合成电场强度进而求出在整个空间内天线辐射的平均功率Pav、在目标辐射方向上的辐射功率Pco和第一旁瓣的平均功率Ps1的具体方法为:

将图1中三维阵列的相位参考点选为坐标原点O,不考虑互耦时,各天线阵元在其远场M点的合成电场强度为

其中,表示天线阵在远场的合成电场强度,j为虚数单位,K为自由空间的传播系数,且K=2π/λ,λ为工作波长,wp为第p个阵元的加权激励,符号*表示对wp求共轭复数,Rp为第p个阵元距离M点的距离,为第p个阵元在阵列天线坐标系下的方向性函数,对于三维阵列,进行和θ方向的分解,表示为

为极化方向上的单位矢量,为θ极化方向上的单位矢量,为极化方向上的阵元方向性函数,为θ极化方向上的阵元方向性函数;(2)式中,对于远场条件下的M点,其位置矢量为P点到M点的矢量可表示为

为第p个阵元的位置矢量,可以表示成

为x坐标轴的单位矢量,为y坐标轴的单位矢量,为z坐标轴的单位矢量,rpx为在方向上的分量,rpy为在方向上的分量,rpz为在方向上的分量;

由(3)式,距离Rp可以表示为

其中,为阵列辐射方向单位矢量,其方位角和俯仰角分别为θ,表示为:

为与的点乘,为一标量,距离进一步可得

则(1)式中,天线阵在远场的合成电场强度可以表示为

表现了阵元位置对方向图的影响,表现了阵元类型对方向图的影响;

也表示成和θ极化方向的电场和:

也用矩阵的形式表示成W为N维的激励矢量,表示成W=[w1 w2 … wN]T,H表示求解矩阵的共轭转置操作;

阵列的导向矢量Bθ可表示成

则在空间任意角度辐射方向的场强功率为

由(4)式,整个空间内天线辐射的平均功率Pav可以表示成

Q为N×N维矩阵,Q表示成Pco为在目标辐射方向上的辐射功率,数学表达式为为指定方向的方位角,θM为指定方向的俯仰角,为共极化方向;Ps1为第一旁瓣的平均功率,表达式为S1为第一旁瓣的面积,Ω1为阵列方向图的旁瓣区。

步骤3:利用拉格朗日乘数法构建代价函数J,得到阵列极化方向性系数最大时的阵列权值激励W作为最优解,以得到的这个最优解作为偏好信息加入MOPSO算法中,并且设定粒子最大游动速度,从而在此最优解附近产生初始种群并迭代计算,在构成的Pareto最优解集中选择粒子,构成阵列的激励权系数,由给出的激励显示三维方向图并计算旁瓣电平。

要使三维阵列天线方向图的方向性系数最大,可使得阵列的平均功率最小,设定最大辐射方向为极化,优化问题表述为

(5)式中,BθM为期望方向的导向矢量,W为阵列权值;

利用拉格朗日乘数法构造代价函数J为J=WHQW+λ(1-WHBθM),对WH求导,代价函数J最小时,取其导数为零,即QW-λBθM=0,进一步简化得

W=λQ-1BθM (6)

将(5)式中的BθMHW=1代入(6)式中,得出λ=(BθMHQ-1BθM)-1,将λ代入(6)式得优化的权值WB为WB=(BθMHQ-1BθM)-1Q-1BθM

步骤4:基于步骤1和步骤2的工作,将三维阵列方向图的旁瓣抑制问题转化为凸优化问题,构建低旁瓣方向图综合的凸优化模型,设定第i个旁瓣区域中的最大平均功率归一化值约束εi,利用凸优化工具求解不同门限约束εi下相应的最优解,进而可得到低旁瓣约束条件下的三维阵列天线方向图。

步骤4中将三维阵列方向图的旁瓣抑制问题转化为凸优化问题,构建低旁瓣方向图综合的凸优化模型具体方法为:对于三维阵列的低旁瓣方向图综合,设定最大辐射方向为极化,用数学公式表示为

其中共设置I个旁瓣区域,εsi为第i个旁瓣区域中设定的最大平均功率归一化值;

可以进一步表示为

对复对称矩阵进行Hermitian矩阵分解,得到

(7)式进一步表示为

(8)式表述的优化问题为凸优化问题。

如图2所示,改进的MOPSO算法包括:

(1)对三维阵列天线方向图综合的建模,设计三维阵列布局结构,然后初始化阵元类型、阵元的指向等参数。

(2)方向图综合目标的设定,包括共极化类型、主瓣的目标综合角度、旁瓣约束区域和电平。

(3)创建工作子阵,考虑遮挡关系的设定:当αp≤90°时,第p个阵元处于工作状态,否则处于关闭状态;其中αp是第p个阵元指向矢量与阵列辐射方向的夹角。

(4)初始化粒子种群,主要包括:

a)确定粒子的维数。每个阵元的激励权系数是一个复数,包含幅度和相位信息,因此粒子维数是阵元数的两倍。

b)确定优化多目标的维数,本发明主要讨论辐射方向性系数约束和旁瓣约束,所以优化的多目标维数为2。

c)粒子游动范围在[-1,1]之间,最大的游动速度取值为0.2。

d)设置搜优过程的最大迭代次数。

e)以步骤35得到的优化权值WB初始化所有粒子的初始位置,初始化所有粒子的初始速度为0。

f)设置粒子更新的学习因子为典型值η1=η2=2和速度更新因子ω=0.73。

(5)初始化外部比较集和Pareto解的自适应网格。

(6)分别根据MOPSO算法的粒子速度更新公式vid(t+1)=wvid(t)+c1rand()[pid-xid(t)]+c2rand()[pgd-xid(t)]和位置更新公式xid(t+1)=xid(t)+vid(t+1)进行更新粒子的速度和位置。

(7)计算粒子适应度。

(8)更新外部比较集。

(9)判断种群迭代是否结束,结束的条件是已经达到种群的最大迭代次数,或者结束的条件是已经得到满足要求的非支配解。

(10)在构成的Pareto最优解集中,选择粒子构成阵列的激励权系数。

(11)由给出的激励显示三维方向图并计算旁瓣电平。

本发明仿真结果:

假设步骤3中的参数设置如表1所示:

表1仿真参数设置

以图4所示的机头锥形阵列天线为例,图5为给出了第一旁瓣的约束区域示意图。图6所示的为Pareto最优边界,可以看出,极化方向性系数与第一旁瓣平均功率成正比关系,即方向性系数越大,旁瓣平均功率越大。图7给出了改进MOPSO和MOPSO算法的Pareto前沿比较图,从图中可以看出,加入拉格朗日乘数法偏好解的MOPSO算法在低旁瓣和极化方向性系数性能上都优于MOPSO算法。

表2给出了MOPSO和改进MOPSO算法在第一旁瓣平均功率最小时的方向图参数:

表2第一旁瓣平均功率最小方向图参数

可以看出,改进后的MOPSO极化方向性系数增大,同时第一旁瓣的平均功率降低,共极化和交叉极化平均功率减小,方向图综合性能优于前者。

图8给出了MOPSO和改进MOPSO算法在第一旁瓣平均功率最小时的方向图。可以看出两者都能实现主辐射方向和第一旁瓣约束的目标。通过对比图8(a)和图8(b),改进的MOPSO算法在第一旁瓣约束区域的俯仰0°~10°范围内无法很好的抑制旁瓣,但是在俯仰45°~60°方位的旁瓣抑制效果要优于MOPSO算法,这是由于第一旁瓣约束是基于平均辐射功率约束所导致的。同时从图中可以看出,改进的MOPSO算法主副瓣区域外的旁瓣电平更低,整体呈现更好的方向图综合性能。

采用改进的MOPSO算法,将粒子数减少为100个,得到的Pareto前沿如图9所示。仿真结果表明,当粒子数减少后,改进的MOPSO算法的Pareto最优边界变差,但是其极化方向性系数性能要比300粒子的原始MOPSO算法的好。这说明在满足一定的旁瓣约束条件下,减少粒子数和迭代次数,通过改进的MOPSO算法能够较快的收敛到更优的Pareto前沿。

采用(8)式所表述凸优化问题形式进行最优权系数的求解的仿真结果如下:

图10给出了在不同旁瓣功率约束系数下的方向图,图11给出了不同旁瓣功率约束系数下的俯仰切面的方向图。可以看出,其旁瓣约束性能均优于MOPSO算法,且随着旁瓣约束系数的减小,其旁瓣约束性能增强,但是导致主副瓣区域外的旁瓣电平升高。

表3给出了不同旁瓣功率约束系数的方向图参数,可以看出,若旁瓣功率约束系数大于0.0005,其方向图各项参数性能均优于MOPSO算法,且运行时间远远小于MOPSO算法。在凸优化算法中,随着旁瓣功率约束系数的减小,其约束区域旁瓣性能改善,但是却引起极化方向性性系数减小、共极化和交叉极化平均功率的增加,因此要根据需要合理选择旁瓣功率约束系数。

表3不同旁瓣功率约束系数下的方向图参数

由上述仿真结果可知,基于改进MOPSO和凸优化算法的三维阵列天线方向图旁瓣抑制方法以阵列辐射方向和第一旁瓣抑制为约束条件构造低旁瓣方向图综合的多目标函数,利用拉格朗日乘数法得到极化方向性系数最大的激励作为偏好信息加入MOPSO算法中,对模型进行迭代计算求解,同时构建了低旁瓣方向图综合的凸优化模型,利用凸优化工具求解不同门限约束下相应的最优解,从而在满足低旁瓣约束条件下提高了算法的优化性能,可高效快速地解决三维阵列天线方向图的旁瓣抑制问题。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1