移动装置及其近接感测模块的制作方法

文档序号:16626716发布日期:2019-01-16 06:10阅读:148来源:国知局
移动装置及其近接感测模块的制作方法

本发明涉及一种感测模块,特别是涉及一种近接感测模块以及使用近接感测模块的移动装置。



背景技术:

随着移动装置技术的发展,具有触控屏幕的移动装置已越趋普及,因此,在移动装置的触控屏幕内设置远近接传感器的需求也越来越高,以便用户手持移动装置通话时,触控屏幕内侧的近接传感器能够感应到使用者的脸、耳或头发而暂时关闭屏幕功能,一方面达到省电的技术效果,一方面也防止通话时使用者的脸、耳误触屏幕。

现有的近接传感器中的发射器及传感器在触控屏幕内分开设置,发射器及传感器之间并设有与手机为一体的远红外光隔离件,以降低近接传感器内的串扰现象。然而,这样的技术方案占用较多移动装置内部空间,与目前市场需求的轻薄取向不符,因此将发射器、传感器以及远红外光隔离件整合成一个单一的近接感应模块已渐成为趋势。然而,将发射器、传感器以及远红外光隔离件整合为一体将提高近接感应模块的串扰效应。

此外,目前市场上另一需求是近接感应模块的开孔小型化,且将发射器的开孔以及传感器的开孔合并为一体,这样的需求带来的另一个挑战是减小发射器与传感器之间的距离且同时保持传感器的开孔孔径,但如此近接传感器内的串扰效应将增加,造成近接传感器对于短距离的感应能力降低。



技术实现要素:

本发明所要解决的技术问题在于,针对现有技术的不足提供一种移动装置及其近接感测模块,其能提高近接感测模块对于近距离物体的感测能力。

为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种近接感测模块,其包括一电路基板、一发射器封装单元、一接收器封装单元、一塑料壳体以及一透镜。所述发射器封装单元设置于所述电路基板,且所述发射器封装单元包括一发射器以及一发射器封装体。所述接收器封装单元设置于所述电路基板,且所述接收器封装单元包括一接收器以及一接收器封装体。所述塑料壳体覆盖所述发射器封装单元与所述接收器封装单元,其中,所述塑料壳体具有一对应所述发射器封装单元的第一开口以及一对应所述接收器封装单元的第二开口,且所述第一开口与所述第二开口分别具有一第一几何中心线与一第二几何中心线。所述透镜设置于所述发射器封装单元上,所述发射器所产生的一光线穿过所述透镜且从所述第一开口射出。所述发射器封装体的高度低于所述接收器封装体的高度,且所述发射器偏离所述第一几何中心线且位于所述第一几何中心线与所述第二几何中心线之间。

更进一步地,所述透镜的一主轴位于所述第一几何中心线与所述发射器的一光轴之间。

更进一步地,所述发射器封装单元与所述接收器封装单元在所述电路基板上沿一预定方向并列,其中,所述第一开口为一近椭圆形开口,且所述近椭圆形开口的短轴平行于所述预定方向。

更进一步地,所述第一开口的平均半径约为0.25±0.02公分。

更进一步地,所述塑料壳体的内侧面具有一第一容置空间以及一第二容置空间,所述第一容置空间容纳所述发射器封装单元以及所述透镜,所述第二容置空间容纳所述接收器封装单元,其中,所述第一容置空间具有容纳所述发射器封装单元的一第一容置部以及容纳所述透镜的一第二容置部,所述第二容置部的上端具有一导角结构,且所述导角结构的一倒角面朝向所述透镜倾斜。

更进一步地,所述接收器的感光视角约为80±2度。

更进一步地,所述发射器为一红外线发光二极管。

为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种移动装置,所述移动装置使用一近接感测模块,其中,所述近接感测模块包括一电路基板、一发射器封装单元、一接收器封装单元、一塑料壳体以及一透镜。所述发射器封装单元设置于所述电路基板,且所述发射器封装单元包括一发射器以及一发射器封装体。所述接收器封装单元设置于所述电路基板,且所述接收器封装单元包括一接收器以及一接收器封装体。所述塑料壳体覆盖所述发射器封装单元与所述接收器封装单元,其中,所述塑料壳体具有一对应所述发射器封装单元的第一开口以及一对应所述接收器封装单元的第二开口,且所述第一开口与所述第二开口分别具有一第一几何中心线与一第二几何中心线。所述透镜设置于所述发射器封装单元上,所述发射器所产生的一光线穿过所述透镜且从所述第一开口射出。所述发射器封装体的高度低于所述接收器封装体的高度,且所述发射器偏离所述第一几何中心线且位于所述第一几何中心线与所述第二几何中心线之间。

更进一步地,所述透镜的一主轴位于所述第一几何中心线与所述发射器的一光轴之间。

更进一步地,所述发射器封装单元与所述接收器封装单元在所述电路基板上沿一预定方向并列,其中,所述第一开口为一近椭圆形开口,且所述近椭圆形开口的短轴平行于所述预定方向。

本发明的其中一有益效果在于,本发明所提供的移动装置及其近接感测模块,其能通过“所述发射器封装体的高度低于所述接收器封装体的高度”以及“所述发射器偏离所述第一几何中心线且位于所述第一几何中心线与所述第二几何中心线之间”的技术方案,以提高近接感测模块对于近距离物体的感测能力。

为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅提供参考与说明用,并非用来对本发明加以限制。

附图说明

图1为本发明实施例的近接感测模块的侧视图。

图2为本发明实施例的近接感测模块的俯视图。

图3为本发明实施例的近接感测模块经调整尺寸及组件配置方式后的侧视图。

图4为本发明实施例的近接感测模块经调整尺寸及组件配置方式后的俯视图。

具体实施方式

以下是通过特定的具体实例来说明本发明所公开有关“移动装置及其近接感测模块”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的精神下进行各种修饰与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,予以声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的技术范围。

实施例

请参阅图1及图2。本发明实施例提供一种近接感测模块z,其包括一电路基板1、一发射器封装单元2、一接收器封装单元3、一塑料壳体4以及一透镜5。发射器封装单元2设置于电路基板1,且发射器封装单元2包括一发射器21以及一发射器封装体22。本实施例中,发射器21为一红外线发光二极管(irled),然而,本发明不以此为限。接收器封装单元3设置于电路基板1,且接收器封装单元3包括一接收器31以及一接收器封装体32。

进一步而言,塑料壳体4覆盖发射器封装单元2与接收器封装单元3,其中,塑料壳体4具有一对应发射器封装单元2的第一开口a1以及一对应接收器封装单元3的第二开口a2,且第一开口a1与第二开口a2分别具有一第一几何中心线l1与一第二几何中心线l2。透镜5设置于发射器封装单元2上,发射器21所产生的一光线(图中未显示)穿过透镜5且从第一开口a1射出。

请参阅图3及图4,为了使本发明的近接感应模块z具有更佳的近接感应效果,本发明对图1及图2的近接感测模块z做了尺寸及组件配置方式的调整,图3及图4分别显示调整后的近接感应模块z的侧视图及俯视图。接着,请对照参阅图1至图4,以下将就图3及图4的近接感应模块z与图1及图2的近接感应模块z之间的不同点进行进一步说明。

首先,图3及图4中的近接感应模块z与图1及图2中的近接感应模块z的其中一不同点在于,图1及图2中的近接感应模块z其发射器封装体22的高度h1与接收器封装体32的高度h1一致,而图3及图4中的近接感应模块z其发射器封装体22的高度h2低于接收器封装体32的高度h2。

借由降低发射器封装体22的高度,透镜5的高度对应下降,近接感应模块z因而具有较少的漏光量。当本发明的近接感应模块z应用于一具有触控屏幕的移动装置(图中未显示)而设置于移动装置的触控面板(图中未显示)内侧,上述对于发射器封装体22高度的调整能减少接收器31接收发出自发射器21而被触控面板反射的光线(即能够减少串扰现象)。明确而言,本实施例中,图1中的透镜5高度为1.35公厘,而图3中的透镜5高度为1.06公厘。然而,本发明不以此为限。

接着,图3及图4中的近接感应模块z与图1及图2中的近接感应模块z的另外一不同点在于,图3的近接感应模块z中,发射器21偏离第一几何中心线l1且位于第一几何中心线l1与第二几何中心线l2之间。如图3所示,发射器21偏离第一几何中心线l1的偏移量为d1。借由将发射器21偏离第一几何中心线l1并设置于第一几何中心线l1与第二几何中心线l2之间,可限制发射器21的发光角度。请参照比对图1及图3,图3中发射器21的发光角度φ2较图1中发射器21的发光角度φ1为小。因此,接收器31减少接收来自发光器21且被触控面板(图中未显示)反射的光线,因而降低串扰效应。

更进一步地,除了使发光器21偏离第一几何中心线l1,图3中的透镜5亦偏离第一几何中心线l1。明确而言,如图3所示,透镜5的一主轴l3位于第一几何中心线l1与发射器21的一光轴l4之间,其中,透镜5的主轴l3与第一几何中心线l1之间的距离为d2,与发射器21的光轴l4之间的距离为d3。借由将透镜5从图1中的位置移至第一几何中心线l1与发射器的光轴l4之间,发射器l4发出的光线通过透镜5时可被透镜5折射,而在射出透镜5时朝向透镜5的主轴l3偏转。借此,发光器21发出的光线的中心轴在通过透镜5之后朝向远离接收器31的方向偏转,因此接收器31将减少接收来自发射器21而被触控面板(图中未显示)反射的光线,因而可大幅降低近接感应模块z内的串扰现象。

进一步而言,图3及图4中的近接感应模块z与图1及图2的近接感应模块z的另外再一不同点在于,图3及图4的近接感测模块z具有较小的第一开口a1。详细而言,本实施例中,是借由调整一倒角结构c以及将第一开口a1设计为一近椭圆形开口来缩小第一开口a1的平均半径。然而,本发明不以此为限。

明确而言,塑料壳体4的内侧面具有一第一容置空间r1以及一第二容置空间r2,第一容置空间r1容纳发射器封装单元2以及透镜5,第二容置空间r2容纳接收器封装单元3,其中,第一容置空间r1进一步具有容纳发射器封装单元2的一第一容置部r11以及容纳透镜的一第二容置部r12,第二容置部r12的上端具有一导角结构c,且导角结构c的一倒角面s朝向透镜5倾斜。请对照参阅图1及图3,借由增加倒角结构c的延伸长度,以及倒角面s的倾斜程度,图3的第一开口a1较图1的第一开口a1具有较小的平均半径。

更进一步地,图3及图4的近接感测模块z中,发射器封装单元2与接收器封装单元3在电路基板1上沿一预定方向d并列,且第一开口a1为一近椭圆形开口,并且,如图4所示,近椭圆形开口的短轴平行于预定方向d。明确而言,图1的近接感应模块z的第一开口a1半径为0.35公分,而图3及图4的近接感应模块z中,第一开口a1的半短轴为0.2公分,平均半径为0.25公分。然而,本发明不以上述第一开口a1的尺寸为限。

借由将第一开口a1设计为一近椭圆形,并将其短轴设置为平行于预定方向d,可缩短第一开口a1在预定方向d上的长度,借此可减小发射器21在预定方向d的发光角度。请对照参阅图1及图3,图3中发射器21的发光角度φ2小于图1中发射器21的发光角度φ1。由于发射器21的发光角度变小,发出自发射器21且被触控面板(图中未显示)反射的光线量也会角少,因此降低了近接感应模块z内的串扰效应。

接着,图3及图4中的近接感应模块z与图1及图2的近接感应模块z的另外再一不同点在于,图3及图4中的接收器31具有较大的感光视角。关于增大接收器31视角的方式,在本实施例中,是借由增加第二开口a2的半径以及缩小塑料壳体4的厚度来增加接收器31的感光视角。然而,本发明不限于此。

明确而言,请配合参阅图1至图4,图1及图2的近接感应模块z中,塑料壳体4的厚度为0.5公厘,而图3及图4中塑料壳体4的厚度为0.38公厘。此外,图3中的第二开口a2的直径为0.96公厘,较图1的第一开口a1(直径0.7公厘)具有较大的直径。经由上述调整可使接收器31具有较大的感光视角,明确地说,图1及图2中,传感器31的感光视角1为40°,而图3及图4的传感器31的感光视角θ2为80°。以上尺寸及组件位置的调整仅为举例说明,本发明不以此为限。

综上所述,经由上述尺寸及组件位置的调整,近接感应模块z可具有较大的接受器31感光视角,且发射器21具有较小的发光角度,增加了近接感应模块z对于近距离物体的感应能力。然而上述近接感应能力的提升并未牺牲移动装置的空间,因为上述尺寸及组件位置的调整未改变发射器21及传感器31之间的距离,因此,应用于移动装置时,移动装置上为了装设近接感应模块z所设置的开口a3尺寸也不需增加,符合市场上对于移动装置开孔小型化的需求。借此,近接感应模块z降低了串扰效应以及具有较高的近接感应能力。

实施例的有益效果

本发明的其中一有益效果在于,本发明所提供的移动装置及其近接感测模块,其能通过“发射器封装体22的高度低于接收器封装体32的高度”以及“发射器21偏离第一几何中心线l1且位于第一几何中心线l1与第二几何中心线l2之间”的技术方案,以降低近接感应模块z内的串扰效应以及提高近接感测模块z对于近距离物体的感测能力。

以上所述仅为本发明的优选可行实施例,并非因此局限本发明的专利范围,所以全部运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1