一种大气高污染过程动态追踪方法与流程

文档序号:14990955发布日期:2018-07-20 22:12阅读:133来源:国知局
本发明涉及环境质量预报预警
技术领域
,具体涉及一种大气高污染过程动态追踪方法。
背景技术
:目前在中国,冬季大气高污染带来的灰霾天气频发,高温低湿常天气下也常现光化学烟雾高污染事件,严重危害居民健康和生活,对其进行有效预防与控制至关重要。目前大气污染预测技术往往对高污染过程预测不精确,急需面向高污染过程的污染变化预测新方法,提高大气污染物高污染的预测能力。目前常用的大气污染或者空气质量预测方法主要有基于污染扩散过程模拟的数值方法和基于数据驱动的统计预测方法两大类。数值预报由于计算十分复杂,所需输入的排放清单和边界气象场不确定性较大,对高污染事件的预测精度不高。随着大气污染监测网络发展带来更多的研究数据,数据驱动方法的力量逐渐超于数值方法,主要有回归拟合、神经网络、小波分析、支持向量机、贝叶斯网络等。此类方法,虽使用方便,但是由于其对大气污染与气象关联关系表征不清晰,往往预测结果难以跟踪到高污染事件的增长趋势。因此,本研究面向大气高污染预测需求,建立了一种大气高污染过程追踪方法,用于实现大气高污染过程的饱和预测。技术实现要素:本发明的目的是克服上述现有技术的缺点,提供一种大气高污染过程动态追踪方法,该方法基于大气污染与气象条件的影响关系,利用连续多日大气污染状态估计,结合高污染发生可能性诊断,实现了对大气高污染过程的动态追踪。本发明是通过以下技术方案来实现的:一种大气高污染过程动态追踪方法,具体步骤如下:1s.确定追踪开始日期的大气污染状态以及未来连续多日的气象条件。2s.基于气象对大气污染状态的影响关系,建立连续多日大气污染状态估计方法,滚动估计未来连续多日的大气污染状态。3s.通过估计结果进行未来高污染发生可能性的诊断。4s.当日期有更新时,更新开始日期,重复1s-3s。作为上述方案的改进,所述的1s的具体步骤如下:1.1s.根据国家大气污染的相关标准,确定大气污染状态的描述标准;根据研究区域气象条件对大气污染影响的分析,确定与大气污染影响相关的气象因子;大气污染通常指pm2.5等颗粒物污染、臭氧污染、氮氧化物污染、一氧化碳污染等;气象因子包括风向、风速、气温、相对湿度、降水量、大气压、天气形势。2.2s.确定要追踪的时期范围,将追踪时期的前一日确定为追踪开始日期;获取开始日期的大气污染监测结果,确定其大气污染状态;获取未来连续多日的气象因子的预报信息,确定为未来连续多日的气象条件;未来连续多日的长度由气象预报时长以及目前预报水平决定,通常为3~7日。作为上述方案的改进,所述的2s中基于气象对大气污染状态的影响关系,建立连续多日大气污染状态估计方法如下:污染状态时间演变可看作是一个马尔可夫过程,污染状态演变过程模拟成一个n步状态转变链模型,以时间为节点,公式如下:{xt,xt+1,…,xt+n-1,xt+n}={f(pt,xt-1),f(pt+1,xt),…,f(pt+n,xt+n-1)},n∈z+(1)其中,函数f的含义:f(pt+n,xt+n-1)=pt+n·xt+n-1;xt+n的形式:x=[x1,x2,…,xi,…,xs]’;pt+n的形式:xt+n指的t+n时刻的污染状态向量;xt+n-1是t+n-1时刻的污染状态向量;xt+n依赖于xt+n-1,pt+n是污染状态从t+n-1时刻到t+n时刻的转变关系矩阵;其中,x是大气污染状态向量形式,x1,x2,…,xi,…,xs可取值0~1;当大气污染状态为i时,xi为1,其余元素为0;s为大气污染状态的总数目;pij指状态xi转变为xj的发生概率。因此,假设开始日期的大气污染状态向量为x0,则未来连续多日大气污染状态向量的估计方法公式如下:x1=p1·x0x2=p2·x1x3=p3·x2......xn=pn·xn-1(2)与一般马尔可夫过程中的状态转移矩阵不同,在此,转变关系矩阵pn是一个动态变化量,受前一时刻污染状态以及当前气象条件影响,计算方法如下公式所示:pn=p(xn=xi|xn-1=xj,yn=mk1,mf2,…mgk)(3)在这里,yn指的是n时刻气象条件的状态,xi,xj指大气污染的某个状态,mk1,mf2,…mgk分别指k个气象因子的某个状态。每一步pn的计算基于历史污染事件计数实现。基于连续多日大气污染状态向量估计结果,滚动估计未来连续多日的最大可能性发生的大气污染状态,公式如下:x1最大可能状态→max(x1)=max(p1·x0)x2最大可能状态→max(x2)=max(p2·x1)x3最大可能状态→max(x3)=max(p3·x2)......xn最大可能状态→max(xn)=max(pn·xn-1)(4)基于未来连续多日的大气污染状态估计结果,逐日判断大气污染状态是否达到或超过国家空气质量轻度污染水平:若存在某一日为是,则判定为追踪日期内有高污染过程发生,提取高污染过程的发生日期以及可能性概率;若所有日期均为否,则判定为追踪日期内无高污染过程发生。本发明具有以下有益效果:有效利用连续多日大气污染状态估计,对大气高污染的过程实现准确性高、快速高效的动态追踪。附图说明图1是本发明的技术方案流程图。图2是2017年1月13日至20日北京pm2.5高污染过程追踪结果图。具体实施方式实施例1一种大气高污染过程动态追踪方法,具体步骤如下:1s.确定追踪开始日期的大气污染状态以及未来连续多日的气象条件。2s.基于气象对大气污染状态的影响关系,建立连续多日大气污染状态估计方法,滚动估计未来连续多日的大气污染状态。3s.通过估计结果进行未来高污染发生可能性的诊断。4s.当日期有更新时,更新开始日期,重复1s-3s。作为上述方案的改进,所述的1s的具体步骤如下:1.1s.根据国家大气污染的相关标准,确定大气污染状态的描述标准;根据研究区域气象条件对大气污染影响的分析,确定与大气污染影响相关的气象因子;大气污染通常指pm2.5等颗粒物污染、臭氧污染、氮氧化物污染、一氧化碳污染等;气象因子包括风向、风速、气温、相对湿度、降水量、大气压、天气形势。2.2s.确定要追踪的时期范围,将追踪时期的前一日确定为追踪开始日期;获取开始日期的大气污染监测结果,确定其大气污染状态;获取未来连续多日的气象因子的预报信息,确定为未来连续多日的气象条件;未来连续多日的长度由气象预报时长以及目前预报水平决定,通常为3~7日。作为上述方案的改进,所述的2s中基于气象对大气污染状态的影响关系,建立连续多日大气污染状态估计方法如下:污染状态时间演变可看作是一个马尔可夫过程,污染状态演变过程模拟成一个n步状态转变链模型,以时间为节点,公式如下:{xt,xt+1,…,xt+n-1,xt+n}={f(pt,xt-1),f(pt+1,xt),…,f(pt+n,xt+n-1)},n∈z+(1)其中,函数f的含义:f(pt+n,xt+n-1)=pt+n·xt+n-1;xt+n的形式:x=[x1,x2,…,xi,…,xs]’;pt+n的形式:xt+n指的t+n时刻的污染状态向量;xt+n-1是t+n-1时刻的污染状态向量;xt+n依赖于xt+n-1,pt+n是污染状态从t+n-1时刻到t+n时刻的转变关系矩阵;其中,x是大气污染状态向量形式,x1,x2,…,xi,…,xs可取值0~1;当大气污染状态为i时,xi为1,其余元素为0;s为大气污染状态的总数目;pij指状态xi转变为xj的发生概率。因此,假设开始日期的大气污染状态向量为x0,则未来连续多日大气污染状态向量的估计方法公式如下:x1=p1·x0x2=p2·x1x3=p3·x2......xn=pn·xn-1(2)与一般马尔可夫过程中的状态转移矩阵不同,在此,转变关系矩阵pn是一个动态变化量,受前一时刻污染状态以及当前气象条件影响,计算方法如下公式所示:pn=p(xn=xi|xn-1=xj,yn=mk1,mf2,…mgk)(3)在这里,yn指的是n时刻气象条件的状态,xi,xj指大气污染的某个状态,mk1,mf2,…mgk分别指k个气象因子的某个状态。每一步pn的计算基于历史污染事件计数实现。基于连续多日大气污染状态向量估计结果,滚动估计未来连续多日的最大可能性发生的大气污染状态,公式如下:x1最大可能状态→max(x1)=max(p1·x0)x2最大可能状态→max(x2)=max(p2·x1)x3最大可能状态→max(x3)=max(p3·x2)......xn最大可能状态→max(xn)=max(pn·xn-1)(4)实施例22017年1月13日至1月20日北京pm2.5高污染过程追踪步骤1、确定大气污染状态的描述标准,以及表征气象条件的因素。根据国家空气质量标准,确定pm2.5污染状态描述如表1所示,pm2.5浓度监测日均数据根据这一对应规则均可转化为六大等级水平。表1pm2.5污染的污染状态描述参考北京pm2.5受气象条件影响的大量研究结果,影响北京pm2.5的气象条件主要有地面气象条件和宏观天气形势两大类,对以上两大类别中的气象因子进行与北京pm2.5污染的相关性分析,分析结果见表2,得到风速、相对湿度、环流形势与pm2.5污染的相关性最为显著。另外,虽然降水量的相关关系并不显著,但是众所周知,降水水平较大时对pm2.5污染冲刷作用显著,其作用并未与风速、相对湿度重叠。因此,最终确定影响北京pm2.5污染的主要气象因子为降水、风速、相对湿度、环流形势四大因子。表2七大基础气象因子与pm2.5污染的相关关系获取开始日期2017年1月12日的大气污染监测结果为61μg/m3,确定其大气污染状态为2级;从气象数据发布网站获取2017年1月13日至1月20日期间气象因子的预报信息。步骤2、北京pm2.5高污染的高发时期为秋冬季节,因此收集2013至2016年秋冬季节的北京pm2.5污染数据,以及相匹配日期的气象因子数据,作为每一步pn计算所需的历史污染事件集。未来连续五日的大气污染状态向量估计结果为:日期估计的大气污染状态向量2017年1月13日[83%0%17%0%0%0%]'2017年1月14日[25%50%25%0%0%0%]'2017年1月15日[0%67%0%33%%0%]'2017年1月16日[0%25%25%50%0%0%]'2017年1月17日[0%0%0%0%10%90%]'基于连续五日大气污染状态向量估计结果,滚动估计未来连续五日的最大可能性发生的大气污染状态,结果为:步骤3、基于连续五日的大气污染状态估计结果,逐日判断大气污染状态是否达到或超过国家空气质量轻度污染水平(4级):判别结果为:1月13日至17日将有高污染过程发生,高污染发生日期为1月16日至17日,发生可能性为50%~90%。步骤4、时间更新至1月2日时,则更新追踪的开始日期为1月2日,重复步骤2-3,滚动估计14日至18日的pm2.5污染状态。时间更新至1月3日时,则更新追踪的开始日期为1月3日,重复步骤2-3,滚动估计15日至19日的pm2.5污染状态。时间更新至1月4日时,则更新追踪的开始日期为1月4日,重复步骤2-3,滚动估计16日至20日的pm2.5污染状态。循环至开始日期更新为1月4日结束,完成了1月13日至1月20日的pm2.5高污染过程动态追踪。最终得到的追踪结果如图2所示。从图中可看出,经过追踪可预测到:2017年1月13日至20日期间将可能有pm2.5高污染发生,发生日期可能为1月16日至1月17日,发生可能性概率为50%~90%。追踪估计结果与实际监测结果基本一致,分析得出两个结果的相关系数达到0.97。上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1